Influence of Temperatures on Physicochemical Properties and Structural Features of Tamarind Seed Polysaccharide
Abstract
:1. Introduction
2. Results
2.1. Composition of TSP
2.2. Pasting Characteristics
2.3. Rheological Properties
2.4. Morphology and Microstructure of TSP and PS at Different Heating Temperatures
2.4.1. Morphology of TSP and PS
2.4.2. FT-IR Characterization of TSP and PS
2.4.3. Crystalline Structure of TSP and PS
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of TSP and PS at Different Temperatures
4.3. HPSEC and SEC-MALLS Determination
4.4. Rapid Visco Analyser (RVA)
4.5. Rheological Measurements
4.6. Microstructure Characterization of TSP and PS at Different Temperatures
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maninder; Kaur; Kawaljit; Singh; Sandhu; Jasmeen; Science, K. J. Pasting properties of Tamarind (Tamarindus indica) kernel powder in the presence of Xanthan, Carboxymethylcellulose and Locust bean gum in comparison to Rice and Potato flour. J. Food Sci. Technol. 2013, 50, 809–814. [Google Scholar] [CrossRef]
- Kulkarni, A.D.; Joshi, A.A.; Patil, C.L.; Amale, P.D.; Patel, H.M.; Surana, S.J.; Belgamwar, V.S.; Chaudhari, K.S.; Pardeshi, C.V. Xyloglucan: A functional biomacromolecule for drug delivery applications. Int. J. Biol. Macromol. 2017, 104, 799–812. [Google Scholar] [CrossRef]
- Kooiman, P. On the occurrence of amyloids in plant seeds. Acta Bot. Neerl. 2013, 9, 208–219. [Google Scholar] [CrossRef]
- Kooiman, P. A method for the determination of amyloid in plant seeds. Rec. Trav. Chim. Pays-Bas. 1960, 79, 675–678. [Google Scholar] [CrossRef]
- Koosamart, W.; Veerasugwanit, N.; Jittanit, W. The Application of Tamarind Kernel Powder in the Mango Sauce. SHS Web Conf. 2016, 23, 3003. [Google Scholar] [CrossRef]
- Thivya, P.; Reddy, N.B.P.; Nair, S.V.R. Extraction of xyloglucan from tamarind industrial waste by different methods and their potential application in the food sector. Int. J. Food Sci. Technol. 2023, 58, 2014–2020. [Google Scholar] [CrossRef]
- Lucyszyn, N.; Lubambo, A.F.; Ono, L.; Jo, T.A.; Souza, C.F.D.; Sierakowski, M.R. Chemical, physico-chemical and cytotoxicity characterisation of xyloglucan from Guibourtia hymenifolia (Moric.) J. Leonard seeds. Food Hydrocoll. 2011, 25, 1242–1250. [Google Scholar] [CrossRef]
- Yuguchi, Y.; Fujiwara, T.; Miwa, H.; Shirakawa, M.; Yajima, H. Color formation and gelation of xyloglucan upon addition of iodine solutions. Macromol. Rapid Commun. 2005, 26, 1315–1319. [Google Scholar] [CrossRef]
- Nishinari, K.; Takemasa, M.; Zhang, H.; Takahashi, R. Storage Plant Polysaccharides: Xyloglucans, Galactomannans, Glucomannans-ScienceDirect. Compr. Glycosci. 2007, 2, 613–652. [Google Scholar]
- Whistler, R.L. Industrial Gums: Polysaccharides and Their Derivatives; Carbohydrate Research; Elsevier: Amsterdam, The Netherlands, 2012; pp. 370–407. [Google Scholar]
- York, W.S.; Harvey, L.S.; Guillen, R.; Albersheim, P.; Darvill, A.G. Structural analysis of tamarind seed xyloglucan oligosaccharides using p-galactosidase digestion and spectroscopic methods. Carbohydr. Res. 1993, 248, 285–301. [Google Scholar] [CrossRef]
