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Engineering, Babeş-Bolyai University, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania;
emese.gal@ubbcluj.ro (E.G.); gaina.ioana.luiza@gmail.com (L.I.G.)

* Correspondence: rachid.bouzammit@usmba.ac.ma

Abstract: Novel isoxazole–triazole conjugates have been efficiently synthesized using 3-formylchromone
as starting material according to a multi-step synthetic approach. The structures of the target
conjugates and intermediate products were characterized by standard spectroscopic techniques (1H
NMR and 13C NMR) and confirmed by mass spectrometry (MS). The all-synthesized compounds were
screened for their antibacterial activity against three ATCC reference strains, namely Staphylococcus
aureus ATCC 25923, Staphylococcus aureus ATCC BAA-44, and Escherichia coli ATCC 25922 as well as
one strain isolated from the hospital environment Pseudomonas aeruginosa. The findings indicate that
conjugate 7b exhibits a stronger antibacterial response against the tested Escherichia coli ATCC 25922
and Pseudomonas aeruginosa pathogenic strains compared to the standard antibiotics. Furthermore,
hybrid compound 7b proved to have a bactericidal action on the Escherichia coli ATCC 25922 strain,
as evidenced by the results of the MBC determination. Moreover, the ADMET pharmacokinetic
characteristics revealed a favorable profile for the examined compound, as well as a good level of oral
bioavailability. Molecular docking and molecular dynamics simulations were performed to explore
the inhibition mechanism and binding energies of conjugate 7b with the proteins of Escherichia coli
and Pseudomonas aeruginosa bacterial strains. The in silico results corroborated the data observed in
the in vitro evaluation for compound 7b.

Keywords: synthesis; triazole; isoxazole; antibacterial activity; molecular docking; dynamic molecular;
ADMET properties

1. Introduction

Heterocyclic structures containing nitrogen and oxygen often serve as the basis in
various classes of natural compounds, as well as fundamental scaffolds for many drugs [1].
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They are also found in numerous herbicides, fungicides, insecticides, and corrosion protec-
tion applications [2–4]. Owing to their significant importance, chemists continuously strive
to synthesize these structures selectively and efficiently.

Among heterocyclic compounds, triazoles have received considerable attention over
the last decade due to their distinct chemical and structural characteristics, as well as their
wide-ranging applications in medicinal chemistry [5–8]. They are versatile compounds that
have demonstrated efficacy in combating a wide range of infectious diseases, including
bacterial [9], fungal [10], protozoal [11], and even viral infections [12]. Additionally, the
triazole nucleus is also found in the structure of several drugs available in the pharmaceuti-
cal market, such as tazobactam, cefatrizine, etc. (Figure 1). This makes them interesting
candidates for the development of new drugs and therapies. Similarly, isoxazoles are part
of the chemical family of heterocyclic compounds, which have attracted significant interest
both synthetically and biologically due to their numerous potential applications in various
fields [13,14]. These nuclei are often used as synthetic intermediates in the preparation of
many active pharmaceutical ingredients (Figure 1) [15]. Indeed, they are associated with a
variety of diverse pharmacological properties, including antiviral [16], antitumoral [17],
antimicrobial [18], antiproliferative [19], anti-inflammatory [20], anticancer [21,22], anti-
Alzheimer’s [21], and many others [23].
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Figure 1. Examples of biologically active compounds incorporating a triazole or isoxazole nucleus.

Recently, a new strategy involving the combination of two or more biologically active
structural motifs has emerged as promising for generating a new class of therapeutic agents.
This approach has proven highly effective against the growth of bacteria known for their
antibiotic resistance. Within this framework, the combination of biologically interesting
core structural motifs [24,25], such as the triazole, with a further heterocyclic nucleus holds
therapeutic properties in a variety of fields, including combating microbial pathogens [26].
Particularly, diversely substituted triazole/isoxazole conjugates have shown enhanced
biological activities [27–29].

On the other hand, chromones represent an intriguing class of heterocyclic entities
rich in pharmacological potential and are found in numerous plants [30,31]. These systems
are commonly applied in organic chemistry as intermediate compounds for the synthesis
of new therapeutic agents, including antitumor agents [32] antimicrobials [33,34], fungi-
cides [35,36], insecticides [37,38] and antivirals [39].

Given the biological significance of heterocycles, and in continuation of our research
efforts focused on the synthesis and development of new bioactive heterocycles [40–42],
the study undertaken in the present work aims at the synthesis and structural identifi-
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cation of a novel range of heterocyclic molecules possessing a triazole and isoxazole as
the basic structure, derived from 3-formylchromone using N-alkylation and 1,3-DC reac-
tions. Furthermore, the synthesized heterocyclic compounds have been evaluated for their
antibacterial activities through both in vitro and in silico studies.

