Combining Functional Units to Design Organic Materials with Dynamic Room-Temperature Phosphorescence under Continuous Ultraviolet Irradiation
Abstract
:1. Introduction
2. Results and Discussions
2.1. Photophysical Properties
2.2. Theoretical Calculations
2.3. Photo-Responsive RTP Enhancement
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, D.R.; Lee, K.H.; Shao, W.; Kim, C.L.; Kim, J.; Lee, J.Y. Heavy Atom Effect of Selenium for Metal-Free Phosphorescent Light-Emitting Diodes. Chem. Mater. 2020, 32, 2583–2592. [Google Scholar] [CrossRef]
- Chen, Z.J.; Li, M.K.; Gu, Q.; Peng, X.M.; Qiu, W.D.; Xie, W.T.; Liu, D.H.; Jiao, Y.H.; Liu, K.K.; Zhou, J.D.; et al. Highly Efficient Purely Organic Phosphorescence Light-Emitting Diodes Employing a Donor-Acceptor Skeleton with a Phenoxaselenine Donor. Adv. Sci. 2023, 10, 2207003. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Wu, H.W.; Ma, H.L.; Ye, W.P.; Jia, W.Y.; Wang, H.; Chen, H.Z.; Zhang, N.; Wang, D.D.; Qian, C.; et al. Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer. Nat. Commun. 2020, 11, 944. [Google Scholar] [CrossRef]
- Deng, Y.C.; Li, P.; Sun, S.J.; Jiang, H.Y.; Ji, X.; Li, H.R. Proton-Activated Amorphous Room-Temperature Phosphorescence for Humidity Sensing and High-Level Data Encryption. Chem. Asian J. 2020, 15, 1088–1093. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Cheng, J.H.; Zhou, L.; Zhou, X.G.; Xiang, H.F. Ratiometric optical oxygen sensing: A review in respect of material design. Analyst 2012, 137, 4885–4901. [Google Scholar] [CrossRef] [PubMed]
- Skuodis, E.; Leitonas, K.; Panchenko, A.; Volyniuk, L.; Keruckiene, R.; Volyniuk, D.; Minaev, B.F.; Grazulevicius, J.V. Very sensitive probes for quantitative and organoleptic detection of oxygen based on conformer-induced room-temperature phosphorescence enhancement of the derivative of triazatruxene and phenothiazine. Sens. Actuat. B-Chem. 2022, 373, 13727. [Google Scholar] [CrossRef]
- Hou, Y.Z.; Jiang, G.Y.; Gong, J.Y.; Sha, R.; Wang, J.G. Recent Advances of Pure Organic Room Temperature Phosphorescence Materials for Bioimaging Applications. Chem. Res. Chin. Univ. 2021, 37, 73–82. [Google Scholar] [CrossRef]
- Fan, Y.Y.; Liu, S.W.; Wu, M.; Xiao, L.Y.; Fan, Y.H.; Han, M.M.; Chang, K.; Zhang, Y.F.; Zhen, X.; Li, Q.Q.; et al. Mobile Phone Flashlight-Excited Red Afterglow Bioimaging. Adv. Mater. 2022, 34, 2201280. [Google Scholar] [CrossRef]
- Zhen, X.; Tao, Y.; An, Z.F.; Chen, P.; Xu, C.J.; Chen, R.F.; Huang, W.; Pu, K.Y. Ultralong Phosphorescence of Water-Soluble Organic Nanoparticles for In Vivo Afterglow Imaging. Adv. Mater. 2017, 29, 1606665. [Google Scholar] [CrossRef]
- Zhou, W.L.; Lin, W.J.; Chen, Y.; Liu, Y. Supramolecular assembly confined purely organic room temperature phosphorescence and its biological imaging. Chem. Sci. 2022, 13, 7976–7989. [Google Scholar] [CrossRef]
- Ma, X.; Wang, J.; Tian, H. Assembling-Induced Emission: An Efficient Approach for Amorphous Metal-Free Organic Emitting Materials with Room Temperature Phosphorescence. Acc. Chem. Res. 2019, 52, 738–748. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Peng, H.; Xiang, Y.; Wang, J.; Yu, L.; Tao, Y.; Li, H.H.; Huang, W.; Chen, R.F. Recent Advances on Host-Guest Material Systems toward Organic Room Temperature Phosphorescence. Small 2022, 18, 2104073. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.S.; Nobuyasu, R.S.; Batsanov, A.S.; Data, P.; Monkman, A.P.; Dias, F.B.; Bryce, M.R. The interplay of thermally activated delayed fluorescence (TADF) and room temperature organic phosphorescence in sterically-constrained donor-acceptor charge-transfer molecules. Chem. Commun. 2016, 52, 2612–2615. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, M.A. Comments on Contaminating the Ground State with Triplet Character. J. Chem. Phys. 1963, 38, 3032–3033. [Google Scholar] [CrossRef]
