Are Terminal Alkynes Necessary for MAO-A/MAO-B Inhibition? A New Scaffold Is Revealed
Abstract
:1. Introduction
2. Results
2.1. Synthesis of Propargylamines
2.2. In Vitro Biological Activity Assays
2.3. Molecular Modeling Results
2.3.1. Molecular Docking and MD Simulations
2.3.2. Interactions between Selected Hit Compounds and the Target Protein
2.4. Binding Free Energy Analyses
2.5. ADME/Tox Properties
2.6. Inhibitory Mechanism Discussion
3. Materials and Methods
3.1. Synthesis of Propargylamines 4a–4ae
General Procedure for the Synthesis of Propargylamines 4a–4m under Mn Catalysis [28]
3.2. General Procedure for the Synthesis of Propargylamines 4n–4ae under Zn Catalysis [27]
3.3. In Vitro MAO Enzyme Inhibitory Activities
3.4. Molecular Modeling
3.5. Target Protein Preparation
3.6. Ligand Preparation
3.7. Receptor Grid Generation
3.8. Molecular Docking Studies
3.9. Molecular Dynamics Simulations
3.10. Binding Free Energies Calculated by Molecular Mechanics/Generalized Born Surface Area (MM/GBSA)
3.11. ADMET Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lauder, K.; Toscani, A.; Scalacci, N.; Castagnolo, D. Synthesis and Reactivity of Propargylamines in Organic Chemistry. Chem. Rev. 2017, 117, 14091–14200. [Google Scholar] [CrossRef] [PubMed]
- Marco-Contelles, J.; Unzeta, M.; Bolea, I.; Esteban, G.; Ramsay, R.R.; Romero, A.; Martínez-Murillo, R.; Carreiras, M.C.; Ismaili, L. ASS234 As a New Multi-Target Directed Propargylamine for Alzheimer’s Disease Therapy. Front. Neurosci. 2016, 10, 294. [Google Scholar] [CrossRef]
- Wang, J.Z.; Xia, Y.Y.; Grundke-Iqbal, I.; Iqbal, K. Abnormal hyperphosphorylation of tau: Sites, regulation, and molecular mechanism of neurofibrillary degeneration. J. Alzheimers Dis. 2013, 33, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Zindo, F.T.; Joubert, J.; Malan, S.F. Propargylamine as functional moiety in the design of multifunctional drugs for neurodegenerative disorders: MAO inhibition and beyond. Future Med. Chem. 2015, 7, 609–629. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Kaur, D.; Sehgal, A.; Singh, S.; Sharma, N.; Zengin, G.; Andronie-Cioara, F.L.; Toma, M.M.; Bungau, S.; Bumbu, A.G. Role of Monoamine Oxidase Activity in Alzheimer’s Disease: An Insight into the Therapeutic Potential of Inhibitors. Molecules 2021, 26, 3724. [Google Scholar] [CrossRef]
- Manzoor, S.; Hoda, N.A. A comprehensive review of monoamine oxidase inhibitors as Anti-Alzheimer’s disease agents: A review. Eur. J. Med. Chem. 2020, 206, 112787. [Google Scholar] [CrossRef] [PubMed]
- Carradori, S.; Secci, D.; Petzer, J.P. MAO inhibitors and their wider applications: A patent review. Expert Opin. Ther. Pat. 2018, 28, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Putnins, E.E.; Goebeler, V.; Ostadkarampour, M. Monoamine Oxidase-B Inhibitor Reduction in Pro-Inflammatory Cytokines Mediated by Inhibition of cAMP-PKA/EPAC Signaling. Front. Pharmacol. 2021, 12, 741460. [Google Scholar] [CrossRef]
- Mathew, B.; Carradori, S.; Guglielmi, P.; Uddin, M.S. New Aspects of Monoamine Oxidase B Inhibitors: The Key Role of Halogens to Open the Golden Door. Curr. Med. Chem. 2020, 28, 266–283. [Google Scholar] [CrossRef]