2. Results and Discussion
2.1. Synthesis and Characterization
2.1.1. Reaction of Benzyl Azide and 3-Formylchromone

In order to synthesize new tricyclic compounds bearing the triazoline moiety by
performing 1,3-DC reactions of benzyl azide onto the endocyclic double bound of the α,β-
unsaturated carbonyl system, we chose to react benzyl azide 1 with 3-formylchromone 2 in
toluene under basic conditions (Scheme 1). The reagents 1 and 2 were synthesized following
procedures described in the literature [43,44]. The reaction resulted in the formation of
two unexpected products after the consumption of the basic product. Upon separation and
purification of these two products, we observed that the first product, 2-aminobenzyl-3-
formylchromone 3′, was obtained after spontaneous denitrogenation of the intermediate
tetrazolic cycle formed, while the compound 1-benzyl-4-(2-hydroxybenzoyl)-1,2,3-triazole
3 was generated in an unusual way after ring-opening of the pyrone moiety.
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Scheme 1. The reaction between benzyl azide and 3-formylchromone yielded two products: 1-benzyl-
4-(2-hydroxybenzoyl)-1,2,3-triazole 3 and 2-aminobenzyl-3-formylchromone 3′, synthesized from the
reaction between benzyl azide and 3-formylchromone.

In order to understand the transformations involved and to validate the proposed
findings, we attempted to synthesize the two products using two different synthetic routes
from those previously conducted. The first synthetic method for the compound 1-benzyl-4-
(2-hydroxybenzoyl)-1,2,3-triazole 3 involves reacting benzyl azide 1 with unsubstituted
chromone 4 instead of 3-formylchromone 2 (Scheme 2). The unsubstituted chromone 4 is
prepared according to literature protocols from 2-hydroxyacetophenone in two steps [45].
The reaction led to the generation of the same product as previously obtained: 1-benzyl-4-(2-
hydroxybenzoyl)-1,2,3-triazole 3. As for the compound 2-aminobenzyl-3-formylchromone
3′, a second synthetic approach was adopted starting from 3-formylchromone 2 (Scheme 3).
This strategy involves first introducing a primary amine at position 2 of chromone 2 to
transform it into an intermediate 5, 2-amino-3-formylchromone, and then N-alkylating the
formed intermediate with benzyl chloride. The reaction also led to the formation of the
desired product, 2-aminobenzyl-3-formylchromone 3′.
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The structures of the newly synthesized compounds 1-benzyl-4-(2-hydroxybenzoyl)-
1,2,3-triazole 3 and 2-aminobenzyl-3-formylchromone 3′ were determined based on usual
spectroscopic techniques and confirmed by MS. Indeed, in the IR spectrum of compound
3, we observed an absorption band around 3150 cm−1, which is characteristic of the
vibration of the OH bond of the alcohol functional group. The 1H NMR spectrum of 3
displayed a singlet signal at 12.3 ppm attributable to the alcohol function proton (OH),
and a singlet signal at 8.2 ppm corresponding to the H5 proton of the triazole ring, which
is in accordance with the chemical shift outlined in the literature for the H5 proton of
triazole [46]. Furthermore, a singlet signal integrating the two methylene protons CH2
adjacent to the nitrogen atom resonated at 5.63 ppm. In the 13C NMR spectrum of 3, there
was a signal around 188 ppm characteristic of the carbonyl carbon (C=O), a signal around
163 ppm characteristic of the aromatic carbon linked to the alcohol function (=C-OH), and
a signal at 148 corresponding to the quaternary carbon C4 of the triazole ring, which is
in good agreement with literature data [46]. Finally, a signal at 54 ppm corresponding
to the methylene carbon CH2 adjacent to the nitrogen atom was observed. Additionally,
the formation of 3′ was also confirmed using various spectroscopic methods. In the IR
spectrum of 3′, a weak absorption band at around 3300 cm−1 was observed, corresponding
to the NH stretching vibration of the secondary amine. In the 1H NMR spectrum of this
compound, a singlet signal at 10.95 ppm was observed for the proton of the secondary
amine (N-H). A singlet signal at 10.22 ppm was observed corresponding to the aldehyde
proton (CH=O), and finally, a doublet resonating at 4.79 ppm attributable to the protons
of the CH2 group adjacent to the nitrogen atom of the secondary amine was observed.
Furthermore, the 13C NMR spectrum showed, in addition to characteristic signals for
aromatic carbons, the presence of a signal at 189.62 ppm corresponding to the carbon of
the aldehyde function (CH=O) and a signal at 175.77 ppm corresponding to the carbon
of the ketone function (C=O). The two signals located at 164.35 ppm and 99.52 ppm are
attributable to the quaternary carbons, successively C2 and C3 of the pyran ring, and the
methylene carbon CH2 bonded to the nitrogen atom resonated at 44.95 ppm. Additionally,
MS confirmed the structure and purity of the synthesized compounds (3 and 3′). The MS
data for each synthesized product are consistent with the structures proposed and to the
values obtained for the molecular ions [M − H]+.
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2.1.2. Synthesis of Molecules Hybrids

