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Abstract: The present work deals with the sol–gel synthesis of silica–poly (vinylpyrrolidone) hybrid
materials. The nanohybrids (Si-PVP) have been prepared using an acidic catalyst at ambient tempera-
ture. Tetramethyl ortosilane (TMOS) was used as a silica precursor. Poly (vinylpyrrolidone) (PVP)
was introduced into the reaction mixture as a solution in ethanol with a concentration of 20%. The
XRD established that the as-prepared material is amorphous. The IR and 29Si MAS NMR spectra
proved the formation of a polymerized silica network as well as the hydrogen bonding interactions
between the silica matrix and OH hydrogens of the silanol groups. The TEM showed spherical parti-
cle formation along with increased agglomeration tendency. The efficacy of SiO2/PVP nanoparticles
as a potential antimicrobial agent against a wide range of bacteria was evaluated as bacteriostatic,
using agar diffusion and spot tests. Combined effects of hybrid nanomaterial and antibiotics could
significantly reduce the bactericidal concentrations of both the antibiotic and the particles, and they
could also eliminate the antibiotic resistance of the pathogen. The registered prooxidant activity of the
newly synthesized material was confirmative and explicatory for the antibacterial properties of the
tested substance and its synergetic combination with antibiotics. The effect of new hybrid material
on Crustacea Daphnia magna was also estimated as harmless under concentration of 0.1 mg/mL.

Keywords: sol–gel; silica hybrids; antibacterial properties; ROS; prooxidant activity; Daphnia magna

1. Introduction

A wide range of materials, such as thin films, particles, or aerogels with numerous
possible uses, can be produced using sol–gel chemistry [1]. Nowadays, this process is
still being developed and it is used in many different industries to produce sophisticated
materials, biomaterials, sensors, smart coatings, and optical devices [2]. The synthesis of
organic–inorganic hybrids has been facilitated by the sol–gel method over the past three
decades. Its key advantages over alternative methods include low processing temperature
and pressure, adaptability, and flexibility [3]. It has been shown that the properties of the
hybrid materials include a synergy at the nanometer level with the properties of the starting
materials, making these materials appropriate for future technological applications [4]. For
this reason, they are usually considered to be innovative advanced materials, with promis-
ing applications in many fields, such as optics, biology, mechanics, sensors, electronics,

Molecules 2024, 29, 2675. https://doi.org/10.3390/molecules29112675 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules29112675
https://doi.org/10.3390/molecules29112675
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-7697-466X
https://orcid.org/0009-0002-5492-9897
https://orcid.org/0000-0002-4590-1553
https://orcid.org/0000-0001-5708-3482
https://doi.org/10.3390/molecules29112675
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules29112675?type=check_update&version=1


Molecules 2024, 29, 2675 2 of 18

and coatings [5]. Hybrid properties strongly depend on the nature and strength of the
interactions between the organic and inorganic components [6]. The bioactivity of sol–gel
hybrids was found to be higher than that of materials obtained by other methods [7]. The
presence of –OH groups on their surface is responsible for their bioactivities.

A large group of sol–gel materials is based on silicon alkoxides, e.g., tetramethoxysi-
lane (Si(OCH3)4) or tetraethoxysilane (Si(OC2H5)4). Applying appropriate conditions such
as precursor/solvent ratio, precursor/water ratio, and catalyst (pH) leads to the formation
of a gel composed of a silica network [8–10]. These gels are highly desirable for a variety of
applications due to their low density, low thermal conductivity, low dielectric constant, and
high specific area [11–13]. It has to be noted that native silica aerogels are very brittle, which
limits their applications. However, several methods used to strengthen their structure have
already been developed, and others are still in the works [14]. These include the gels’ aging
process, the use of silica precursors to increase the network’s flexibility, and the addition of
polymers to silica aerogel networks [1]. Applying the sol–gel processes, silicon alkoxides
are also used for the synthesis of hybrid materials which are organic–inorganic ones. The
creation of hybrids, which combine the advantageous aspects of inorganic and organic
materials, was aided by developments in materials science. The inorganic phase in the
hybrids can change the mechanical and thermal properties of pure organic materials and
vice versa. Additionally, hybrid materials exhibit new functionalities such as magnetic
and electric properties, increased adsorption, or better structural properties [15,16]. In
the past, researchers proposed that the characteristics of the resulting hybrid material are
significantly influenced by the ratio of the applied polymer, metal alcoholate, water, and
catalysts [17]. The silica-based sol–gel functional products are generally based on polymers.
Polyvinylpyrrolidone (PVP) is a macromolecular compound which is often used for the sol–
gel production of silica hybrids and the first primary results have been reported by several
authors [18,19]. Among polymers, PVP is a preferable compound due to its solubility in
water and organic solutions, low toxicity, and high physiological compatibility. Its excellent
qualities make it widespread, especially in the fields of medicine, foods, cosmetics, and
other areas relevant to human health [20].