- Kuila, S.; George, S.J. Phosphorescence Energy Transfer: Ambient Afterglow Fluorescence from Water-Processable and Purely Organic Dyes via Delayed Sensitization. Angew. Chem. Int. Edit. 2020, 59, 9393–9397. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cheng, Z.Q.; Han, X.C.; Shu, H.Y.; Wu, X.F.; Tong, H.; Wang, L.X. Efficient and tunable purely organic room temperature phosphorescence films from selenium-containing emitters achieved by structural isomerism. J. Mater. Chem. C. 2022, 10, 5141–5146. [Google Scholar] [CrossRef]
- Ma, X.; Xu, C.; Wang, J.; Tian, H. Amorphous Pure Organic Polymers for Heavy-Atom-Free Efficient Room-Temperature Phosphorescence Emission. Angew. Chem. Int. Edit. 2018, 57, 10854–10858. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.X.; Mao, Z.; Yang, Z.; Yang, T.T.; Zhu, L.J.; Long, Y.B.; Chi, Z.G.; Liu, S.W.; Aldred, M.P.; Chen, X.D.; et al. Achieving white-light emission in a single-component polymer with halogen-assisted interaction. Sci. China Chem. 2021, 64, 467–477. [Google Scholar] [CrossRef]
- Ma, L.W.; Sun, S.Y.; Ding, B.B.; Ma, X.; Tian, H. Highly Efficient Room-Temperature Phosphorescence Based on Single-Benzene Structure Molecules and Photoactivated Luminescence with Afterglow. Adv. Funct. Mater. 2021, 31, 2010659. [Google Scholar] [CrossRef]
- Xie, Z.L.; Zhang, X.Y.; Wang, H.L.; Huang, C.; Sun, H.D.; Dong, M.Y.; Ji, L.; An, Z.F.; Yu, T.; Huang, W. Wide-range lifetime-tunable and responsive ultralong organic phosphorescent multi-host/guest system. Nat. Commun. 2021, 12, 3552. [Google Scholar] [CrossRef]
- Gu, L.; Shi, H.F.; Gu, M.X.; Ling, K.; Ma, H.L.; Cai, S.Z.; Song, L.L.; Ma, C.Q.; Li, H.; Xing, G.C.; et al. Dynamic Ultralong Organic Phosphorescence by Photoactivation. Angew. Chem. Int. Edit. 2018, 57, 8425–8431. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.S.; Yang, J.; Fang, M.M.; Gong, Y.X.; Ren, J.; Tu, L.J.; Tang, B.Z.; Li, Z. New Phenothiazine Derivatives That Exhibit Photoinduced Room-Temperature Phosphorescence. Adv. Funct. Mater. 2021, 31, 2101719. [Google Scholar] [CrossRef]
- Huang, Q.Q.; Mei, X.F.; Xie, Z.L.; Wu, D.B.; Yang, S.M.; Gong, W.J.; Chi, Z.G.; Lin, Z.H.; Ling, Q.D. Photo-induced phosphorescence and mechanoluminescence switching in a simple purely organic molecule. J. Mater. Chem. C. 2019, 7, 2530–2534. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Liu, H.C.; Zhang, X.Y.; Lv, Y.B.; Fu, Z.Y.; Zhao, S.Q.; Liu, M.; Zhang, S.T.; Yang, B. Photo-Responsive Dynamic Organic Room-Temperature Phosphorescence Materials Based on a Functional Unit Combination Strategy. Adv. Mater. 2023, 36, 2306784. [Google Scholar] [CrossRef] [PubMed]
- Thomas, H.; Pastoetter, D.L.; Gmelch, M.; Achenbach, T.; Schlögl, A.; Louis, M.; Feng, X.L.; Reineke, S. Aromatic Phosphonates: A Novel Group of Emitters Showing Blue Ultralong Room Temperature Phosphorescence. Adv. Mater. 2020, 32, 2000880. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Q.; Li, Z. Molecular Packing: Another Key Point for the Performance o Organic and Polymeric Optoelectronic Materials. Acc. Chem. Res. 2020, 53, 962–973. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.W.; Zhao, W.J.; Wu, Y.; Meng, Z.O.; He, Z.K.; Qi, X.; Ren, Y.R.; Yu, Z.Q.; Tang, B.Z. Photo-thermo-induced room-temperature phosphorescence through solid-state molecular motion. Nat. Commun. 2022, 13, 3887. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Gu, F.; Ding, B.B.; Zou, L.; Ma, X. Photo-controllable room-temperature phosphorescence of organic photochromic polymers based on hexaarylbiimidazole. Sci. China Chem. 2021, 64, 1297–1301. [Google Scholar] [CrossRef]