a. Synthesis of precursor 6

The newly synthesized compound 1-benzyl-4-(2-hydroxybenzoyl)-1,2,3-triazole 3
underwent O-alkylation reaction with propargyl bromide in dimethylformamide (DMF)
over potassium carbonate (K2CO3) at room temperature (RT) (Scheme 4). The reaction
yielded product 6 with a good yield.
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The characterization of 6 was carried out based on their 1H, 13C NMR, and IR spec-
tral data as well as by MS. In the IR spectrum of product 6, an absorption band around
3300 cm−1 was observed, which is characteristic of the ≡C-H bond vibration. This indi-
cates the substitution of the secondary alcohol. The 1H NMR spectrum of 6 revealed the
appearance of a triplet signal at 2.41 ppm attributable to the acetylenic proton (HC≡C);
two successive signals at 4.63 and 5.55 ppm, the first as a doublet and the second as a
singlet corresponding to the two groups (O-CH2) and (N-CH2), respectively; and a signal
in the form of a characteristic singlet for the H5 proton of the triazolic ring. The disappear-
ance of a singlet signal at 12.3 ppm, attributable to the alcohol function proton (OH) of
the product 1-benzyl-4-(2-hydroxybenzoyl)-1,2,3-triazole 3, indicates the progress of the
reaction towards the formation of the triazole-propargylic 6. Additionally, the 13C NMR
spectrum (decoupled and APT) of the same product revealed the presence of two signals at
54 and 56 ppm, attributable to the two groups (O-CH2) and (N-CH2), respectively; a signal
at 75.92 ppm attributable to the acetylenic carbon (≡CH); a signal at around 148.37 ppm
attributable to the quaternary carbon C4 of the triazole ring; a signal at 155.97 ppm cor-
responding to the quaternary benzylic carbon linked to oxygen (=C-O-); and finally a
signal at 187.34 ppm corresponding to the carbonyl. Moreover, the O-propargylation of
compound 3 was confirmed by mass spectrometry, which indicates the presence of a peak
of the protonated molecular ion [C19H15N3O2 + H]+ at m/z = 318.12485 attributed to the
precise mass of compound 6.

b. Synthesis of triazole-isoxazole conjugates from precursor 6

Compound 6, derived via the O-alkylation reaction with propargyl bromide, was
used as a dipolarophile in the 1,3-DC reaction with 1,3-dipoles of the nitrile oxide type
(Scheme 5). These reactions led to the formation of new hybrid heterocyclic systems
containing in their skeleton the triazole motif coupled to the isoxazole, linked together by
a 2-methoxybenzoyl linker. All the reactions undertaken proceeded correctly in all cases,
yielding the desired products in a highly regioselective manner and with good yields of
pure products. The structures of all-synthesized products have been established through
the usual spectroscopic approaches and mass spectrometry.
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The analysis of spectral data of the obtained products revealed that all 1,3-DC reactions
between the propargylated triazole and nitrile oxides resulted in a single regioisomer 7,
with no trace of product 7′ (Scheme 5). This finding is fully supported by literature data on
the regiochemistry of 1,3-DC reactions of nitrile oxides with similar dipolarophiles [40,47].
Indeed, on the 1H NMR spectra of compounds 7a–b, two successive signals between 5.25
and 5.58 ppm appeared as a singlet corresponding to the two groups (O-CH2) and (N-CH2),
respectively, and a singlet signal appeared around 6.64 ppm corresponding to the H4′

proton of the isoxazole ring. This result is consistent with the chemical shift reported
for the H4′ proton in similar 3,5-disubstituted isoxazoles [48]. For the 3,4-disubstituted
isoxazoles 7a′–b′, the H5′ proton resonated typically around 8.5 ppm since it is deshielded
by the neighboring oxygen atom [49]. The H5 proton of the triazole ring appeared around
8.06 ppm [46]. Additionally, both synthesized cycloadducts 7a–b were validated by mass
spectrometry, which suggested the existence of a peak of the protonated molecular ion
for the two compounds, 7a and 7b [[C27H19F3N4O3 + H]+ and [C26H19ClN4O3 + H]+] at
m/z = 505.14828 and m/z = 471.12320, respectively, corresponding to the exact mass of
compounds 7a and 7b.

2.2. Antibacterial Assessment
2.2.1. Antibiotic Susceptibility Test

The results of the Kirby–Bauer test demonstrated the sensitivity of the strains to
antibiotics. The results confirm the bacterial profiles of the reference strains regarding
their antibiotic sensitivity. Specifically, Staphylococcus aureus ATCC 25923, as indicated,
exhibited sensitivity to all the tested antibiotics except for ampicillin, thereby confirming its
sensitive profile. In contrast, Staphylococcus aureus ATCC BAA-44 showed no susceptibility
to any of the antibiotics tested, which confirms its methicillin resistance profile. For the
Gram-negative strains, Escherichia coli ATCC 25922 showed a resistance to ampicillin,
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but sensitivity to the other antibiotics tested. Finally, the clinical isolate of Pseudomonas
aeruginosa showed sensitivity to amikacin and fosfomycin, while demonstrating resistance
to the other antibiotics used. The diameters of the growth inhibition zones for the strains
tested are shown in Table 1.