- Marry, M.; Cavalier, D.M.; Schnurr, J.K.; Netland, J.; Yang, Z.; Pezeshk, V.; York, W.S.; Pauly, M.; White, A.R. Structural characterization of chemically and enzymatically derived standard oligosaccharides isolated from partially purified tamarind xyloglucan. Carbohydr. Polym. 2003, 51, 347–356. [Google Scholar] [CrossRef]
- Niemann, C.; Carpita, N.C.; Whistler, R.L.; Lafayette, W. Arabinose-Containing Oligosaccharides from Tamarind Xyloglucan. Starch-Stärke. 1997, 49, 154–159. [Google Scholar] [CrossRef]
- Wang, B.; Gao, W.; Kang, X.; Dong, Y.; Liu, P.; Yan, S.; Yu, B.; Guo, L.; Cui, B.; Abd El-Aty, A.M. Structural changes in corn starch granules treated at different temperatures. Food Hydrocoll. 2021, 118, 106760. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, T.; Wang, J.; Xia, Y.; Song, Z.; Ai, L. An amendment to the fine structure of galactoxyloglucan from Tamarind (Tamarindus indica L.) seed. Int. J. Biol. Macromol. 2020, 149, 1189–1197. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Xie, F.; Yaseen, A.; Chen, B.; Zhang, G.-l.; Wang, M.-k.; Shen, X.-f.; Li, F. A polysaccharide TKP-2-1 from Tamarindus indica L.: Purification, structural characterization and immunomodulating activity. J. Funct. Foods. 2021, 78, 104384. [Google Scholar]
- Han, M.; Liu, Y.; Huang, R.; Sun, D.; Zhang, W.; Jiang, J. Characterization of Structure and Solution Properties of Tamarind Seed Polysaccharide Extracted at Different Temperatures. J. Biobased Mater. Bioenergy 2018, 12, 175–183. [Google Scholar] [CrossRef]
- Gao, L.; Van Bockstaele, F.; Lewille, B.; Haesaert, G.; Eeckhout, M. Characterization and comparative study on structural and physicochemical properties of buckwheat starch from 12 varieties. Food Hydrocoll. 2023, 137, 108320. [Google Scholar] [CrossRef]
- Semeijn, C.; Buwalda, P.L. Potato starch. In Starch in Food; Woodhead Publishing: Sawston, UK, 2018; pp. 353–372. [Google Scholar]
- Akhila, P.P.; Sunooj, K.V.; Aaliya, B.; Navaf, M.; Sudheesh, C.; Yadav, D.N.; Khan, M.A.; Mir, S.A.; George, J. Morphological, physicochemical, functional, pasting, thermal properties and digestibility of hausa potato (Plectranthus rotundifolius) flour and starch. Appl. Food Res. 2022, 2, 100193. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, S. Physicochemical, morphological, pasting, and rheological properties of tamarind (Tamarindus indica L.) kernel starch. Int. J. Food Prop. 2016, 19, 2432–2442. [Google Scholar] [CrossRef]
- Tian, Y.; Qu, J.; Zhou, Q.; Ding, L.; Cui, Y.; Blennow, A.; Zhong, Y.; Liu, X. High pressure/temperature pasting and gelling of starch related to multilevel structure-analyzed with RVA 4800. Carbohydr. Polym. 2022, 295, 119858. [Google Scholar] [CrossRef]
- Chen, N.; Wang, Q.; Wang, M.-X.; Li, N.-y.; Briones, A.V.; Cassani, L.; Prieto, M.A.; Carandang, M.B.; Liu, C.; Gu, C.-M.; et al. Characterization of the physicochemical, thermal and rheological properties of cashew kernel starch. Food Chem. X 2022, 15, 100432. [Google Scholar] [CrossRef]
