Non-Enzymatic Glucose Sensors Composed of Polyaniline Nanofibers with High Electrochemical Performance
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Polyaniline
3.3. Characterization
3.4. Electrochemical Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Witkowska Nery, E.; Kundys, M.; Jelen, P.S.; Jönsson-Niedziółka, M. Electrochemical glucose sensing: Is there still room for improvement. Anal. Chem. 2016, 88, 11271–11282. [Google Scholar] [CrossRef] [PubMed]
- Kuppuswamy, G.P.; Pushparaj, K.; Surya, V.J.; Varadharaj, E.K.; Kumar, S.S.; Di Natale, C.; Sivalingam, Y. A ZIF-67 derived Co3O4 dodecahedron shaped microparticle electrode based extended gate field-effect transistor for non-enzymatic glucose detection towards the diagnosis of diabetes mellitus. J. Mater. Chem. C 2022, 10, 5345–5355. [Google Scholar] [CrossRef]
- Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010, 37, S62–S69. [Google Scholar] [CrossRef] [PubMed]
- Venos, E.; de Koning, L. Endocrine markers of diabetes and cardiovascular disease risk. In Endocrine Biomarkers; Elsevier: Amsterdam, The Netherlands, 2017; pp. 251–299. [Google Scholar]
- Palmer, C.S.; Anzinger, J.J.; Butterfield, T.R.; McCune, J.M.; Crowe, S.M. A simple flow cytometric method to measure glucose uptake and glucose transporter expression for monocyte subpopulations in whole blood. JoVE (J. Vis. Exp.) 2016, 114, 54255–54265. [Google Scholar]
- Gonzalez, N.M.; Fitch, A.; Al-Bazi, J. Development of a RP-HPLC method for determination of glucose in Shewanella oneidensis cultures utilizing 1-phenyl-3-methyl-5-pyrazolone derivatization. PLoS ONE 2020, 15, e0229990. [Google Scholar] [CrossRef] [PubMed]
- Grabarics, M.; Lettow, M.; Kirschbaum, C.; Greis, K.; Manz, C.; Pagel, K. Mass spectrometry-based techniques to elucidate the sugar code. Chem. Rev. 2021, 122, 7840–7908. [Google Scholar] [CrossRef] [PubMed]
- Klonoff, D.C. Overview of fluorescence glucose sensing: A technology with a bright future. J. Diabetes Sci. Technol. 2012, 6, 1242–1250. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Ansari, A.; Bishwanathan, S.; Siddiqui, M.A.; Tailor, S.; Gupta, P.K.; Negi, D.S.; Ranjan, P. Electronic Tongue Based on ZnO/ITO@glass for Electrochemical Monitoring of Spiciness Levels. Langmuir 2024, 40, 4434–4446. [Google Scholar] [CrossRef] [PubMed]
- Heller, A.; Feldman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 2008, 108, 2482–2505. [Google Scholar] [CrossRef]
- Khan, A.; Ahmed, S.; Sun, B.-Y.; Chen, Y.-C.; Chuang, W.-T.; Chan, Y.-H.; Gupta, D.; Wu, P.-W.; Lin, H.-C. Self-healable and anti-freezing ion conducting hydrogel-based artificial bioelectronic tongue sensing toward astringent and bitter tastes. Biosens. Bioelectron. 2022, 198, 113811–113824. [Google Scholar] [CrossRef]
- Joshi, A.; Kim, K.-H. Recent advances in nanomaterial-based electrochemical detection of antibiotics: Challenges and future perspectives. Biosens. Bioelectron. 2020, 153, 112046–112055. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Su, M.; Zhao, K.; Zhou, Y.; Wang, J.; Zhou, S.-F.; Lin, X. A minireview for recent development of nanomaterial-based detection of antibiotics. Biosensors 2023, 13, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Adley, C.C. Past, present and future of sensors in food production. Foods 2014, 3, 491–510. [Google Scholar] [CrossRef] [PubMed]