- Das, T.; Saha, S.C.; Sunita, K.; Majumder, M.; Ghorai, M.; Mane, A.B.; Prasanth, D.A.; Kumar, P.; Pandey, D.K.; Al-Tawaha, A.R.; et al. Promising botanical-derived monoamine oxidase (MAO) inhibitors: Pharmacological aspects and structure-activity studies. South. Afr. J. Bot. 2022, 146, 127–145. [Google Scholar] [CrossRef]
- Nambiar, M.P.; Jayadevan, S.; Babu, B.K.; Biju, A.R. Computational studies on the structural variations of MAO-A and MAO-B inhibitors—An in silico docking approach. Indian. J. Biochem. Biophys. 2022, 59, 276–295. [Google Scholar]
- Peshkov, V.A.; Pereshivko, O.P.; Van der Eycken, E.V. A walk around the A3-coupling. Chem. Soc. Rev. 2012, 41, 3790–3807. [Google Scholar] [CrossRef] [PubMed]
- Zorba, L.P.; Egaña, E.; Gomez-Bengoa, E.; Vougioukalakis, G.C. Zinc Iodide Catalyzed Synthesis of Trisubstituted Allenes from Terminal Alkynes and Ketones. ACS Omega 2021, 6, 23329–23346. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakash, K.; Venkatachalam, C.S.; Balasubramanian, K.K. A convenient one-pot synthesis of N-aryl-3-pyrrolines. Tetrahedron Lett. 1999, 40, 6493–6496. [Google Scholar] [CrossRef]
- Clique, B.; Monteiro, N.; Balme, G. A one pot synthesis of various pyrrolidines via a tandem Michael addition-transition metal-catalysed cyclisation reaction. Tetrahedron Lett. 1999, 40, 1301–1304. [Google Scholar] [CrossRef]
- Polindara-García, L.A.; Miranda, L.D. Two-Step Synthesis of 2,3-Dihydropyrroles via a Formal 5-endo Cycloisomerization of Ugi 4-CR/Propargyl Adducts. Org. Lett. 2012, 14, 5408–5411. [Google Scholar] [CrossRef] [PubMed]
- Goutham, K.; Rao Mangina, N.S.V.M.; Suresh, S.; Raghavaiah, P.; Karunakar, G.V. Gold-catalysed cyclisation of N-propargylic β-enaminones to form 3-methylene-1-pyrroline derivatives. Org. Biomol. Chem. 2014, 12, 2869–2873. [Google Scholar] [CrossRef] [PubMed]
- Ojima, I.; Vu, A.T.; Lee, S.Y.; McCullagh, J.V.; Moralee, A.C.; Fujiwara, M.; Hoang, T.H. Rhodium-Catalyzed Silylcarbocyclization (SiCaC) and Carbonylative Silylcarbocyclization (CO–SiCaC) Reactions of Enynes. J. Am. Chem. Soc. 2002, 124, 9164–9174. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, K.; Malakar, C.C.; Stas, S.; Lemiere, F.; Tehrani, K.A. Indium(iii)-catalyzed tandem synthesis of 2-alkynyl-3,3-dichloropyrrolidines and their conversion to 3-chloropyrroles. RSC Adv. 2015, 5, 10139–10151. [Google Scholar] [CrossRef]
- Suzuki, S.; Saito, A. Single-Step Synthesis of Iodinated Oxazoles from N-Propargyl Amides Mediated by I2/Iodosylbenzene/Trimethylsilyl Trifluoromethanesulfonate Systems. J. Org. Chem. 2017, 82, 11859–11864. [Google Scholar] [CrossRef]
- Wang, B.; Chen, Y.; Zhou, L.; Wang, J.; Tung, C.-H.; Xu, Z. Synthesis of Oxazoles by Tandem Cycloisomerization/Allylic Alkylation of Propargyl Amides with Allylic Alcohols: Zn(OTf)2 as π Acid and σ Acid Catalyst. J. Org. Chem. 2015, 80, 12718–12724. [Google Scholar] [CrossRef] [PubMed]