Table 1. Antibiotic susceptibility test results of the studied bacterial strains.

Strains

Antibiotic Staphylococcus aureus
ATCC 25923

Staphylococcus aureus
ATCC BAA-44

Escherichia coli ATCC
25922

Pseudomonas
aeruginosa

Ampicillin (AMP) R (10) * R (10) R (0) R (0)

Norfloxacin (NOR) S (26) R (10) - -

Cefoxitin (FOX) S (30) R (9) - R (0)

Cefotaxime (CTX) - - S (36) R (16)

Imipenem (IMP) - - S (36) I (30)

Amikacin (AK) S (21) R (13) S (34) S (24)

Fosfomycin (FOS) - - S (40) S (20)

R: Resistant; S: Sensitive; I: Intermediate; * Zone of inhibition expected in millimeters (mm).

2.2.2. Disk Diffusion Test

The antibacterial activity of different synthetized compounds was evaluated in vitro
against four strains of pathogenic bacteria via the disk diffusion technique. The outcomes
of the preliminary screening test are presented in Table 2. According to the outcomes, only
the conjugate 7b exhibited antibacterial efficacity against the tested Gram-negative strains.
Hybrid compound 7b proved to have remarkable antibacterial activity against Escherichia
coli strain, with an inhibition zone of 36.4 ± 1.07 mm. This activity is comparable to that of
standard antibiotics tested against the same bacterial strain, including cefotaxime (36 mm),
imipenem (36 mm), and fosfomycin (40 mm), as well as superior to that of the antibiotic
amikacin (34 mm). Compound 7b also showed antibacterial activity towards Pseudomonas
aeruginosa with a mean inhibition zone of 11.25 ± 1.02 mm. The pronounced antibacterial
properties observed for conjugate 7b towards the Gram-negative bacterial strains may be
attributable to the synergistic effect of the hybridization between two pharmacophores,
triazole and isoxazole, particularly when influenced by the presence of chlorine in the
ortho position.

Table 2. Inhibition diameters of the tested molecules. (Each value represents the average of three
double disk trials ± SD).

Molecules Staphylococcus aureus
ATCC 25923

Staphylococcus aureus
ATCC BAA-44

Escherichia coli ATCC
25922

Pseudomonas
aeruginosa

3′ - - - -

3 - - - -

6 - - - -

7a - - - -

7b - - 36.4 ± 1.07 * 11.25 ± 1.02

* Zone of inhibition expected in millimeters (mm).

2.2.3. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration
(MBC) Determinations

The MIC and MBC of the hybrid compound 7b were determined against the pathogenic
strains Escherichia coli ATCC 25922 and Pseudomonas aeruginosa. The obtained outcomes
are given in Table 3. The findings reveal that 7b displayed a selective effect against the
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tested Gram-negative bacteria, inhibiting their growth at value of MIC of 15 mg/mL for the
Escherichia coli ATCC 25922, and 30 mg/mL for the Pseudomonas aeruginosa. The findings
of MBC also substantiate that the hybrid molecule 7b exhibits a bacteriostatic effect on
the strain Pseudomonas aeruginosa, while a bactericidal effect on the strain Escherichia coli
ATCC 25922 is observed at a concentration of 30 mg/mL.

Table 3. MIC and MBC of the tested molecule expressed in mg/mL.

Compound Test Staphylococcus aureus
ATCC 25923

Staphylococcus aureus
ATCC BAA-44

Escherichia coli
ATCC 25922

Pseudomonas
aeruginosa

7b
MIC - - 15 30

MBC - - 30 -

2.3. Drug Similarity and ADME-Tox Predictions

In silico investigation applied to the synthesized molecule labeled 7b reveals that all
physicochemical properties satisfy Lipinski’s five rules, such that the molecular weight
does not exceed the critical weight of 500 g/mol, the molar refractive index is in the range:
40 ≤ MR ≤ 130, the lipophilicity is given by a partition coefficient of less than 5, and the
numbers of hydrogen bond acceptors and donors are less than 10 and 5, respectively, as
shown in Table 4. The compound under study is therefore a small molecule that closely
resembles drug candidates [50–52], Furthermore, ADMET pharmacokinetic characteristics
show a desirable profile of the examined compound, substantiated by an excellent human
intestinal absorption (HIA of 96.39%), with significant permeability to the central nervous
system (CNS) and the blood–brain barrier (BBB) [53]. Moreover, its metabolism on human
cytochromes confirm that it is predicted as a potent inhibitor of 2C9, 2C19, and 3A4
cytochromes. Analysis of AMES toxicity shows that the active compound is also predicted
as a non-toxic agent which cannot cause any carcinogenic effects on the human body, and
does not cause any skin allergies. In contrast, it is predicted to have a positive effect of
hepatotoxicity [54,55]. The compound under investigation is expected to have an ADMET
profile quite similar to that of compound 7a, as reported in Table 5.