- Mollarasouli, F.; Zor, E.; Ozcelikay, G.; Ozkan, S.A. Magnetic nanoparticles in developing electrochemical sensors for pharmaceutical and biomedical applications. Talanta 2021, 226, 122108–122119. [Google Scholar] [CrossRef] [PubMed]
- Mahari, S.; Gandhi, S. Recent advances in electrochemical biosensors for the detection of salmonellosis: Current prospective and challenges. Biosensors 2022, 12, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yao, C.; Li, Z. Microarray-based chemical sensors and biosensors: Fundamentals and food safety applications. TrAC Trends Anal. Chem. 2023, 158, 116785–116794. [Google Scholar] [CrossRef]
- Noviana, E.; McCord, C.P.; Clark, K.M.; Jang, I.; Henry, C.S. Electrochemical paper-based devices: Sensing approaches and progress toward practical applications. Lab A Chip 2020, 20, 9–34. [Google Scholar] [CrossRef] [PubMed]
- Fritea, L.; Banica, F.; Costea, T.O.; Moldovan, L.; Dobjanschi, L.; Muresan, M.; Cavalu, S. Metal nanoparticles and carbon-based nanomaterials for improved performances of electrochemical (Bio) sensors with biomedical applications. Materials 2021, 14, 6319–6327. [Google Scholar] [CrossRef] [PubMed]
- Taniselass, S.; Arshad, M.M.; Gopinath, S.C. Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens. Bioelectron. 2019, 130, 276–292. [Google Scholar] [CrossRef]
- Marfà, J.; Pupin, R.; Sotomayor, M.; Pividori, M. Magnetic-molecularly imprinted polymers in electrochemical sensors and biosensors. Anal. Bioanal. Chem. 2021, 413, 6141–6157. [Google Scholar] [CrossRef]
- Kalambate, P.; Thirabowonkitphithan, P.; Kaewarsa, P.; Permpoka, K.; Radwan, A.; Shakoor, R.; Kalambate, R.; Khosropour, H.; Huang, Y.; Laiwattanapaisal, W. Progress, challenges, and opportunities of two-dimensional layered materials based electrochemical sensors and biosensors. Mater. Today Chem. 2022, 26, 101235–101245. [Google Scholar] [CrossRef]
- Mohammad, A.; Khan, M.E.; Alarifi, I.M.; Cho, M.H.; Yoon, T. A sensitive electrochemical detection of hydrazine based on SnO2/CeO2 nanostructured oxide. Microchem. J. 2021, 171, 106784–106793. [Google Scholar] [CrossRef]
- Mohammad, A.; Khan, M.E.; Yoon, T.; Cho, M.H. Na, O-co-doped-graphitic-carbon nitride (Na, Og-C3N4) for nonenzymatic electrochemical sensing of hydrogen peroxide. Appl. Surf. Sci. 2020, 525, 146353–146362. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Liu, Y.; Cao, X.; Zhang, F.; Xia, J.; Wang, Z. MOF-derived porous carbon nanozyme-based flexible electrochemical sensing system for in situ and real-time monitoring of H2O2 released from cells. Talanta 2024, 266, 125132–125141. [Google Scholar] [CrossRef]
- Ye, Q.; Chen, X.; Yang, J.; Wu, D.; Ma, J.; Kong, Y. Fabrication of CuO nanoparticles-decorated 3D N-doped porous carbon as electrochemical sensing platform for the detection of Sudan I. Food Chem. 2019, 287, 375–381. [Google Scholar] [CrossRef]
- Farji, M. Development of photovoltaic cells: A materials prospect and next-generation futuristic overview. Braz. J. Phys. 2021, 51, 1916–1928. [Google Scholar] [CrossRef]
- Kang, Z.; Ke, K.; Lin, E.; Qin, N.; Wu, J.; Huang, R.; Bao, D. Piezoelectric polarization modulated novel Bi2WO6/g-C3N4/ZnO Z-scheme heterojunctions with g-C3N4 intermediate layer for efficient piezo-photocatalytic decomposition of harmful organic pollutants. J. Colloid Interface Sci. 2022, 607, 1589–1602. [Google Scholar] [CrossRef] [PubMed]