The synthesis of alternative materials is a highly favored strategy due to the outbreak
of infectious diseases and antibiotic resistance [21,22]. Since the discovery of penicillin,
β-lactam antibiotics have been widely used as antibacterial agents because of their broad
spectrum of activity and low toxicity. However, the overuse of antibiotics has led to bac-
teria adapting by developing resistance. Due to this fact, pharmaceutical companies and
researchers have devoted efforts to find compounds that do not cause such resistance in
bacteria. The strategies adopted so far are not particularly effective and new alternatives
are being explored to prevent bacterial resistance [23,24]. And this is where nanomaterials
come in. They are used as antimicrobial agents due to their unique physical and chemical
properties [25]. Considering the growing problem of bacterial resistance to antibiotics,
nanoparticle-based antimicrobial agents are expected to provide alternatives to conven-
tional antibiotics and biocidal chemicals. Due to their toxic properties, metal-containing
nanocomposites are good candidates for new antimicrobial products for consumers and pa-
tient care [26]. A great potential in nanomedicine has been discovered in the past decade due
to the effectiveness of various nanoconjugates against pathogenic microbes. One approach
to counter bacterial drug resistance is the application of metal composites, especially at the
nanoscale, to control bacterial infections [27]. Several enzymes and mutations in genetic
sequences can impede multidrug resistance mechanisms by altering drug efflux from cells,
thereby reducing bacterial vulnerability to antibacterial agents [28,29]. Therefore, scientists
are developing new ways to control resistant pathogens. Advances in nanotechnology
have prompted microbiologists to apply metal nanoparticles as an effective way to control
certain pathogenic microbes involved in infectious diseases [30,31]. The combination of
antibiotics and metal nanoparticles can enhance the efficacy of antibiotics against resistant
pathogens. Furthermore, nanoparticle–antibiotic conjugates reduce the amount of both
agents in the dose, which reduces toxicity and increases antimicrobial properties [32,33].
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These conjugates can be very effective against resistant bacteria. Furthermore, due to this
conjugation, antibiotic concentrations are decreased at the site of antibiotic–bacteria contact,
and thus the association between microorganisms and antibiotics is accelerated [22,33,34].

The generation of reactive oxygen species (ROS) is an important biomarker about the
redox properties of substances. By following the kinetics of the generation of free radicals
and ROS, the properties of newly synthesized materials and their effects on the cascade of
reactions causing the formation and accumulation of antibacterial free radicals and ROS
can be evaluated [35,36]. Chemiluminescence analysis is a rapid and sensitive method for
such studies. It is applied to follow the dynamics of free radical and ROS generation and
to determine the prooxidant/antioxidant activity of various materials. The responses are
recorded in the range of 480–580 nm and can be used to estimate the quantum yield [37,38].

Daphnia are a fundamental ecological species utilized for various biological applica-
tions including acute and chronic (eco)toxicology assessment and in fundamental research
on ecology, genetics, and evolution. Due to their position in the food chain, and their filter-
feeding capabilities, they are exposed to everything in their environment. Scientific data on
D. magna related to immobilization, lethality, reproductive, behavioral, physiological and
biochemical parameters used in the toxicity assessment of pharmaceuticals were presented
by Tkaczyk et al. [39]. They demonstrated the role of these invertebrate model organisms
for evaluating the toxicity of different therapeutic classes of pharmaceuticals. The grow-
ing need for environmental protection has led to the development of alternative biofuels.
Hubai et al. [40] conducted studies related to their ecotoxicity by conducting an acute
immobilization test on Daphnia magna. The toxic effect of CeO2 and ZnO nanoparticles
of the same size that were stabilized by a capping agent polyvinylpyrrolidone (10 k PVP)
was investigated by Briffa et al. [41]. The authors found that ZnO nanoparticles were more
toxic than CeO2 nanoparticles and demonstrated that PVP encapsulation had no effect on
toxicity. Other authors proposed a refractive index gel permeation chromatography (GPC)
method for the quantification of PVP [35]. The method was applied to Daphnia magna
exposed to PVP for 48 h. It was suggested that PVP is ingested by Daphnia magna, which
warrants that the bioaccumulation of PVP could cause the sublethal effects observed in
other studies [42,43].

The present work deals with the sol–gel synthesis and characterization of silica–poly
(vinylpyrrolidone) hybrid material (SiO2/20PVP). Our goal was to evaluate the efficacy
and toxicity of the prepared material as a potential antimicrobial agent against a broad
spectrum of bacteria, including those with novel resistance mechanisms. This hybrid
was tested for antibacterial efficacy alone and in combination with different conventional
antibiotics against four different bacterial isolates. In addition, we started to study their
redox properties and ROS-generating activity, explaining their antibacterial properties.
Moreover, a toxicity test with Daphnia magna predicted possible maximum permissible
concentration in the environment without harm for water inhabitants.