Additionally, the chemical compound under investigation is also predicted to have
a good level of oral bioavailability due to the location of the bioavailability radar in the
pink area, which is the ideal zone of oral bioavailability in the human body on the basis of
six physicochemical characteristics, including flexibility, polarity, lipophilicity, solubility,
size, and saturation [56], as shown in Figure 2.

Table 4. Prediction of physicochemical properties of the molecule 7b.
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d Physicochemical Properties Lipinski Rules

Molecular
Weight (g/mol)

Molar
Refractive

Index

Log P
(Octanol/Water)

Hydrogen
Bonds

Acceptors

Hydrogen
Bonds Donors

Categorical
(Yes/No)

Rule ≤500 40 ≤ MR ≤ 130 <5 ≤10 <5

7b 470.91 127.13 3.67 6 0 YES
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Table 5. Prediction of the pharmacokinetic properties for the active molecule 7b.
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(% Ab-
sorbed)

(Log
BB)

(Log
PS) (No/Yes)

Numeric
(Log

mL/min/kg)

Categorical
(No/Yes)

7a 94.946 −1.465 −2.06 No Yes No Yes Yes No Yes 0.039 No Yes No
7b 96.39 −1.199 −2.097 No Yes No Yes Yes No Yes 0.34 No Yes No

A: Absorption; D: Distribution; M: Metabolism; E: Excretion; T: Toxicity.
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2.4. Docking Molecular Study

To explore the inhibition mechanism with binding energies of the synthesized com-
pound towards the antibacterial proteins from Escherichia coli and Pseudomonas aeruginosa
pathgenic strains, molecular docking simulations were properly carried out, whose the
active molecule was initially docked to the crystal structure of an Escherichia coli protein
(resolution of 2.30 Å) encoded as 1KZN.pdb [57], with a binding energy of −6.22 kcal/mol,
forming a variety of intermolecular interactions, including one Hydrogen bond detected
with the ASN 46 amino acid residue; one Pi-anion chemical bond with the Asp 49 amino
acid residue; and more than three Pi-Alkyl bonds produced towards the Ala 47, Ala 53, and
Ile 78 amino acid residues in the A chain, as presented in Figure 3.

The studied compound was docked for the second time towards the crystal structure
of a penicillin-binding protein from Pseudomonas aeruginosa (resolution of 2.01 Å) encoded
as 4KQR.pdb [58], with a binding energy of −6.05 kcal/mol, producing a family of chemical
bonds, including one Hydrogen bond detected towards the Tyr 407 amino acid residue
and one Pi-cation bond fixed with the Arg 331 amino acid residue, in addition to two Pi-Pi
T-shaped bonds which were created with the Tyr 409 and Tyr 498 amino acid residues in
the A chain, as shown in Figure 4.
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The results obtained from two- and three-dimensional visualizations of the intermolec-
ular interactions between the studied ligand and the protein target confirm the validity
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of two molecular docking processes. The studied compound docked to the active sites
of both targeted receptors, with the lowest binding energies exceeding −5.00 kcal/mol
where the first complex showed the presence of the amino acid residue ASN 46 as one of
the active sites of the protein 1KZN.pdb against the Escherichia coli pathogenic strain, as
well as the presence of the amino acid residues Tyr 407 and Tyr 409 as two active sites of
the 4KQR.pdb protein against the Pseudomonas aeruginosa pathogenic strain, as shown in
Figures 5 and 6, respectively.
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2.5. Dynamics Molecular Simulations

The macromolecular complexes of ligand 7b with the DNA gyrase enzyme of Es-
cherichia coli and penicillin-binding protein-3 (PEP3) of Pseudomonas aeruginosa were se-
lected for executing MD simulations to evaluate their thermodynamic stability within a
specified timeframe of 100 ns. The drug–receptor complex has to be sufficiently stable over
a nano-scaler time range to execute the therapeutic response. As a result, each macromolec-
ular complex underwent a 100-ns MD simulation using Schrodinger’s Desmond software
version 2022.4. The target DNA gyrase enzyme’s monomeric chain has 186 amino acids
consisting of 1446 heavy atoms out of an overall 2879 atoms. Structural alterations and
RMSD analysis of the macromolecular backbone was executed during the 100-ns simulation
to assess its thermodynamic stability. The complexed ligand 7b haseight flexible bonds
comprising 34 heavy atoms out of 56 atoms in total. The bacterial DNA gyrase–ligand 7b
conjugate shows that the bound ligand demonstrates stabilized conformation throughout
the simulation. The RMSD value of the receptor’s backbone was found to fluctuate between
1.2 and 2.1 Å, whereas the bound ligand 7b exhibited some minor fluctuations to attain
stabilized conformation and its RMSD value within receptor’s cavity ranged between
5.0–8.0 Å.