- Basso, J.; Miranda, A.; Nunes, S.; Cova, T.; Sousa, J.; Vitorino, C.; Pais, A. Hydrogel-based drug delivery nanosystems for the treatment of brain tumors. Gels 2018, 4, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Prasad, C.; Tang, H.; Liu, Q.; Bahadur, I.; Karlapudi, S.; Jiang, Y. A latest overview on photocatalytic application of g-C3N4 based nanostructured materials for hydrogen production. Int. J. Hydrogen Energy 2020, 45, 337–379. [Google Scholar] [CrossRef]
- Xu, C.; Anusuyadevi, P.R.; Aymonier, C.; Luque, R.; Marre, S. Nanostructured materials for photocatalysis. Chem. Soc. Rev. 2019, 48, 3868–3902. [Google Scholar] [CrossRef]
- Wibowo, A.; Marsudi, M.A.; Amal, M.I.; Ananda, M.B.; Stephanie, R.; Ardy, H.; Diguna, L.J. ZnO nanostructured materials for emerging solar cell applications. RSC Adv. 2020, 10, 42838–42859. [Google Scholar] [CrossRef] [PubMed]
- Curulli, A. Nanomaterials in electrochemical sensing area: Applications and challenges in food analysis. Molecules 2020, 25, 5759–5767. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.M.; Fouad, F.H.; Fayek, G.R.; El Sayed, K.M.; Ahmed, M.N.; Mahmoud, R.Z.; El Nashar, R.M. Recent advances in electrochemical sensors based on nanomaterials for detection of red dyes in food products: A review. Food Chem. 2023, 435, 137656–137667. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xu, S.; Yan, F.; Liu, J. Electrochemiluminescence enzyme biosensors for ultrasensitive determination of glucose using glucose dehydrogenase immobilized on vertical silica nanochannels. Sens. Actuators B Chem. 2024, 402, 135119–135127. [Google Scholar] [CrossRef]
- Naikoo, G.A.; Salim, H.; Hassan, I.U.; Awan, T.; Arshad, F.; Pedram, M.Z.; Ahmed, W.; Qurashi, A. Non-Enzymatic Glucose Sensors Composed of Metal and Metal Oxide Nanostructures for Diabetes Management: Recent Advances, Challenges and Future Perspective. Front. Chem. 2021, 9, 786–794. [Google Scholar] [CrossRef] [PubMed]
- Mohammadpour-Haratbar, A.; Mohammadpour-Haratbar, S.; Zare, Y.; Rhee, K.Y.; Park, S.-J. A review on non-enzymatic electrochemical biosensors of glucose using carbon nanofiber nanocomposites. Biosensors 2022, 12, 1004–1016. [Google Scholar] [CrossRef] [PubMed]
- Majdinasab, M. Wearable Electrochemical Biosensors for Glucose Monitoring. In Wearable Biosensing in Medicine and Healthcare; Springer: Berlin/Heidelberg, Germany, 2024; Volume 6, pp. 35–66. [Google Scholar]
- Tao, Y.; Tong, Z.; Zhang, W.; Yu, H.; Mu, J.; Wang, X.; Xue, L. Research on temperature-insensitive blood glucose concentration sensor with U-shaped SMF. Opt. Fiber Technol. 2023, 80, 103391–103407. [Google Scholar] [CrossRef]
- Kailasa, S.; Geeta, B.; Jayarambabu, N.; Reddy, R.K.K.; Sharma, S.; Rao, K.V. Conductive Polyaniline Nanosheets (CPANINS) for a non-enzymatic glucose sensor. Mater. Lett. 2019, 245, 118–121. [Google Scholar] [CrossRef]
- Dhand, C.; Dwivedi, N.; Mishra, S.; Solanki, P.R.; Mayandi, V.; Beuerman, R.W.; Ramakrishna, S.; Lakshminarayanan, R.; Malhotra, B.D. Polyaniline-based biosensors. Nanobiosensors Dis. Diagn. 2015, 3, 25–46. [Google Scholar]
- Arif, D.; Hussain, Z.; Sohail, M.; Liaqat, M.A.; Khan, M.A.; Noor, T. A non-enzymatic electrochemical sensor for glucose detection based on Ag@TiO2@metal-organic framework (ZIF-67) nanocomposite. Front. Chem. 2020, 8, 573510–573523. [Google Scholar] [CrossRef]
