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Abstract: Developing materials with dynamic room-temperature phosphorescence (RTP) properties is
crucial for expanding the applications of organic light-emitting materials. In this study, we designed
and synthesized two novel RTP molecules by combining functional units, incorporating the folded
unit thianthrene into the classic luminescent cores thioxanthone or anthraquinone to construct TASO
and TA2O. In this combination, the TA unit contributes to the enhancement of spin–orbit coupling
(SOC), while the luminescent core governs the triplet energy level. After the strategic manipulation
of SOC using the thianthrene unit, the target molecules exhibited a remarkable enhancement in RTP
performance. This strategy led to the successful development of TASO and TA2O molecules with
outstanding dynamic RTP properties when exposed to continuous ultraviolet irradiation, a result
that can be ascribed to their efficient RTP, improved absorption ability, and oxygen-sensitive RTP
properties. Leveraging the oxygen-mediated ultraviolet-radiation-induced RTP enhancement in
TASO-doped polymer films, we developed a novel time-resolved detection technique for identifying
phase separation in polymers with varying oxygen permeability. This research offers a promising
approach for constructing materials with dynamic RTP properties.

Keywords: organic room-temperature phosphorescence; thianthrene; folding-induced spin–orbit
coupling enhancement; photo response; functional unit combination strategy

1. Introduction

In recent years, purely organic room-temperature phosphorescent (RTP) materials have
seen widespread application in various areas, including organic light-emitting diodes [1,2],
anti-counterfeiting and encryption [3,4], sensing [5,6], biological imaging [7,8], and photo-
dynamic therapy [9]. Their growing popularity can be attributed to their long afterglow,
easy preparation, and cost-effectiveness [10–12]. However, these RTP materials often face
challenges related to low RTP emission efficiency due to their weak spin–orbit coupling
(SOC) and the forbidden nature of triplet transitions [13,14]. To enhance the performance of
purely organic RTP materials, two key strategies have emerged: promoting the intersystem
crossing (ISC) process by enhancing SOC and suppressing non-radiative pathways by
restricting molecular motions [15–18]. Most purely organic RTP materials exhibit good RTP
properties under ‘static’ conditions but rarely do so under ‘dynamic’ conditions. Never-
theless, the ‘dynamic’ properties hold potential for expanding the applications of purely
organic RTP materials [19–21].

Photo-induced dynamically responsive RTP enhancement is an emerging phenomenon
with various applications like anti-counterfeiting and encryption [22], optical switching [23],
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and polymer crack detection [24]. Different methods, including oxygen consumption [25],
molecular conformation changes in crystals [26,27], polymer matrix cross-linking [28,29],
and molecular aggregation [30,31], can be employed to achieve this effect. Among these,
oxygen-mediated RTP enhancement in thin films is particularly notable due to the ease
of processing and handling compared to brittle crystals. However, there is a scarcity of
examples in this area and a lack of well-defined design principles.

In this study, we implemented a functional unit combination strategy [24,32] for the
design of materials with photo-induced RTP enhancement. Specifically, a unit is focused
on enhancing SOC to promote the ISC process, while another unit dominates the triplet
energy level. For this purpose, the luminescent cores, thioxanthone (TX) and anthraquinone
(AQ), were modified by incorporating a folding unit, thianthrene (TA) [33–36]. While both
TX and AQ exhibit very weak RTP in their monomeric state [37], this strategic combina-
tion transforms their initially weak RTP into strong RTP in the target compounds. This
transformation can be ascribed to the more efficient ISC pathways generated by closely
aligning singlet–triplet energy levels and increasing SOC coefficients between the S1 and
Tn (n ≥ 1) states for the target compounds. This molecular design also enables the original
luminescent core, TX or AQ, to dominate the triplet energy level through controlling charge-
transfer (CT) strength, facilitating control over the RTP emission color. The two newly
obtained target compounds exhibit oxygen-sensitive RTP properties and a significant RTP
enhancement due to oxygen consumption under continuous ultraviolet (UV) irradiation.
By leveraging the photo-responsive RTP enhancement property of polymer films, a novel
time-resolved photo-responsive detection method for phase separation was developed.