- Zhang, C.; Narayanamoorthy, S.; Ming, S.; Li, K.; Cantre, D.; Sui, Z.; Corke, H. Rheological properties, structure and digestibility of starches isolated from common bean (Phaseolus vulgaris L.) varieties from Europe and Asia. LWT Food Sci. Technol. 2022, 161, 113352. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, L.; Liu, W.; Liu, Q.; Wang, F.; Zhang, H.; Hu, H.; Blecker, C. Physicochemical and structural characterization of potato starch with different degrees of gelatinization. Foods 2021, 10, 1104. [Google Scholar] [CrossRef] [PubMed]
- Gui, Y.; Zou, F.; Zhu, Y.; Li, J.; Wang, N.; Guo, L.; Cui, B. The structural, thermal, pasting and gel properties of the mixtures of enzyme-treated potato protein and potato starch. LWT Food Sci. Technol. 2022, 154, 112882. [Google Scholar] [CrossRef]
- Huang, T.-T.; Zhou, D.-N.; Jin, Z.-Y.; Xu, X.-M.; Chen, H.-Q. Effect of repeated heat-moisture treatments on digestibility, physicochemical and structural properties of sweet potato starch. Food Hydrocoll. 2016, 54, 202–210. [Google Scholar] [CrossRef]
- Liu, H.; Xie, F.; Yu, L.; Chen, L.; Li, L. Thermal processing of starch-based polymers. Prog. Polym. Sci. 2009, 34, 1348–1368. [Google Scholar] [CrossRef]
- Thakur, R.; Pristijono, P.; Scarlett, C.J.; Bowyer, M.; Singh, S.; Vuong, Q.V. Starch-based films: Major factors affecting their properties. Int. J. Biol. Macromol. 2019, 132, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Astuti, R.M.; Asiah, N.; Setyowati, A.; Fitriawati, R. Effect of physical modification on granule morphology, pasting behavior, and functional properties of arrowroot (Marantha arundinacea L.) starch. Food Hydrocoll. 2018, 81, 23–30. [Google Scholar] [CrossRef]
- Ren, L.; Yang, Y.; Bian, X.; Li, X.; Wang, B.; Wang, D.; Su, D.; Liu, L.; Yu, D.; Guo, X. Physicochemical, rheological, structural, antioxidant, and antimicrobial properties of polysaccharides extracted from tamarind seeds. J. Food Qual. 2022, 2022, 9788248. [Google Scholar] [CrossRef]
- Alpizar-Reyes, E.; Carrillo-Navas, H.; Gallardo-Rivera, R.; Varela-Guerrero, V.; Alvarez-Ramirez, J.; Pérez-Alonso, C. Functional properties and physicochemical characteristics of tamarind (Tamarindus indica L.) seed mucilage powder as a novel hydrocolloid. J. Food Eng. 2017, 209, 68–75. [Google Scholar] [CrossRef]
- Mohan, C.C.; Harini, K.; Aafrin, B.V.; Babuskin, S.; Karthikeyan, S.; Sudarshan, K.; Renuka, V.; Sukumar, M. Extraction and characterization of polysaccharides from tamarind seeds, rice mill residue, okra waste and sugarcane bagasse for its Bio-thermoplastic properties. Carbohydr. Polym. 2018, 186, 394–401. [Google Scholar] [CrossRef]
- Gao, W.; Liu, P.; Zhu, J.; Hou, H.; Li, X.; Cui, B.A. Physicochemical properties of corn starch affected by the separation of granule shells. Int. J. Biol. Macromol. 2020, 164, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Schirmer, M.; Jekle, M.; Becker, T. Starch gelatinization and its complexity for analysis. Starch-Starke 2015, 67, 30–41. [Google Scholar]
- Wang, Y.; McClements, D.J.; Long, J.; Qiu, C.; Sang, S.; Chen, L.; Xu, Z.; Jin, Z. Structural transformation and oil absorption of starches with different crystal types during frying. Food Chem. 2022, 390, 133115. [Google Scholar] [CrossRef] [PubMed]