- García-Domínguez, P.; Fehr, L.; Rusconi, G.; Nevado, C. Palladium-catalyzed incorporation of atmospheric CO2: Efficient synthesis of functionalized oxazolidinones. Chem. Sci. 2016, 7, 3914–3918. [Google Scholar] [CrossRef] [PubMed]
- Zorba, L.P.; Vougioukalakis, G.C. The Ketone-Amine-Alkyne (KA2) coupling reaction: Transition metal-catalyzed synthesis of quaternary propargylamines. Coord. Chem. Rev. 2021, 429, 213603. [Google Scholar] [CrossRef]
- Pereshivko, O.P.; Peshkov, V.A.; Van der Eycken, E.V. Unprecedented Cu(I)-Catalyzed Microwave-Assisted Three-Component Coupling of a Ketone, an Alkyne, and a Primary Amine. Org. Lett. 2010, 12, 2638–2641. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Zhang, Q.; Hu, X.-Y.; Li, B.-G.; Ji, J.-X.; Chan, A.S.C. Gold-Catalyzed Direct Intermolecular Coupling of Ketones, Secondary Amines, and Alkynes: A Facile and Versatile Access to Propargylic Amines Containing a Quaternary Carbon Center. Adv. Synth. Catal. 2011, 353, 1274–1278. [Google Scholar] [CrossRef]
- Pierce, C.J.; Nguyen, M.; Larsen, C.H. Copper/Titanium Catalysis Forms Fully Substituted Carbon Centers from the Direct Coupling of Acyclic Ketones, Amines, and Alkynes. Angew. Chem. Int. Ed. 2012, 51, 12289–12292. [Google Scholar] [CrossRef] [PubMed]
- Tzouras, N.V.; Neofotistos, S.P.; Vougioukalakis, G.C. Zn-Catalyzed Multicomponent KA2 Coupling: One-Pot Assembly of Propargylamines Bearing Tetrasubstituted Carbon Centers. ACS Omega 2019, 4, 10279–10292. [Google Scholar] [CrossRef]
- Neofotistos, S.P.; Tzouras, N.V.; Pauze, M.; Gómez-Bengoa, E.; Vougioukalakis, G.C. Manganese-Catalyzed Multicomponent Synthesis of Tetrasubstituted Propargylamines: System Development and Theoretical Study. Adv. Synth. Catal. 2020, 362, 3872–3885. [Google Scholar] [CrossRef]
- Adejumo, T.T.; Tzouras, N.V.; Zorba, L.P.; Radanovic, D.; Pevec, A.; Grubišic, S.; Mitic, D.; Andelkovic, K.K.; Vougioukalakis, G.C.; Cobeljic, B.; et al. Synthesis, Characterization, Activity, C. and DFT Calculations of Zn(II) Hydrazone Complexes. Molecules 2020, 25, 4043. [Google Scholar] [CrossRef]
- Adejumo, T.T.; Danopoulou, M.; Zorba, L.P.; Pevec, A.; Zlatar, M.; Radanović, D.; Savić, M.; Gruden, M.; Anđelković, K.K.; Turel, I.; et al. Correlating Structure and KA2 Catalytic Activity of Zn(II) Hydrazone Complexes. Eur. J. Inorg. Chem. 2023, 26, e202300193. [Google Scholar] [CrossRef]
- Available online: https://preadmet.webservice.bmdrc.org/ (accessed on 1 June 2022).
- Finberg, J.P.M.; Rabey, J.M. Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology. Front. Pharmacol. 2016, 7, 340. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Jang, B.K.; Cho, N.; Park, J.H.; Yeon, S.K.; Ju, E.J.; Lee, Y.S.; Han, G.; Pae, A.M.; Kim, D.J.; et al. Synthesis of a series of unsaturated ketone derivatives as selective and reversible monoamine oxidase inhibitors. Bioorg. Med. Chem. 2015, 23, 6486–6649. [Google Scholar] [CrossRef] [PubMed]
- Pisani, L.; Catto, M.; Nicolotti, O.; Grossi, G.; Di Braccio, M.; Soto-Otero, R.; Mendez-Alvarez, E.; Stefanachi, A.; Gadaleta, D.; Carotti, A. Fine molecular tuning at position 4 of 2H-chromen-2-one derivatives in the search of potent and selective monoamine oxidase B inhibitors. Eur. J. Med. Chem. 2013, 70, 723–739. [Google Scholar] [CrossRef] [PubMed]