- Ahmed, S.; Ansari, A.; Siddiqui, M.A.; Khan, A.; Ranjan, P. A potential optical sensor based on nanostructured silicon. J. Mater. Sci. Mater. Electron. 2023, 34, 755–763. [Google Scholar] [CrossRef]
- Madhaiyan, G.; Tung, T.-W.; Zan, H.-W.; Meng, H.-F.; Lu, C.-J.; Ansari, A.; Chuang, W.-T.; Lin, H.-C. UV-enhanced room-temperature ultrasensitive NO gas sensor with vertical channel nano-porous organic diodes. Sens. Actuators B Chem. 2020, 320, 128392–128404. [Google Scholar] [CrossRef]
- Khan, A.; Islam, S.M.; Ahmed, S.; Kumar, R.R.; Habib, M.R.; Huang, K.; Hu, M.; Yu, X.; Yang, D. Direct CVD growth of graphene on technologically important dielectric and semiconducting substrates. Adv. Sci. 2018, 5, 1800050–1800063. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, P.; Thomas, V.; Kumar, P. 2D materials as a diagnostic platform for the detection and sensing of the SARS-CoV-2 virus: A bird’s-eye view. J. Mater. Chem. B 2021, 9, 4608–4619. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Cong, J.; Kumar, R.R.; Ahmed, S.; Yang, D.; Yu, X. Chemical vapor deposition of graphene on self-limited SiC interfacial layers formed on silicon substrates for heterojunction devices. ACS Appl. Nano Mater. 2022, 5, 17544–17555. [Google Scholar] [CrossRef]
- Siddiqui, M.A.; Ahmed, S.; Ansari, A.; Ranjan, P. Photo and Piezocatalytic Behavior of Ag-NPs-Hybridized Barium Titanate. In International Conference on Nanotechnology: Opportunities and Challenges; Springer: Berlin/Heidelberg, Germany, 2022; pp. 345–351. [Google Scholar]
- Yu, Z.; Cong, J.; Khan, A.; Hang, P.; Yang, D.; Yu, X. Direct growth of graphene on hyper-doped silicon to enhance carrier transport for infrared photodetection. Nanotechnology 2023, 35, 115703–115714. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Habib, M.R.; Jingkun, C.; Xu, M.; Yang, D.; Yu, X. New insight into the metal-catalyst-free direct chemical vapor deposition growth of graphene on silicon substrates. J. Phys. Chem. C 2021, 125, 1774–1783. [Google Scholar] [CrossRef]
- Cong, J.; Khan, A.; Li, J.; Wang, Y.; Xu, M.; Yang, D.; Yu, X. Direct growth of graphene nanowalls on silicon using plasma-enhanced atomic layer deposition for high-performance si-based infrared photodetectors. ACS Appl. Electron. Mater. 2021, 3, 5048–5058. [Google Scholar] [CrossRef]
- Awasthi, C.; Khan, A.; Islam, S. PdSe2/MoSe2: A promising van der Waals heterostructure for field effect transistor application. Nanotechnology 2024, 35, 195202–195218. [Google Scholar] [CrossRef]
- Cong, J.; Khan, A.; Hang, P.; Cheng, L.; Yang, D.; Yu, X. High detectivity graphene/si heterostructure photodetector with a single hydrogenated graphene atomic interlayer for passivation and carrier tunneling. Nanotechnology 2022, 33, 505201–505214. [Google Scholar] [CrossRef]
- Fritea, L.; Bănică, F.; Costea, T.O.; Moldovan, L.; Iovan, C.; Cavalu, S. A gold nanoparticles-Graphene based electrochemical sensor for sensitive determination of nitrazepam. J. Electroanal. Chem. 2018, 830, 63–71. [Google Scholar] [CrossRef]
- Ansari, A.; Ahmed, S.; Siddiqui, M.A.; Khan, A.; Banerjee, A.; Negi, D.S.; Ranjan, P. Investigation of complex hybrids in lithium salt under ultraviolet energy source. J. Mater. Sci. Mater. Electron. 2024, 35, 108–116. [Google Scholar] [CrossRef]
- Zokhtareh, R.; Rahimnejad, M.; Najafpour-Darzi, G.; Karimi-Maleh, H. A new approach to electrochemical sensing of a wildly used antibiotic; ciprofloxacin. Measurement 2023, 215, 112872–112886. [Google Scholar] [CrossRef]