2. Results and Discussion
2.1. Phase Transformations, SEM and TEM Observations

X-ray diffraction patterns of pure TMOS and PVP samples along with that containing
20% PVP amount are shown in Figure 1. As is seen from the figure, all gels are amorphous,
which proves the hybrid material formation.

SEM images of the prepared gels are shown in Figure 2a,b. It is observed that the
sample’s surface is homogeneous and smooth for the pure TMOS and other sample too
(Figure 2a,b). This is a proof for the successful progress of the co-condensation reactions.
The SEM micrographs of the hybrids containing PVP looks similar and their surface are
small-grained (Figure 2b). Moreover, the surface texture of SiO2/20PVP (Figure 2b) shows
bigger SiO2 grains. Obviously, the higher PVP amount leads to the increase in particle
size which is about 5 µm. This was also observed by other authors [20]. Generally, it is
considered that PVP belongs to the group of selective capping agents and, in a reaction,
it controls the growth rates of various faces of metal oxide nanoparticles throughout the
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adsorption on the surfaces. In other studies, it was shown that PVP enhanced the growth
rate along [100] directions [44].
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Figure 2. SEM micrographs of pure TMOS/SiO2 (a) and sample with 20PVP (b).

The morphology of the hybrids was also characterized by TEM. Figure 3a,b shows
the TEM micrographs of the investigated samples. The images exhibit the presence of
agglomeration in the material, but only in some sections, not the entire volume. As is
seen from the figures, all samples—pure TMOS along with that containing 20% PVP—
showed spherical particles. The particle size distribution histogram determined from
TEM micrographs is shown in Figure 3c,d. It was found that the average particle size
for pure TMOS was 60–65 nm while the SiO2/20PVP sample exhibited large amount of
nanoparticles with a size of 115–125 nm. It is obvious that the increase in the PVP amount
leads to an increase in the agglomeration of the samples. The obtained data through
electron microscopy studies are in accordance with those obtained by other authors [45–49].
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2.2. IR Structural Investigations

The IR spectroscopy is commonly used in the analysis of hybrids of organic and
inorganic materials [2]. By this approach, the existence of a novel organic–inorganic network
could be verified. The analysis of the absorption bands provided useful information for the
molecular structure of the as-prepared materials.

The IR spectra of pure PVP and the sample containing 20% PVP are shown in Figure 4.
In these spectra, there are several main absorption regions: 3460–2150 cm−1, 1700–960 cm−1,
and 800–440 cm−1. It is obvious that the structures of pure TMOS, PVP, and the hybrid
material are different. Typical silica bands are present in the spectra of SiO2/20PVP. Gener-
ally, the bands at 430, 1075, and 1180 cm−1 could be assigned to the bending vibrations of
siloxane (Si-O-Si) bonds [50]. The characteristic band of the Si-OH is seen at about 960 cm−1.
The absorption band at 650–640 cm−1 can be assigned to the Si-CH2 stretching [51]. Gener-
ally, the band about 1080 cm−1 is typical of the polymerized silica network. As is seen from
the figure, this band is present and well defined in the IR spectra of the hybrid, which is an
indication that the polymerized silica network was formed in the amorphous state.

In the spectra of pure PVP, a band at 1440 cm−1, associated with the deformations
of CH2 groups, could be noticed. This band is shifted and transformed into a broad one
centered at about 1470 cm−1 in the IR spectrum of the SiO2/20PVP hybrid. That shifting
indicates a change in interchain forces in the PVP molecule. The band at 1660 cm−1 is
present in all IR spectra, but its strongest absorption is observed in the pure PVP spectrum.
This could be related to the vibrations of the C=O group which was also observed and
reported by other authors [52,53]. The strong decrease in the band at 1660 cm−1 in the
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IR spectrum of the SiO2/20PVP sample is a proof for the presence of hydrogen bonding
between PVP and SiO2 [54]. On the other hand, the band around 1660–1650 cm−1 could
be also associated with the angular vibration of water molecules bonded to the inorganic
framework. The wide band centered at 3500 cm−1 is attributed to the OH stretching
frequency of the silanol groups in the inorganic framework. These findings are in good
correlation with those obtained by other authors [55,56]. Overall, the spectral features
show strong interactions between PVP and TMOS provoked by the contact during the
sol–gel reaction.
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Figure 4. IR spectra of SiO2/20PVP, TMOS, and PVP.