- Su, Y.; Phua, S.Z.F.; Li, Y.B.; Zhou, X.J.; Jana, D.; Liu, G.F.; Lim, W.Q.; Ong, W.K.; Yang, C.L.; Zhao, Y.L. Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption. Sci. Adv. 2018, 4, eaas9732. [Google Scholar] [CrossRef]
- Jia, X.Y.; Shao, C.C.; Bai, X.; Zhou, Q.H.; Wu, B.; Wang, L.J.; Yue, B.B.; Zhu, H.M.; Zhu, L.L. Photoexcitation-controlled self-recoverable molecular aggregation for flicker phosphorescence. Proc. Nat. Acad. Sci. USA 2019, 116, 4816–4821. [Google Scholar] [CrossRef]
- Jia, X.Y.; Zhu, L.L. Photoexcitation-Induced Assembly: A Bottom-Up Physical Strategy for Driving Molecular Motion and Phase Evolution. Acc. Chem. Res. 2023, 56, 655–666. [Google Scholar] [CrossRef]
- Zhao, S.Q.; Yang, Z.Q.; Zhang, X.Y.; Liu, H.C.; Lv, Y.B.; Wang, S.Y.; Yang, Z.Z.; Zhang, S.T.; Yang, B. A functional unit combination strategy for enhancing red room-temperature phosphorescence. Chem. Sci. 2023, 14, 9733–9743. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.C.; Gao, Y.; Cao, J.G.; Li, T.X.; Wen, Y.T.; Ge, Y.P.; Zhang, L.L.; Pan, G.C.; Zhou, T.; Yang, B. Efficient room-temperature phosphorescence based on a pure organic sulfur-containing heterocycle: Folding-induced spin-orbit coupling enhancement. Mater. Chem. Front. 2018, 2, 1853–1858. [Google Scholar] [CrossRef]
- Qiu, W.D.; Cai, X.Y.; Chen, Z.J.; Wei, X.F.; Li, M.K.; Gu, Q.; Peng, X.M.; Xie, W.T.; Jiao, Y.H.; Gan, Y.Y.; et al. A “Flexible” Purely Organic Molecule Exhibiting Strong Spin–Orbital Coupling: Toward Nondoped Room-Temperature Phosphorescence OLEDs. J. Phys. Chem. Lett. 2022, 13, 4971–4980. [Google Scholar] [CrossRef]
- Li, M.K.; Xie, W.T.; Cai, X.Y.; Peng, X.M.; Liu, K.K.; Gu, Q.; Zhou, J.D.; Qiu, W.D.; Chen, Z.J.; Gan, Y.Y.; et al. Molecular Engineering of Sulfur-Bridged Polycyclic Emitters Towards Tunable TADF and RTP Electroluminescence. Angew. Chem. Int. Ed. 2022, 61, e202209343. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.C.; Pan, G.C.; Yang, Z.Q.; Wen, Y.T.; Zhang, X.Y.; Zhang, S.T.; Li, W.J.; Yang, B. Dual-Emission of Fluorescence and Room-Temperature Phosphorescence for Ratiometric and Colorimetric Oxygen Sensing and Detection Based on Dispersion of Pure Organic Thianthrene Dimer in Polymer Host. Adv. Opt. Mater. 2022, 10, 2102814. [Google Scholar] [CrossRef]
- Wen, Y.T.; Liu, H.C.; Zhang, S.T.; Gao, Y.; Yan, Y.; Yang, B. One-dimensional π-π stacking induces highly efficient pure organic room-temperature phosphorescence and ternary-emission single-molecule white light. J. Mater. Chem. C. 2019, 7, 12502–12508. [Google Scholar] [CrossRef]
- Ong, W.J.; Swager, T.M. Dynamic self-correcting nucleophilic aromatic substitution. Nat. Chem. 2018, 10, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, Z.R.; Rotkiewicz, K. Structural Changes Accompanying Intramolecular Electron Transfer: Focus on Twisted Intramolecular Charge-Transfer States and Structures. Chem. Rev. 2003, 103, 3899–4031. [Google Scholar] [CrossRef]
- Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234–238. [Google Scholar] [CrossRef]
- Zang, L.; Shao, W.; Kwon, M.S.; Zhang, Z.; Kim, J. Photoresponsive Luminescence Switching of Metal-Free Organic Phosphors Doped Polymer Matrices. Adv. Opt. Mater. 2020, 8, 2000654. [Google Scholar] [CrossRef]
- Gmelch, M.; Thomas, H.; Fries, F.; Reineke, S. Programmable transparent organic luminescent tags. Sci. Adv. 2019, 5, eaau7310. [Google Scholar] [CrossRef] [PubMed]