2. Results and Discussions
2.1. Photophysical Properties

To gain an insight into the availability of functional unit combination strategies, two
target compounds, 14H-thiochromeno[2,3-b]thianthren-14-one (TASO) and naphtho[2,3-
b]thianthrene-7,12-dione (TA2O), were synthesized through a ring-formed nucleophilic
aromatic substitution reaction [38], as shown in Scheme 1. The synthesis details are pro-
vided in the Supplemenatary Materials.
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Scheme 1. Synthetic routes of TASO and TA2O.

Previous studies conducted by our research group focused on investigating the phos-
phorescent properties of TX and its derivatives [37]. When TX molecules were doped
into a polymethyl methacrylate (PMMA) film at a mass ratio of 1.0%, only fluorescence
emission peaking at about 420 nm was observed. To achieve phosphorescent emission,
a low-temperature or deoxygenated environment is necessary to suppress non-radiative
processes [37]. Similarly, the emission characteristics of PMMA-doped films containing
single molecules of AQ were found to be comparable to those of TX, with no RTP observed
under ambient conditions (Figure S1).

To compare the light absorption properties of the target RTP materials, we measured
the molar extinction coefficients (ε) of the parent cores (TX and AQ) and the target RTP
compounds (TASO and TA2O), as illustrated in Figure 1. It was found that the TASO and
TA2O compounds exhibit red-shifted absorption band edges compared to their parent
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phosphorescent cores (TX and AQ), and they also display broader and more intense ab-
sorption bands. Obviously, the light from the widely used commercial UV lamp with a
wavelength of 365 nm aligns well with the strong absorption near 365 nm of TASO and
TA2O, making them highly suitable for various UV light response applications. Addi-
tionally, solvatochromism was obtained for these materials (Figure S2). As the solvent
polarity increases, the emission peaks of the TASO and TA2O gradually shift towards
the long wavelength, indicating the presence of intramolecular CT [39]. TA2O exhibits a
larger red shift, signifying a stronger CT effect, which may influence the phosphorescence
emission color.
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In order to investigate the RTP properties of TASO and TA2O, we doped them into
the PMMA matrix at a mass ratio of 1.0%. Dispersed thin films were prepared on dry and
clean quartz sheets using the drop-coating method for further analysis of the subsequent
photophysical properties. Through testing the emission spectra, it was observed that
the TASO-doped PMMA film exhibited a single emission band both before and after
deoxygenation, showing high sensitivity to oxygen (Figure 2a). In air, the TASO-doped
thin film displayed lifetimes at both nanosecond and microsecond levels (3.27 ns and
0.49 ms, respectively) at the primary peak position of 490 nm (Figure 2b). Following
deoxygenation, the emission spectrum of the TASO-doped film exhibited a slight red
shift to 512 nm, increasing from the 490 nm recorded in air, and the lifetime near 512 nm
extended to 20.10 ms (Figure 2c). To clarify the luminescent properties of TASO, we
conducted temperature-dependent tests of emission and time-resolved emission spectra on
the doped film (Figure S3). At low temperatures, the emission spectrum red-shifted from
its position at room temperature to 523 nm and was accompanied by a shoulder emission
band at a short wavelength. This shoulder band displayed a gradually increasing delayed
component upon increasing the temperature, according to the temperature-dependent time-
resolved emission spectra, indicating its thermally activated delayed fluorescence (TADF)
characteristics [40]. Moreover, the temperature-dependent time-resolved emission spectra
monitored at 523 nm show a gradually decreased decay with increasing temperature,
demonstrating the phosphorescence characteristic of TASO at 523 nm. These findings align
well with the test results for TASO in a diluted solution at low temperature (Figure S4).
These experimental results indicate that, in comparison to the parent TX, TASO exhibits
TADF properties in air and RTP properties upon deoxygenation conditions. The ratio of
the emission peak intensity after deoxygenation to that before deoxygenation (Ivac/Iair)
was found to be as high as 5.0, with a significant difference in photoluminescence quantum
yield (PLQY) values amounting to 55.49% and 5.72%, respectively. These PLQY values are
far higher than those of the parent TX [37].
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Figure 2. The 1.0 wt.% TASO-doped PMMA film: (a) the emission spectra before and after deoxy-
genation, and the inset is an image of TASO-doped PMMA film under 365 nm UV irradiation in
air; (b) the time-resolved emission spectrum before deoxygenation; (c) the time-resolved emission
spectrum after deoxygenation. The 1.0 wt.% TA2O doped PMMA film: (d) the emission spectra
before and after deoxygenation, and the inset is an image of TA2O-doped PMMA film under 365 nm
UV irradiation in air; (e) the time-resolved emission spectra before and after deoxygenation; (f) the
emission spectra with increasing delayed time after deoxygenation.