- Mittal, H.; Khanuja, M. Optimization of MoSe2 nanostructure by surface modification using conducting polymer for degradation of cationic and anionic dye: Photocatalysis mechanism, reaction kinetics and intermediate product study. Dye. Pigment. 2020, 175, 108109–108121. [Google Scholar] [CrossRef]
- Fatima, T.; Husain, S.; Khanuja, M. Superior photocatalytic and electrochemical activity of novel WS2/PANI nanocomposite for the degradation and detection of pollutants: Antibiotic, heavy metal ions, and dyes. Chem. Eng. J. Adv. 2022, 12, 100373–100386. [Google Scholar] [CrossRef]
- Kondawar, S.; Deshpande, M.; Agrawal, S. Transport properties of conductive polyaniline nanocomposites based on carbon nanotubes. Int. J. Compos. Mater 2012, 2, 32–36. [Google Scholar] [CrossRef]
- Gavgani, J.N.; Hasani, A.; Nouri, M.; Mahyari, M.; Salehi, A. Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sens. Actuators B Chem. 2016, 229, 239–248. [Google Scholar] [CrossRef]
- Hassan, H.S.; Elkady, M.; Alian, M. Preparation and characterization of polyaniline nanotube. Am. J. Appl. Chem. 2015, 12, 54–59. [Google Scholar] [CrossRef]
- Xu, H.; Bissessur, R.; Dahn, D.C. Nanomaterials based on polyanilines and MoSe2. J. Inorg. Organomet. Polym. Mater. 2014, 24, 219–225. [Google Scholar] [CrossRef]
- Osuna, V.; Vega-Rios, A.; Zaragoza-Contreras, E.A.; Estrada-Moreno, I.A.; Dominguez, R.B. Progress of polyaniline glucose sensors for diabetes mellitus management utilizing enzymatic and non-enzymatic detection. Biosensors 2022, 12, 137–146. [Google Scholar] [CrossRef]
- Kulkarni, S.; Chaure, N.; Rohom, A.B.; Londhe, P.U.; Mahapatra, S. Electropolymerization of polyaniline thin films. High Perform. Polym. 2014, 26, 641–646. [Google Scholar]
- Bera, A.; Deb, K.; Kathirvel, V.; Bera, T.; Thapa, R.; Saha, B. Flexible diode of polyaniline/ITO heterojunction on PET substrate. Appl. Surf. Sci. 2017, 418, 264–269. [Google Scholar] [CrossRef]
- Almasi, M.J.; Sheikholeslami, T.F.; Naghdi, M. Band gap study of polyaniline and polyaniline/MWNT nanocomposites with in situ polymerization method. Compos. Part B Eng. 2016, 96, 63–68. [Google Scholar] [CrossRef]
- Nagabooshanam, S.; Roy, S.; Deshmukh, S.; Wadhwa, S.; Sulania, I.; Mathur, A.; Krishnamurthy, S.; Bharadwaj, L.M.; Roy, S.S. Microfluidic affinity sensor based on a molecularly imprinted polymer for ultrasensitive detection of chlorpyrifos. ACS Omega 2020, 5, 31765–31773. [Google Scholar] [CrossRef] [PubMed]
- Gvozdenović, M.M.; Jugović, B.; Bezbradica, D.; Antov, M.; Knežević-Jugović, Z.; Grgur, B. Electrochemical determination of glucose using polyaniline electrode modified by glucose oxidase. Food Chem. 2011, 124, 396–400. [Google Scholar] [CrossRef]
- Ramya, R.; Sangaranarayanan, M. Electrochemical sensing of glucose using polyaniline nanofiber dendrites-amperometric and impedimetric analysis. J. Appl. Polym. Sci. 2013, 129, 735–747. [Google Scholar] [CrossRef]
- Neupane, S.; Bhusal, S.; Subedi, V.; Nakarmi, K.B.; Gupta, D.K.; Yadav, R.J.; Yadav, A.P. Preparation of an amperometric glucose biosensor on polyaniline-coated graphite. J. Sens. 2021, 2021, 8832748–8832760. [Google Scholar] [CrossRef]