- Tsugeno, Y.; Ito, A. A key amino acid responsible for substrate selectivity of monoamine oxidase A and B. J. Biol. Chem. 1997, 272, 14033–14036. [Google Scholar] [CrossRef] [PubMed]
- Binda, C.; Hubalek, F.; Li, M.; Herzig, Y.; Sterling, J.; Edmondson, D.E.; Mattevi, A. Crystal structures of monoamine oxidase B in complex with four inhibitors of the N-propargylaminoindan class. J. Med. Chem. 2004, 47, 1767–1774. [Google Scholar] [CrossRef] [PubMed]
- Albreht, A.; Vovk, I.; Mavri, J.; Marco-Contelles, J.; Ramsay, R.R. Evidence for a Cyanine Link Between Propargylamine Drugs and Monoamine Oxidase Clarifies the Inactivation Mechanism. Front. Chem. 2018, 6, 169. [Google Scholar] [CrossRef] [PubMed]
- Szewczuk, L.M.; Culhane, J.C.; Yang, M.; Majumdar, A.; Yu, H.; Cole, P.A. Mechanistic Analysis of a Suicide Inactivator of Histone Demethylase LSD1. Biochemistry 2007, 46, 6892–6902. [Google Scholar] [CrossRef] [PubMed]
- Chajkowski-Scarry, S.; Rimoldi, J.M. Monoamine Oxidase A and B Substrates: Probing the Pathway for Drug Development. Fut. Med. Chem. 2014, 6, 697–717. [Google Scholar] [CrossRef]
- Lang, D.; Kalgutkar, A. Non-P450 Mediated Oxidative Metabolism of Xenobiotics. In Drug Metabolizing Enzymes; Lee, J., Scott Obach, R., Fisher, M., Eds.; Informa Healthcare: London, UK, 2003; pp. 483–539. [Google Scholar]
- Kalir, A.; Sabbagh, A.; Youdim, M.B.H. Selective acetylenic ‘suicide’ and reversible inhibitors of monoamine oxidase types a and B. Br. J. Pharm. 1981, 73, 55–64. [Google Scholar] [CrossRef]
- Tandarić, T.; Vianello, R. Computational Insight into the Mechanism of the Irreversible Inhibition of Monoamine Oxidase Enzymes by the Antiparkinsonian Propargylamine Inhibitors Rasagiline and Selegiline. ACS Chem. Neurosci. 2019, 10, 3532–3542. [Google Scholar] [CrossRef]
- Hosseini-Sarvari, M.; Moeini, F. Nano copper(i) oxide–zinc oxide catalyzed coupling of aldehydes or ketones, secondary amines, and terminal alkynes in solvent-free conditions. New J. Chem. 2014, 38, 624–635. [Google Scholar] [CrossRef]
- Shah, A.P.; Sharma, A.S.; Jain, S.; Shimpi, N.G. Microwave assisted one pot three component synthesis of propargylamine, tetra substituted propargylamine and pyrrolo[1,2-a]quinolines using CuNPs@ZnO–PTh as a heterogeneous catalyst. New J. Chem. 2018, 42, 8724–8737. [Google Scholar] [CrossRef]
- Sugiishi, T.; Nakamura, H. Zinc(II)-Catalyzed Redox Cross-Dehydrogenative Coupling of Propargylic Amines and Terminal Alkynes for Synthesis of N-Tethered 1,6-Enynes. J. Am. Chem. Soc. 2012, 134, 2504–2507. [Google Scholar] [CrossRef] [PubMed]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A Gen. Phys. 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [PubMed]
- Bosica, G.; Abdilla, R. The KA2 coupling reaction under green, solventless, heterogeneous catalysis. J. Mol. Catal. A Chem. 2017, 426, 542–549. [Google Scholar] [CrossRef]
- Desmond, v4.9; D.E. Shaw Research: New York, NY, USA, 2011.