The atoms in a protein or ligand structure might deviate from their initial location,
and this can be measured by using their RMSF value. It is a significant parameter for
determining the flexibility and dynamic behavior of the macromolecular complex. Protein
RMSF is important because it may be used to predict protein dynamics and evaluate
stability by providing information about the relative flexibility of various regions. MD-
based evaluation of the bacterial DNA gyrase complexed with ligand 7b has concluded
that the RMSF for Cα backbone was found to be within 0.5–2.0 Å with few exceptions,
while for ligand 7b it was found to range from 1.5 to 4.5 Å.

The development of hydrophobic contacts, ionic interactions, and hydrogen bonds
during an MD simulation are responsible for the thermodynamic permanence of a receptor–
ligand complex and it is evaluated by the continuous monitoring of their strengths through-
out the simulation for all the three macromolecular complexes. Throughout the simulation,
ligand 7b was found to be interacting with the bacterial DNA gyrase enzyme via forma-
tion of hydrophobic bonds with the amino acids Val43, Arg76, Ile78, Pro79, Ile82, Ala86,
Ala87, Val89, Ile90, Met91, Val93, His95, Ala96, His116, Val120, and Leu132, whereas Asn46,
His116, and Val120 via hydrogen bonds, while the amino acids Asn46, Asp49, Glu50, Arg76,
Gly77, Ile90, His95, Val120, and Ser121 were found to be interacting via water bridges, and
amino acid Asp49 was interacting via an ionic bond.

The target PBP3 receptor’s monomeric chain has 271 amino acids consisting of 2017
heavy atoms out of an overall 4055 atoms. Structural alterations and RMSD analysis of
the macromolecular backbone was executed during the 100-ns simulation to assess its
thermodynamic stability. The complexed ligand 7b has eight flexible bonds comprising
34 heavy atoms out of 56 atoms in total. The bacterial PBP3 receptor–ligand 7b conjugate
shows that the bound ligand displays a couple of conformational changes followed by
attaining a stabilized conformation. The RMSD value of the receptor’s backbone was found
to fluctuate between 2.0 and 4.0 Å, whereas the bound ligand 7b exhibited some major
initial fluctuations to attain stabilized conformation and its RMSD value in receptor cavity,
ranging between 6.5 and10.5 Å. Figure 7 demonstrates the revealed RMSD of the ligand
7b complexed with the DNA gyrase of Escherichia coli bacteria (a) and PEP3 receptor of
Pseudomonas aeruginosa (b), respectively.

MD-based evaluation of bacterial PBP3 receptor complexed with ligand 7b has con-
cluded that the RMSF for Cα backbone was found to be within 0.8–3.2 Å with few excep-
tions, while for ligand 7b it was found to be ranging from 1.5 to 3.5 Å. Figures 8 and 9
shows the RMSF of the ligand 7b complexed with the DNA gyrase enzyme of Escherichia
coli (a) and PEP3 receptor of Pseudomonas aeruginosa (b), respectively.
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while executing MD simulation.

Throughout the simulation, ligand 7b was found to be interacting with the bacterial
PBP3 receptor via formation of hydrophobic bonds with the amino acids Ile325, Tyr328,
Ile330, Val333, Tyr407, Tyr409, Arg489, Tyr498, and Phe533, whereas Thr329, Arg331, and
Asp332 via hydrogen bonds and amino acid Arg327, Thr329, Arg331, Asp332, Asn351,
Arg489, Glu500, Tyr503, andTyr532 were found to be interacting via water bridges. Figure 10
illustrates the interacting residues of the DNA gyrase enzyme of Escherichia coli (a) and
PEP3 receptor of Pseudomonas aeruginosa (b) with the complexed ligand 7b.
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Figure 10. Protein-ligand contacts: The ligand 7b is found to be interacting with the target DNA
gyrase enzyme of Escherichia coli (a), and PEP3 receptor of Pseudomonas aeruginosa (b) via hydropho-
bic interactions represented in purple-colored bars, interactions via formation of water bridges
represented in blue-colored bars, and hydrogen bonds represented in green-colored bars.

3. Materials and Methods
3.1. General Information

Full details of the chemicals, solvents and reagents, and equipment utilized in the
synthesis of the compounds, alongside the synthesis procedures and characterization data,
are provided in the Supplementary Material file.

3.2. Evaluation of Antibacterial Activity against Pathogenic Strains
3.2.1. Solution Preparation

Before conducting the experiments, the molecules under investigation were diluted
in a dimethyl sulfoxide (DMSO) solution as part of the solution preparation process; the
specific goal of this was to generate a stock solution with a concentration of 30 mg/mL.
This stock solution was utilized for the disk diffusion tests as well as in MIC and MBC.

3.2.2. Tested Bacterial Strains

Diverse bacterial strains were subjected to testing in this study, comprising three
distinct pathogenic bacteria: one Gram-positive cocci and two Gram-negative bacilli. The
Gram-positive cocci include two reference strains, namely Staphylococcus aureus ATCC
25,923 and Staphylococcus aureus ATCC BAA-44. The Gram-negative bacilli consisted of
a reference strain of Escherichia coli ATCC 25922 and a strain of Pseudomonas aeruginosa
isolated from the hospital environment (Table 6).
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Table 6. Tested bacterial strains.