The TA2O-doped film shows a single peak emission at about 600 nm both before and
after deoxygenation, with an extended phosphorescence lifetime observed from 0.39 ms to
6.47 ms after deoxygenation (Figure 2d,e). The temperature-dependent emission and time-
resolved emission spectra reveal a decrease in emission intensity and a reduction in the
millisecond-level lifetime upon increasing the temperature (Figures S5 and S6), indicative
of pure phosphorescence emission from TA2O. Notably, the emission spectra of TA2O
remain nearly unchanged at various delay times (Figure 2f), indicating the high stability of
the RTP emission. Deoxygenation significantly improved the PLQY from 7.82% to 16.59%.
This improved performance was credited to the modification of AQ through the folding
unit TA.

2.2. Theoretical Calculations

Following the introduction of TA units, the RTP performance of TASO and TA2O
showed a significant enhancement, prompting a deeper investigation into their theoretical
mechanisms. Theoretical calculations revealed that, in comparison to the parent TX or
AQ, TASO and TA2O possess triplet energy levels more closely aligned with the S1 energy
level (Figures 3 and S7). Moreover, the overall SOC coefficients significantly improved,
indicating a stronger ISC capability in TASO and TA2O. In terms of energy levels, TASO and
TA2O display decreasing S1 and T1 energy levels to varying degrees compared to TX and
AQ, with the S1 energy level experiencing a more pronounced decrease. This phenomenon
can be elucidated through an analysis of their natural transition orbitals (NTOs). Upon the
introduction of the TA unit, CT transitions are generated in both TASO and TA2O. Here, the
TA unit serves as the donor, while the TX or AQ acts as the acceptor. Notably, TA2O exerts
a more pronounced CT effect, indicating that AQ possesses a stronger electron-attracting
ability compared to TX. The presence of the CT state allows for adjustment of the triplet
energy level, which reinforces the idea that the parent core primarily influences the T1
energy level and ultimately dictates the emission color of RTP. The incorporation of the
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folding unit TA primarily serves to regulate SOC [24], aligning well with our overarching
design principles.
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2.3. Photo-Responsive RTP Enhancement

A fascinating phenomenon of UV-irradiation-induced RTP enhancement was observed
in the TASO-doped PMMA films, and it was visible to the naked eye. When exposed
to 365 nm UV irradiation, the doped PMMA film initially emitted relatively dim blue
fluorescence. With prolonged irradiation, green phosphorescence gradually emerged,
spreading throughout the film until the phosphorescence stabilized (Movie S1). This
intriguing process can be monitored through continuous in situ emission spectra. As
shown in Figure 4a, the emission intensity gradually increases with illumination time,
reaching a peak at about 9 s. The maximum emission intensity after stabilization is 2.4 times
higher than the initial intensity, confirming the excellent photo responsiveness of the TASO
material induced by continuous UV irradiation. In addition, TA2O also exhibits photo
responsiveness and displays a significant phosphorescence enhancement phenomenon,
accompanied by an unchanged emission color (Figure S8a).