- Novaroli, L.; Reist, M.; Favre, E.; Carotti, A.; Catto, M.; Carrupt, P.A. Human recombinant monoamine oxidase B as reliable and efficient enzyme source for inhibitor screening. Bioorg Med. Chem. 2005, 13, 6212–6217. [Google Scholar] [CrossRef]
- Son, S.-Y.; Ma, J.; Kondou, Y.; Yoshimura, M.; Yamashita, E.; Tsukihara, T. Structure of human monoamine oxidase A at 2.2-Å resolution: The control of opening the entry for substrates/inhibitors. Proc. Natl. Acad. Sci. USA 2008, 105, 5739–5744. [Google Scholar] [CrossRef]
- Is, Y.S.; Durdagi, S.; Aksoydan, B.; Yurtsever, M. Proposing Novel MAO-B Hit Inhibitors Using Multidimensional Molecular Modeling Approaches and Application of Binary QSAR Models for Prediction of Their Therapeutic Activity, Pharmacokinetic and Toxicity Properties. ACS Chem. Neurosci. 2018, 9, 1768–1872. [Google Scholar] [CrossRef] [PubMed]
- Release, S. 2017-2: LigPrep; Schrödinger, LLC: New York, NY, USA, 2017. [Google Scholar]
- Shelley, J.C.; Choletti, A.; Frye, L.L.; Greenwood, J.R.; Timlin, M.R.; Uchimaya, M. Epik: A software program for pK(a) prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des. 2007, 21, 681–691. [Google Scholar] [CrossRef]
- Sherman, W.; Day, T.; Jacobson, M.P.; Friesner, R.A.; Farid, R. Novel Procedure for Modeling Ligand/Receptor Induced Fit Effects. J. Med. Chem. 2006, 49, 534–553. [Google Scholar] [CrossRef]
- Jacobson, M.P.; Pincus, D.L.; Rapp, C.S.; Day, T.J.F.; Honig, B.; Shaw, D.E.; Friesner, R.A. A Hierarchical Approach to All-Atom Protein Loop Prediction. Proteins: Struct. Funct. Bioinform. 2004, 55, 351–367. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Kim, E.T.; Eastwood, M.P.; Dror, R.O.; Seeliger, M.A.; Shaw, D.E. How does a drug molecule find its target binding site? J. Am. Chem. Soc. 2011, 133, 9181–9183. [Google Scholar] [CrossRef] [PubMed]
- Bashford, D.; Case, D.A. Generalized born models of macromolecular solvation effects. Annu. Rev. Phys. Chem. 2000, 51, 129–152. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
Compound Code | IC50 hMAO-B (nM) a | IC50 hMAO-A (nM) a | SI b |
---|---|---|---|
4a | 274.2 ± 2.68 | - | |
4f | 175.3 ± 2.11 | - | |
4k | 152.1 ± 1.95 | 797.1 ± 6.73 | 5.24 |
4j | 164.7 ± 2.03 | 861.5 ± 6.97 | 5.23 |
4h | 171.8 ± 2.10 | - | |
4g | 189.2 ± 2.24 | - | |
4e | 286.1 ± 2.74 | - | |
4l | 294.5 ± 3.06 | - | |
4b | 182.4 ± 2.21 | - | |
4i | 172.2 ± 2.10 | - | |
4m | 165.3 ± 2.01 | 802.9 ± 7.03 | 4.86 |
4c | 183.1 ± 2.12 | - | |
4d | 174.3 ± 2.08 | - | |
4q | 317.2 ± 3.24 | - | |
4ad | 161.3 ± 1.97 | 765.6 ± 6.42 | 4.74 |
4r | 323.4 ± 3.21 | - | |
4u | 345.9 ±3.51 | - | |
4t | 191.5 ± 2.41 | - | |
4y | 277.4 ± 2.71 | - | |
4p | 203.1 ± 2.24 | - | |
4aa | 168.3 ± 2.12 | 791.3 ± 6.72 | 4.70 |
4ac | 278.4 ± 2.71 | - | |
4s | 281.3 ± 2.75 | - | |
4u | 276.7 ± 2.65 | - | |
4ab | 167.2 ± 2.01 | 845.8 ± 6.83 | 5.06 |
4x | 267.4 ± 2.52 | - | |
4z | 213.1 ± 2.24 | - | |
4w | 281.9 ± 2.72 | - | |
4ae | 321.6 ± 2.94 | - | |
4n | 272.3 ± 2.54 | - | |
4o | 312.1 ± 3.17 | - | |