- Kaul, S.; Kaur, K.; Kaur, J.; Mehta, N.; Kennedy, J.F. Properties of potato starch as influenced by microwave, ultrasonication, alcoholic-alkali and pre-gelatinization treatments. Int. J. Biol. Macromol. 2023, 226, 1341–1351. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, T.P.R.; Leonel, M.; Garcia, É.L.; do Carmo, E.L.; Franco, C.M.L. Crystallinity, thermal and pasting properties of starches from different potato cultivars grown in Brazil. Int. J. Biol. Macromol. 2016, 82, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Cui, R. Comparison of molecular structure of oca (Oxalis tuberosa), potato, and maize starches. Food Chem. 2019, 296, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Bento, J.A.C.; Fidelis, M.C.; de Souza Neto, M.A.; Lião, L.M.; Caliari, M.; Júnior, M.S.S. Physicochemical, structural, and thermal properties of “batata-de-teiú” starch. Int. J. Biol. Macromol. 2020, 145, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Tian, S.; Li, X.; Wu, X.; Liu, X.; Li, D.; Liu, Y.; Ai, L.; Song, Z.; Wu, Y. Pectic polysaccharides from purple passion fruit peel: A comprehensive study in macromolecular and conformational characterizations. Carbohydr. Polym. 2020, 229, 115406. [Google Scholar] [CrossRef]
- Wei, C.; He, P.; He, L.; Ye, X.; Cheng, J.; Wang, Y.; Li, W.; Liu, Y. Structure characterization and biological activities of a pectic polysaccharide from cupule of Castanea henryi. Int. J. Biol. Macromol. 2018, 109, 65–75. [Google Scholar] [CrossRef]
Sample | Mw × 105 (g/mol) | Mn × 105 (g/mol) | Mw/Mn | Rn (nm) | Rw (nm) | Glc:Xyl:Gal |
---|---|---|---|---|---|---|
TSP-50 | 9.622 | 9.118 | 1.055 | 70.1 | 70.9 | 2.36:1.35:1 |
TSP-60 | 9.381 | 8.938 | 1.050 | 75.1 | 76.3 | 2.66:1.52:1 |
TSP-70 | 9.183 | 8.763 | 1.048 | 75.8 | 77.1 | 2.80:1.62:1 |
TSP-90 | 8.584 | 8.191 | 1.048 | 73.1 | 74.5 | 2.89:1.70:1 |
Samples | PT (°C) | PV (cP) | Peak Time (min) | BD (cP) | SB (cP) | FV (cP) |
---|---|---|---|---|---|---|
PS-2.5 | 69.90 ± 0.57 | 4560 ± 16 | 3.70 ± 0.09 | 2687 ± 31 | 257 ± 21 | 2214 ± 6 |
PS-3.0 | 69.43 ± 0.04 | 5933 ± 194 | 4.10 ± 0.14 | 3576 ± 190 | 573 ± 84 | 2930 ± 88 |
TSP-2.5 | ND | 6038 ± 46 | 5.03 ± 0.23 | 567 ± 36 | 2523 ± 46 | 7995 ± 237 |
TSP-3.0 | ND | 8922 ± 680 | 5.13 ± 0.33 | 639 ± 151 | 2944 ± 221 | 11,227 ± 751 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Sun, Y.; Li, D.; Li, P.; Yang, N.; He, L.; Nishinari, K. Influence of Temperatures on Physicochemical Properties and Structural Features of Tamarind Seed Polysaccharide. Molecules 2024, 29, 2622. https://doi.org/10.3390/molecules29112622
Liu Y, Sun Y, Li D, Li P, Yang N, He L, Nishinari K. Influence of Temperatures on Physicochemical Properties and Structural Features of Tamarind Seed Polysaccharide. Molecules. 2024; 29(11):2622. https://doi.org/10.3390/molecules29112622
Chicago/Turabian StyleLiu, Yantao, Yujia Sun, Diming Li, Pengfei Li, Nan Yang, Liang He, and Katsuyoshi Nishinari. 2024. "Influence of Temperatures on Physicochemical Properties and Structural Features of Tamarind Seed Polysaccharide" Molecules 29, no. 11: 2622. https://doi.org/10.3390/molecules29112622
APA StyleLiu, Y., Sun, Y., Li, D., Li, P., Yang, N., He, L., & Nishinari, K. (2024). Influence of Temperatures on Physicochemical Properties and Structural Features of Tamarind Seed Polysaccharide. Molecules, 29(11), 2622. https://doi.org/10.3390/molecules29112622