Pathogen Type Pathogen Species Strain

Gram-positive Staphylococcus aureus
ATCC 25923

ATCC BAA-44

Gram-negative
Escherichia coli ATCC 25922

Pseudomonas aeruginosa Clinical isolate

3.2.3. Bacterial Pre-Culture Preparation

Bacterial cultures were derived from pre-existing stock cultures, which had been
prepared with 20% (v/v) glycerol into Brain Heart Infusion (BHI) and storing them at
−20 ◦C. Prior to the tests, a streak plate was prepared on Tryptic Soy Agar (TSA) using
these stock cultures and incubated for 24 h at 37 ◦C. Subsequently, for the experiments, one
to two colonies from the aforementioned plate were inoculated into a 0.9% NaCl solution
using a sterile loop for McFarland standard adjustment.

3.2.4. Antibiotic Susceptibility Test

Before evaluating the tested molecules, the susceptibility of the bacterial strains to stan-
dards drugs was examined using the Kirby–Bauer disk diffusion process [59]. This method
classified the strains into sensitive and resistant categories. The determination of antibiotic
resistance and selection of appropriate antibiotics for each strain were conducted according
to the guidelines of the Antibiogram Committee of the French Society of Microbiology, June
2023 V.1.0 edition (Available online: https://www.sfm-microbiologie.org/wp-content/
uploads/2023/06/CASFM2023_V1.0.pdf, accessed on 22 May 2024). Our study utilized
a variety of antibiotics, including ampicillin, norfloxacin, cefoxitin, cefotaxime, amikacin,
fosfomycin, and imipenem. These antibiotic disks were placed onto Mueller–Hinton agar
previously inoculated with a bacterial suspension, followed by an incubation period at
37 ◦C for 24 h. The concentration per disk of the antibiotics used is detailed in Table 7.

Table 7. Description of the antibiotics used in susceptibility test.

Antibiotic Class Antibiotic Concentration (µg/disk)

Penicillin Ampicillin 25

Fluoroquinolones Norfloxacin 10

Cephalosporines
Cefoxitin 30

Cefotaxime 30

Carbapenem Imipenem 30

Aminosides Amikacin 30

Fosfomycin Fosfomycin 200

3.2.5. Qualitative and Quantitative Evaluation

(a) Disk diffusion test

The antibacterial action of the examined molecules was determined through the disk
diffusion technique [59]. This technique involves utilizing sterile filter paper disks with a
diameter of 6 mm, impregnated with the highest concentration employed for each molecule
under investigation, specifically 30 mg/mL, at a rate of 10 µL per disk. These disks were
positioned on the surface of Mueller–Hinton agar medium, which had been previously
inoculated with a bacterial suspension. After being left to rest for 15 min at RT, it was then
incubated at 37 ◦C for 24 h.

(b) MIC determination

https://www.sfm-microbiologie.org/wp-content/uploads/2023/06/CASFM2023_V1.0.pdf
https://www.sfm-microbiologie.org/wp-content/uploads/2023/06/CASFM2023_V1.0.pdf
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To assess the activity of the active molecule, we conducted an experiment to determine
the MIC, which is described as the weakest concentration of antibacterial agent needed to
prevent the growth of a bacterial species [60]. In our experiment, we determined the MIC
using a modified microdilution technique on a microtiter plate described previously by
Mammate et al. [61]. A 96-well plate was used in which each well was inoculated with
20 µL of strain inoculated in 0.9% NaCl solution and adjusted to 0.5 McFarland, plus 20 µL
of the tested compounds in solutions after performing a 2-fold serial dilution giving us
solutions ranging from 30 mg/mL to 0.029 mg/mL for each of the six compounds, plus
120 µL of sterile Mueller–Hinton Broth (MHB). The experiment was conducted 2 to 3 times
for each tested molecule. On completion of 24 h incubation at 37 ◦C, a 20 µL of 0.1% 2,3,5-
triphenyltetrazolium chloride (TTC) was introduced, and after a further 4 h incubation at
37 ◦C, the growth was revealed by the appearance of a reddish color in the wells.

(c) MBC determination

After determining the MIC of the compounds, we conducted a consecutive experiment
to evaluate the MBC, which is delineated as the weakest concentration of antibacterial agent
necessary to completely kill 99.9% of the final inoculum after incubating for 24 h at 37 ◦C [62].
According to MIC results, MBC values may be measured after microdilution through the
extraction of 100 µL from wells with concentrations at or above MIC, then spreading this
volume on Tryptone Soya Agar and observing bacterial growth after incubation for 24 h at
37 ◦C.

3.3. In Silico Studies

In light of the experimental results obtained, which were applied to the synthesized
molecule 7b, revealing its antibacterial potential on pathogenic strains of Escherichia coli
and Pseudomonas aeruginosa, in silico investigations were also carried out to assess its
likeness to drug candidates. Initially, physicochemical features were examined based on
Lipinski’s five rules. Thereafter, the pharmacokinetic properties of absorption, distribution,
metabolism, excretion, and toxicity (ADMET) were equally predicted in the human body.
Finally, the inhibition mechanism of this active molecule towards the targeted proteins
was studied using the molecular docking technique, in which the produced intermolecular
interactions were screened using molecular dynamics simulations.