- Louis, M.; Thomas, H.; Gmelch, M.; Haft, A.; Fries, F.; Reineke, S. Blue-Light-Absorbing Thin Films Showing Ultralong Room-Temperature Phosphorescence. Adv. Mater. 2019, 31, 1807887. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, Q.; Chen, W.; Tang, Y.Q.; Aguila, B.; Pan, Y.X.; Zheng, A.M.; Yang, Z.Y.; Wojtas, L.; Ma, S.Q.; et al. Programming Covalent Organic Frameworks for Photocatalysis: Investigation of Chemical and Structural Variations. Matter 2020, 2, 416–427. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision B.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Liu, W.J.; Hong, G.Y.; Dai, D.D.; Li, L.M.; Dolg, M. The Beijing four-component density functional program package (BDF) and its application to EuO, EuS, YbO and YbS. Theor. Chem. Acc. 1997, 96, 75–83. [Google Scholar]
- Zhang, Y.; Suo, B.B.; Wang, Z.K.; Zhang, N.; Li, Z.D.; Lei, Y.B.; Zou, W.L.; Gao, J.; Peng, D.L.; Pu, Z.C.; et al. BDF: A relativistic electronic structure program package. J. Chem. Phys. 2020, 152, 064113. [Google Scholar]
- Liu, W.J.; Wang, F.; Li, L.M. The Beijing Density Functional (BDF) Program Package: Methodologies and Applications. J. Theor. Comput. Chem. 2003, 2, 257–272. [Google Scholar]
- Liu, W.J.; Wang, F.; Li, L.M. Recent Advances in Relativistic Molecular Theory. In Encyclopedia of Computational Chemistry; World Scientific: Singapore, 2004; pp. 257–282. [Google Scholar]
- Li, Z.D.; Suo, B.B.; Zhang, Y.; Xiao, Y.L.; Liu, W.J. Combining spin-adapted open-shell TD-DFT with spin–orbit coupling. Mol. Phys. 2013, 111, 3741–3755. [Google Scholar]
- Li, Z.D.; Xiao, Y.L.; Liu, W.J. On the spin separation of algebraic two-component relativistic Hamiltonians. J. Chem. Phys. 2012, 137, 154114. [Google Scholar]
- Li, Z.D.; Xiao, Y.L.; Liu, W.J. On the spin separation of algebraic two-component relativistic Hamiltonians: Molecular properties. J. Chem. Phys. 2014, 141, 054111. [Google Scholar]
- Hayashi, H.; Aratani, N.; Yamada, H. Semiconducting Self-Assembled Nanofibers Prepared from Photostable Octafluorinated Bisanthene Derivatives. Chem.-Eur. J. 2017, 23, 7000–7008. [Google Scholar]
- Guan, X.Y.; Li, H.; Ma, Y.C.; Xue, M.; Fang, Q.R.; Yan, Y.S.; Valtchev, V.; Qiu, S.L. Chemically stable polyarylether-based covalent organic frameworks. Nat. Chem. 2019, 11, 587–594. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Yang, Z.; Feng, Z.; Zhao, N.; Bian, R.; Wu, J.; Yang, Q.; Zhao, S.; Liu, H.; Yang, B. Combining Functional Units to Design Organic Materials with Dynamic Room-Temperature Phosphorescence under Continuous Ultraviolet Irradiation. Molecules 2024, 29, 2621. https://doi.org/10.3390/molecules29112621
Liu M, Yang Z, Feng Z, Zhao N, Bian R, Wu J, Yang Q, Zhao S, Liu H, Yang B. Combining Functional Units to Design Organic Materials with Dynamic Room-Temperature Phosphorescence under Continuous Ultraviolet Irradiation. Molecules. 2024; 29(11):2621. https://doi.org/10.3390/molecules29112621
Chicago/Turabian StyleLiu, Meng, Zhiqiang Yang, Zhe Feng, Ningyuan Zhao, Ruihua Bian, Jinpu Wu, Qing Yang, Shuaiqiang Zhao, Haichao Liu, and Bing Yang. 2024. "Combining Functional Units to Design Organic Materials with Dynamic Room-Temperature Phosphorescence under Continuous Ultraviolet Irradiation" Molecules 29, no. 11: 2621. https://doi.org/10.3390/molecules29112621
APA StyleLiu, M., Yang, Z., Feng, Z., Zhao, N., Bian, R., Wu, J., Yang, Q., Zhao, S., Liu, H., & Yang, B. (2024). Combining Functional Units to Design Organic Materials with Dynamic Room-Temperature Phosphorescence under Continuous Ultraviolet Irradiation. Molecules, 29(11), 2621. https://doi.org/10.3390/molecules29112621