Selegiline (irreversible inhibitor) | 5.82 ± 0.04 | 1452 ± 71 | 249.5 |
Safinamide (reversible inhibitor) c | 98 | 580,000 | 5918.4 |
Comp. | 2D Structure | IFD (hMAO-A) (kcal/mol) | IFD (hMAO-B) (kcal/mol) | Average MM/GBSA (hMAO-A) (kcal/mol) |
4j | −10.18 | −11.74 | −60.11 ± 4.61 | |
4aa | −12.19 | −11.44 | −57.19 ± 4.66 | |
4ad | −12.09 | −10.33 | −52.24 ± 5.27 | |
4ab | −13.22 | −11.80 | −50.81 ± 6.66 | |
4k | −12.42 | −10.83 | −47.30 ± 4.57 | |
4m | −12.64 | −11.97 | −43.63 ± 4.11 | |
positive control | −12.28 | −12.05 | −54.95 ± 4.84 | |
Comp. | 2D Structure | Average MM/GBSA (hMAO-B) (kcal/mol) | IC50 hMAO-A (nM) | IC50 hMAO-B (nM) |
4j | −74.5 ± 64.56 | 861.5 ± 6.97 | 164.7 ± 2.03 | |
4aa | −64.50 ± 5.75 | 791.3 ± 6.72 | 168.3 ± 2.12 | |
4ad | −49.00 ± 5.92 | 765.6 ± 6.42 | 161.3 ± 1.97 | |
4ab | −52.53 ± 5.79 | 845.8 ± 6.83 | 167.2 ± 2.01 | |
4k | −63.07 ± 5.40 | 797.1 ± 6.73 | 152.1 ± 1.95 | |
4m | −63.91 ± 4.83 | −802.9 ± 7.03 | −165.3 ± 2.01 | |
Positive control | −74.23 ± 5.09 | - | - |
Properties | 4k | 4j | 4m |
Molecular weight | 312.45 | 316.44 | 345.48 |
LogP | 3.69 | 4.58 | 5.283 |
Rotatable bonds | 2 | 2 | 2 |
Hydrogen bond acceptors | 3 | 2 | 2 |
Hydrogen bond donors | 1 | 0 | 1 |
Surface area | 139.66 | 144.470 | 156.40 |
Water solubility | −3.17 | −4.47 | −4.50 |
Properties | 4k | 4j | 4m |
Toxicity | |||
AMES toxicity | No | No | Yes |
Max. tolerated dose (human) | −0.14 | −0.60 | −0.02 |
hERG I inhibitor | No | Yes | No |
hERG II inhibitor | No | Yes | Yes |
Oral rat acute toxicity (LD50) | 2.73 | 2.83 | 2.99 |
Oral rat chronic toxicity | 1.42 | 1.07 | 1.37 |
Hepatotoxicity | Yes | Yes | Yes |
Skin sensitization | No | No | No |
ADME | 4k | 4j | 4m |
BBB | 2.94 | 2.26 | 13.98 |
Buffer_solubility_mg_L | 3.91 | 338.63 | 97.37 |
Caco2 | 28.89 | 25.10 | 54.53 |
CYP_2C19_inhibition | Non | Non | Non |
CYP_2C9_inhibition | Non | Non | Inhibitor |
CYP_2D6_inhibition | Inhibitor | Inhibitor | Inhibitor |
CYP_2D6_substrate | Substrate | Substrate | Substrate |
CYP_3A4_inhibition | Inhibitor | Non | Non |
CYP_3A4_substrate | Weakly | Weakly | Weakly |
HIA | 95.99 | 100 | 99.72 |
MDCK | 60.88 | 57.83 | 48.16 |
Pgp_inhibition | Inhibitor | Non | Inhibitor |
Plasma_Protein_Binding | 90.24 | 85.52 | 96.90 |
Pure_water_solubility_mg_L | 2462.22 | 133.67 | 9.40 |
Skin_Permeability | −1.36 | −1.80 | −1.27 |
Properties | 4ad | 4aa | 4ab |
Molecular weight | 289.39 | 330.47 | 326.48 |
LogP | 3.24 | 4.97 | 3.28 |
Rotatable bonds | 3 | 2 | 2 |
Hydrogen bond acceptors | 2 | 2 | 3 |
Hydrogen bond donors | 2 | 0 | 1 |
Surface area | 126.31 | 150.83 | 146.20 |
Water solubility | −2.58 | −4.59 | −3.49 |
Properties | 4ad | 4aa | 4ab |
Toxicity | |||
AMES toxicity | No | No | No |
Max. tolerated dose (human) | −0.14 | −0.29 | −0.53 |
hERG I inhibitor | No | No | No |
hERG II inhibitor | Yes | Yes | Yes |
Oral rat acute toxicity (LD50) | 2.64 | 2.24 | 2.78 |
Oral rat chronic toxicity | 1.73 | 0.46 | 0.81 |
Hepatotoxicity | Yes | Yes | Yes |
Skin ssensitization | No | No | No |