The physicochemical and ADMET pharmacokinetic characteristics of the studied
compound were achieved thanks to the use of pKCSM and SWISS servers. Molecular
docking technology was performed using Autodock 4.2 software (Available online: https://
mybiosoftware.com/autodock-4-2-3-autodocktools-1-5-6-suite-automated-docking-tools.
html, accessed on 22 May 2024), in which the responsible proteins of Escherichia coli and
Pseudomonas aeruginosa strains were extracted from a protein data bank (PDB) basis with
1KZN and 4KQR codes, respectively, then converted from PDB to PDBQT format, and
prepared by adding Gasteiger charges and removing water molecules [63,64]. Afterwards,
the synthesized compound was docked to the active sites of each targeted protein, and
then Discovery Studio software 2021 (Available online: https://www.3ds.com/products-
services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio, ac-
cessed on 22 May 2024) was used to visualize the intermolecular interactions produced
for each complex. At the last stage, molecular dynamics (MD) technology was carried out
to examine the thermodynamic stability of the tested compound after being complexed
to both responsible proteins throughout 100 nanoseconds of MD simulation time, with
the assistance of the Desmond module of Schrodinger’s Maestro software (Available on-
line: (https://www.schrodinger.com/platform/products/maestro/, accessed on 22 May
2024), respecting the standard protocol for preparation, working with OPLS-type force
fields, adding water molecules (H2O) and counter ions (Na+, Cl−) at a molar concentration
of 0.15 M, and reproducing the same physiological conditions (pressure of 1 atm, and
temperature of 300 K) [65].

https://mybiosoftware.com/autodock-4-2-3-autodocktools-1-5-6-suite-automated-docking-tools.html
https://mybiosoftware.com/autodock-4-2-3-autodocktools-1-5-6-suite-automated-docking-tools.html
https://mybiosoftware.com/autodock-4-2-3-autodocktools-1-5-6-suite-automated-docking-tools.html
https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio
https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio
https://www.schrodinger.com/platform/products/maestro/
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4. Conclusions

To sum up, two new isoxazole–triazole hybrid heterocycles were successfully synthe-
sized employing 3-formylchromone as starting material with good yields. Their structures
and those of the intermediate compounds have been thoroughly characterized. The synthe-
sized compounds were screened for their antibacterial activity against three ATCC reference
strains as well as one strain isolated from the hospital environment. The findings highlight
that conjugate 7b exhibits a powerful antibacterial effect against Escherichia coli ATCC
25922 and Pseudomonas aeruginosa strains, compared to standard antibiotics. Moreover,
the ADMET pharmacokinetic characteristics revealed a favorable profile for the exam-
ined compound, as well as a good level of oral bioavailability. Molecular docking studies
supported the antibacterial properties of conjugate 7b vs. bacterial strains of Escherichia
coli and Pseudomonas aeruginosa, which exhibited elevated binding energies, suggesting
strong interactions within bacterial enzyme targets. Additionally, 100-ns MD simulation
validated the thermodynamic stability of the complex formed between hybrid compound
7b and target receptors. Taken together, our comprehensive studies using a combination
of synthetic, in vitro, and in silico techniques highlight the promise of triazole–isoxazole
conjugates as future antibiotic candidates, particularly hybrid compound 7b, due to their
attractive activity against Gram-negative bacteria.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29112510/s1, Figure S1: IR spectrum of compound 3; Figure S2:
1H NMR spectrum (300 MHz, CDCl3) of compound 3; Figure S3: 13C NMR spectrum (75 MHz, CDCl3)
of compound 3; Figure S4: Mass spectrum of compound 3; Figure S5: IR spectrum of compound 3′;
Figure S6: 1H NMR spectrum (300 MHz, CDCl3) of compound 3′; Figure S7: 13C NMR spectrum
(75 MHz, CDCl3) of compound 3′; Figure S8: Mass spectrum of compound 3′; Figure S9: IR spectrum of
compound 6; Figure S10: 1H NMR spectrum (600 MHz, CDCl3) of compound 6; Figure S11: 13C NMR
spectrum (150 MHz, CDCl3) of compound 6; Figure S12: Mass spectrum of compound 6; Figure S13:
IR spectrum of compound 7a; Figure S14: 1H NMR spectrum (600 MHz, CDCl3) of compound 7a;
Figure S15: 13C NMR spectrum (150 MHz, CDCl3) of compound 7a; Figure S16: Mass spectrum of
compound 7a; Figure S17: IR spectrum of compound 7b; Figure S18: 1H NMR spectrum (600 MHz,
CDCl3) of compound 7b; Figure S19: 13C NMR spectrum (150 MHz, CDCl3) of compound 7b; Figure S20:
Mass spectrum of compound 7b.
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