- Varghese, E.V.; Saidu, F.K.; Schwandt, C.; Thomas, G.; Joseph, A. Non-Enzymatic Electrochemical Biosensing of Glucose Using Nanocomposites of Polyaniline Nanofibers and Silver. ChemistrySelect 2022, 7, 202103518–202103534. [Google Scholar] [CrossRef]
- Chen, Z.; Wright, C.; Dincel, O.; Chi, T.-Y.; Kameoka, J. A low-cost paper glucose sensor with molecularly imprinted polyaniline electrode. Sensors 2020, 20, 1098–1109. [Google Scholar] [CrossRef]
- Horng, Y.-Y.; Hsu, Y.-K.; Ganguly, A.; Chen, C.-C.; Chen, L.-C.; Chen, K.-H. Direct-growth of polyaniline nanowires for enzyme-immobilization and glucose detection. Electrochem. Commun. 2009, 11, 850–853. [Google Scholar] [CrossRef]
- Çolak, Ö.; Arslan, H.; Zengin, H.; Zengin, G. Amperometric detection of glucose by polyaniline-activated carbon composite carbon paste electrode. Int. J. Electrochem. Sci. 2012, 7, 6988–6997. [Google Scholar] [CrossRef]
- Ahammad, A.S.; Al Mamun, A.; Akter, T.; Mamun, M.; Faraezi, S.; Monira, F. Enzyme-free impedimetric glucose sensor based on gold nanoparticles/polyaniline composite film. J. Solid State Electrochem. 2016, 20, 1933–1939. [Google Scholar] [CrossRef]
Electrode | Method | LOD | Selectivity | Linear Range | Ref. |
---|---|---|---|---|---|
Polyaniline on graphite electrode | Enzymatic | 1 mmoldm−3 | No | 1–5 mmol dm−3 | [68] |
Polyaniline (PANI) nanofiber dendrites on platinum electrodes | Enzymatic (amperometric analysis) | 100 nM | Yes | 50 µM–12 mM | [69] |
Polyaniline-coated graphite | Non-enzymatic (Amperometric Analysis) | 0.01 µM | No | 0.01–0.1 µM | [70] |
Polyaniline nanofibers and silver nanoparticles | Non-enzymatic (chronoamperometry) | 1.3 µM | Yes | 100 μM to 10 mM | [71] |
Molecularly imprinted polyaniline electrode | Non-enzymatic | 1.0048 mM | No | 2.2 to 11.1 mM | [72] |
Polyaniline nanowires | Enzymatic | 0.05 mM | Yes | 0–8 mM | [73] |
Polyaniline-activated carbon | Amperometric analysis | 5.0 × 10−8 M | Yes | 5.0 × 10−7–1.0 × 10−5 M | [74] |
Polyaniline-goldnanoparticles | Non-enzymatic | 0.1 mM | Yes | 0.3–10 mM | [75] |
Polyaniline nanofibre on platinum electrode | CV | 10.6 µM | Yes | 10 µM–1 mM | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobahi, N.; Alam, M.M.; Imran, M.; Khan, M.E.; Mohammad, A.; Yoon, T.; Mehedi, I.M.; Hussain, M.A.; Abdulaal, M.J.; Jiman, A.A. Non-Enzymatic Glucose Sensors Composed of Polyaniline Nanofibers with High Electrochemical Performance. Molecules 2024, 29, 2439. https://doi.org/10.3390/molecules29112439
Sobahi N, Alam MM, Imran M, Khan ME, Mohammad A, Yoon T, Mehedi IM, Hussain MA, Abdulaal MJ, Jiman AA. Non-Enzymatic Glucose Sensors Composed of Polyaniline Nanofibers with High Electrochemical Performance. Molecules. 2024; 29(11):2439. https://doi.org/10.3390/molecules29112439
Chicago/Turabian StyleSobahi, Nebras, Md. Mottahir Alam, Mohd Imran, Mohammad Ehtisham Khan, Akbar Mohammad, Taeho Yoon, Ibrahim M. Mehedi, Mohammad A. Hussain, Mohammed J. Abdulaal, and Ahmad A. Jiman. 2024. "Non-Enzymatic Glucose Sensors Composed of Polyaniline Nanofibers with High Electrochemical Performance" Molecules 29, no. 11: 2439. https://doi.org/10.3390/molecules29112439
APA StyleSobahi, N., Alam, M. M., Imran, M., Khan, M. E., Mohammad, A., Yoon, T., Mehedi, I. M., Hussain, M. A., Abdulaal, M. J., & Jiman, A. A. (2024). Non-Enzymatic Glucose Sensors Composed of Polyaniline Nanofibers with High Electrochemical Performance. Molecules, 29(11), 2439. https://doi.org/10.3390/molecules29112439