Since TASO and TA2O exhibit enhanced RTP under deoxygenated conditions, the
observed UV-irradiation-induced RTP enhancement might be linked to oxygen consump-
tion [41–43]. To validate this hypothesis, electron paramagnetic resonance (EPR) spec-
troscopy was employed (Figures 4b and S8b). During the preparation of the PMMA-doped
films, the singlet oxygen (1O2) scavenger, 2,2,6,6-tetramethylpiperidine (TEMP) [44], was
incorporated. Following irradiation at 365 nm, a significant increase in the EPR signal
intensity of TEMP-1O2 was observed, indicating efficient energy transfer from the photo-
generated triplet excitons to oxygen molecules. Specifically, the generated triplet excitons
sensitized the residual oxygen molecules (3O2) within the PMMA matrix, converting them
into highly reactive singlet oxygen (1O2). The gradual consumption of oxygen molecules,
combined with slower oxygen penetration into the PMMA matrix, creates a vacuum-like
environment within the film, resulting in the dominance of RTP (Figure 4c). It is worth
mentioning that TASO and TA2O have strong absorption bands at around 365 nm, enabling
them to efficiently generate triplet excitons when exposed to commercial 365 nm UV lamp
irradiation. Therefore, the observed UV-induced RTP enhancement was predominantly
ascribed to the combined effect of effective UV absorption at specific wavelengths and the
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oxygen barrier properties of the polymer matrix, based on the efficient RTP of the materials.
These characteristics highlight the promising potential applications of TASO and TA2O in
various potential scenarios.
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Figure 4. For the 1.0 wt.% TASO-doped PMMA film: (a) emission spectra and images under continu-
ous 365 nm UV irradiation; (b) EPR spectra before (orange line) and after (blue line) UV irradiation
was applied; (c) schematic diagram of UV-irradiation-induced RTP enhancement; (d) images of equal
amounts of PS and PMMA blend polymer films (incorporated with 0.5 wt.% TASO) under continuous
UV irradiation (365 nm, 8000 µW cm−2).

Utilizing the impressive UV-responsive dynamic RTP properties of TASO, we innova-
tively applied it to the detection of phase separation in polymer blends containing polymers
with varying oxygen permeability. PMMA has strong oxygen barrier properties, which
can ensure the UV-irradiation-induced RTP enhancement of TASO, while polystyrene (PS),
with higher oxygen permeability, does not exhibit this characteristic (Movie S2). Thus, a
new method for analyzing phase separation in binary blends of PMMA and PS can be
developed using time-resolved, visualized optical imaging technology, which allows for the
differentiation of PMMA and PS phases based on the distinct luminescence characteristics
of the TASO contained in them.

To prepare a film for the phase separation detection experiment, we doped 0.5 wt.%
TASO into equal amounts of blended (1:1 w/w) polymers of PS and PMMA. The blend
was dissolved in chloroform, and a film was prepared on a silicon wafer via drop coat-
ing. Subsequently, the film was kept in a dark environment and allowed to dry at room
temperature for 12 h prior to the phase separation detection experiment.

Following film preparation, the UV response process of the blend film, characterized
ed by two distinct stages, was recorded with a camera (Figure 4d and Movie S3). In the
first stage, under initial UV irradiation, the blend film exhibited inhomogeneous blue
fluorescence. Notably, the emission intensity of the blue fluorescence varied across the film.
We attribute the brighter blue regions to TASO residing within the PS phase (Figure S9),



Molecules 2024, 29, 2621 7 of 10

while the weaker blue regions likely correspond to TASO in the PMMA phase. This
observed difference in emission intensity between PS and PMMA phases might be related
to the varying rigidity of these two polymers. PS polymers are more rigid, so they can
suppress non-radiative molecular motions more significantly, enabling the TASO molecules
to show stronger emission. This stage can provide a ‘static’ state analysis of the phase
separation in the blend film. In the second stage, as the irradiation continued, green
phosphorescence emerged within the initially weak blue region, gradually intensifying.
The brightness reached a peak after 12 s of irradiation and remained constant thereafter.
The captured image (Figure 4d) reveals two distinct and clearly visible phase regions within
the film, readily distinguishable even with the naked eye. This can be attributed to the fact
that TASO in the PMMA region has the ability to undergo UV-irradiation-induced RTP
enhancement due to the stronger oxygen barrier properties of the PMMA phase, while
the TASO in in the PS region loses this ability due to the good oxygen permeability of
the PS phase. This distinction in UV-irradiation-induced RTP enhancement between the
TASO in the PMMA and PS phases further strengthens the analysis, i.e., a ‘dynamic’ state
analysis, of the phase separation in the blend film. Furthermore, for a clearer and more
intuitive visualization of the phase separation, we can analyze the video frames captured
after the RTP emission stabilizes. By extracting the blue components from these frames,
the distinction in emission color corresponding to TASO in the PS and PMMA phases is
further accentuated. Overall, this method presents a novel “two-channel” (e.g., ‘static’ and
‘dynamic’) approach for analyzing phase separation in polymer blend films. It leverages
a simple membrane production process (e.g., drop-coating) and requires only minimal
quantities of RTP molecules. By combining these advantages with time-resolved detection,
this method can achieve high accuracy in phase separation analysis.