ADME | 4ad | 4aa | 4ab |
BBB | 8.41 | 5.91 | 9.92 |
Buffer_solubility_mg_L | 9.47 | 101.39 | 0.60 |
Caco2 | 50.67 | 23.32 | 27.75 |
CYP_2C19_inhibition | Non | Non | Non |
CYP_2C9_inhibition | Non | Non | Non |
CYP_2D6_inhibition | Inhibitor | Inhibitor | Inhibitor |
CYP_2D6_substrate | Substrate | Substrate | Substrate |
CYP_3A4_inhibition | Non | Non | Non |
CYP_3A4_substrate | Weakly | Weakly | Weakly |
HIA | 93.53 | 100.00 | 98.36 |
MDCK | 1.28 | 66.63 | 45.59 |
Pgp_inhibition | Inhibitor | Inhibitor | Inhibitor |
Plasma_Protein_Binding | 100.00 | 86.35 | 89.64 |
Pure_water_solubility_mg_L | 141.66 | 49.74 | 180.37 |
Skin_Permeability | −1.15 | −1.48 | −0.87 |
Properties | Selegiline | ||
Molecular weight | 187.286 | ||
LogP | 2.1826 | ||
Rotatable bonds | 4 | ||
Hydrogen bond acceptors | 1 | ||
Hydrogen bond donors | 0 | ||
Surface area | 86.745 | ||
Water solubility | −2.246 | ||
Properties | Selegiline | ||
Toxicity | |||
AMES toxicity | No | ||
Max. tolerated dose (human) | 0.32 | ||
hERG I inhibitor | No | ||
hERG II inhibitor | No | ||
Oral rat acute toxicity (LD50) | 2.18 | ||
Oral rat chronic toxicity | 1.80 | ||
Hepatotoxicity | Yes | ||
Skin sensitization | Yes | ||
ADME | Selegiline | ||
BBB | 4.43 | ||
Buffer_solubility_mg_L | 1594.05 | ||
Caco2 | 31.94 | ||
CYP_2C19_inhibition | Inhibitor | ||
CYP_2C9_inhibition | Non | ||
CYP_2D6_inhibition | Inhibitor | ||
CYP_2D6_substrate | Substrate | ||
CYP_3A4_inhibition | Non | ||
CYP_3A4_substrate | Substrate | ||
HIA | 100.00 | ||
MDCK | 164.08 | ||
Pgp_inhibition | Inhibitor | ||
Plasma_Protein_Binding | 53.20 | ||
Pure_water_solubility_mg_L | 4487.36 | ||
Skin_Permeability | −0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavroeidi, P.; Zorba, L.P.; Tzouras, N.V.; Neofotistos, S.P.; Georgiou, N.; Sahin, K.; Şentürk, M.; Durdagi, S.; Vougioukalakis, G.C.; Mavromoustakos, T. Are Terminal Alkynes Necessary for MAO-A/MAO-B Inhibition? A New Scaffold Is Revealed. Molecules 2024, 29, 2486. https://doi.org/10.3390/molecules29112486
Mavroeidi P, Zorba LP, Tzouras NV, Neofotistos SP, Georgiou N, Sahin K, Şentürk M, Durdagi S, Vougioukalakis GC, Mavromoustakos T. Are Terminal Alkynes Necessary for MAO-A/MAO-B Inhibition? A New Scaffold Is Revealed. Molecules. 2024; 29(11):2486. https://doi.org/10.3390/molecules29112486
Chicago/Turabian StyleMavroeidi, Panagiou, Leandros P. Zorba, Nikolaos V. Tzouras, Stavros P. Neofotistos, Nikitas Georgiou, Kader Sahin, Murat Şentürk, Serdar Durdagi, Georgios C. Vougioukalakis, and Thomas Mavromoustakos. 2024. "Are Terminal Alkynes Necessary for MAO-A/MAO-B Inhibition? A New Scaffold Is Revealed" Molecules 29, no. 11: 2486. https://doi.org/10.3390/molecules29112486
APA StyleMavroeidi, P., Zorba, L. P., Tzouras, N. V., Neofotistos, S. P., Georgiou, N., Sahin, K., Şentürk, M., Durdagi, S., Vougioukalakis, G. C., & Mavromoustakos, T. (2024). Are Terminal Alkynes Necessary for MAO-A/MAO-B Inhibition? A New Scaffold Is Revealed. Molecules, 29(11), 2486. https://doi.org/10.3390/molecules29112486