3. Conclusions

In summary, utilizing a functional unit combination strategy, we designed and syn-
thesized two new RTP molecules, TASO and TA2O, through incorporating a folded TA
unit into the luminescent cores TA and AQ. The incorporation of TA significantly enhances
the RTP performance of TASO and TA2O compared to their parent cores by effectively
regulating the ISC process. When dispersed in a PMMA matrix and then exposed to
continuous UV irradiation, TASO and TA2O exhibit dynamic RTP behavior. This phe-
nomenon can be ascribed to the competitive relationship between the oxygen consumption
rate within the PMMA matrix and the slower oxygen penetration rate, which facilitates
the creation of a photo-induced oxygen-depleted microenvironment that results in the
observed UV-irradiation-induced RTP enhancement. Leveraging the UV-radiation-induced
RTP enhancement of TASO, we have creatively devised a novel time-resolved phase sep-
aration detection technology based on PS and PMMA blended polymers. This work not
only provides a valuable strategy for designing photo-responsive RTP materials but also
offers a feasible approach for visualizing phase separation in blend polymer films using
time-resolved detection.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules29112621/s1. Scheme S1. Synthetic routes of TASO
and TA2O. Figure S1. PMMA film doped with 1.0 wt.% AQ: (a) steady-state emission spectrum at
room temperature and low temperature; (b) time-resolved emission spectrum at room temperature;
(c) time-resolved emission spectrum at low temperature. Figure S2. Emission spectrum in diluted
solvents with various polarity: (a) TA2O; (b) TASO. Figure S3. Temperature-dependent test of
1.0 wt.% TASO doped PMMA film: (a) steady-state emission spectrum; (b) time-resolved emission
spectrum at 440 nm; (c) time-resolved emission spectrum at 523 nm. Figure S4. Diluted THF solution
(10−5 mol L−1) of TASO at low temperature: (a) steady-state emission spectrum; (b) time-resolved
emission spectrum at 515 nm; (c) time-resolved emission spectrum at 450 nm. Figure S5. Temperature-
changing test of PMMA film doped with 1.0 wt.% TA2O: (a) steady-state emission spectrum; (b) time-
resolved emission spectrum. Figure S6. Diluted THF solution (10−5 mol L−1) of TA2O at low-
temperature: (a) steady-state emission spectrum; (b) time-resolved emission spectrum. Figure S7.
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SOC and energy level distribution: (a) TX; (b) AQ. Figure S8. 1.0 wt.% TA2O doped PMMA film:
(a) emission spectrum under continuous 365 nm UV irradiation; (b) EPR spectra before (orange line)
and after (blue line) UV irradiation. Figure S9. 1.0 wt.% TASO doped PS film: (a) emission spectrum
before and after deoxygenation; (b) and (c) time-resolved emission spectra before deoxygenation;
(c) time-resolved emission spectrum after deoxygenation. Movie S1. Luminescent behavior of
TASO-doped PMMA films under continuous UV irradiation. Movie S2. Luminescent behavior
of TASO-doped PS films under continuous UV irradiation. Movie S3. Luminescent behavior of
TASO-doped PMMA and PS blend films under continuous UV irradiation. References [45–54] are
cited in the Supplementary Materials.
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