2.3. 29Si MAS NMR Spectra

In the present study, solid-state 29Si NMR spectroscopy was used to investigate
the structural characteristics of the silica matrix in the parent silicate and in the hybrid
SiO2/20PVP material, while 1H→13C cross-polarization magic-angle-spinning NMR spec-
troscopy (1H→13C CP-MAS) was applied to get an insight into possible interactions be-
tween the PVP and the silicate framework in the hybrid SiO2/20PVP material [57–60].

Chemical shifts and relative intensities of the signals in the direct-excitation (single-
pulse) 29Si NMR spectra provide qualitative and quantitative information about the type
and the distribution of the different (SiO)n Si(OH)4-n species (n = 1, 2, 3; e.g Qn species)
of the silica matrix. The single-pulse 29Si NMR spectrum of the parent silicate (Figure 5a)
displays three partially overlapping resonances. The signal at −110.6 ppm is characteristic
of the Q4 species [Si(0OH) structural units] that represent the main building blocks of the
bulk silicate framework. The resonance at around—101 ppm is assigned to Q3 centers
[Si(1OH) units], while the third lower intensity signal at around—91.7 ppm indicates the
presence of a small amount of Q2 structures [Si(2OH) units]. The Q3 and Q2 units represent
defect sites located on the silica surface and/or at pore edges. The relative fractions of the
three types of structures were calculated by means of the deconvolution of the spectral
pattern and are as follows: Q4:Q3:Q2 = 65:32:3. The single-pulse 29Si spectrum of the hybrid
SiO2/20PVP material demonstrates a similar spectral pattern (Figure 5b); however, higher
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structural heterogeneity was registered in this case. The enhanced structural diversity of
the hybrid material is reflected by (i) a redistribution of the intensities of the resonances
for the different Si structural units, and (ii) the appearance of additional low-intensity
resonances, denoted as Q4b (−116 ppm) and Q2b (−88 ppm), with different chemical shifts
as compared to the main resonances for these type of species, denoted as Q4a (−110.4 ppm)
and Q2a (−101 ppm). These additional resonances could be assigned to Q4 and Q2 species
with distorted bond lengths and valence angles due to the incorporation of the polymer in
the silica matrix. The relative fractions of the different types of Si structures in the hybrid
SiO2/PVP material calculated by means of the deconvolution of the spectral pattern are as
follows: Q4b:Q4a:Q3:Q2a:Q2b = 10:40:45:4:1.
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In a next step, we applied 1H→13C cross-polarization magic-angle-spinning NMR
spectroscopy (1H→13C CP-MAS) to investigate the nature of the possible interactions
between the PVP and the silicate in the hybrid SiO2/20PVP material. Figure 5c shows the
1H→13C CP-MAS spectrum of the pure PVP along with the PVP structure and the chemical
shift assignment of the characteristic resonances of the respective PVP structural fragments.
The spectrum of the PVP in the hybrid SiO2/20PVP material is given in Figure 5d. The
comparison of the 13C chemical shifts of the two samples shows that in the spectrum of
the hybrid material, the resonance of the C=O groups is shifted by 1.63 ppm toward a
lower field (see the insert in Figure 5d). The signals of the other structural fragments are
also shifted to a lower field; however, the chemical shift changes are either minor (up to
0.22 ppm) or remain unchanged. These observations imply that the C=O groups of the
pyrrolidone polymer fragment are localized in the vicinity of the Q3 and Q2 Si centers
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of the silica matrix via hydrogen bonding interactions with the OH hydrogens of the
silanol groups.

2.4. Antibacterial Properties

As shown in Figure 6, the testing of the silica–poly (vinylpyrrolidone) hybrid material
started at concentrations of 15 mg/mL, 20 mg/mL, and 50 mg/mL. No obvious bactericidal
effect was found at these concentrations. A slight bacteriostatic effect is observed in
the highest concentration (50 mg/mL) of the SiO2/20PVP sample. This suggested the
consecutive testing of SiO2/20PVP in a synergistic effect with an antibiotic acting specific
to Gram-negative bacteria (Ciprofloxacin) and Gram-positive bacteria (Vancomycin).
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A spot-test scheme was utilized to assess the antibacterial potential of the antibiotics,
the newly synthesized SiO2/20PVP hybrid, and their combined inhibition. The minimum
bactericidal concentration (MBC) of the sample alone and in combination with antibi-
otics against pathogenic bacteria was examined using the broth microdilution method as
described above.

The MBC of the single action of the antibiotic against S. aureus was clearly determined—
50 µg/mL, while in the combination of Vancomycin with the highest concentration of
SiO2/20PVP, the MBC already decreased to only 12.5 µg/mL for the antibiotic concentra-
tion. The results in Figure 7 show that the minimum bactericidal concentration (MBC) in
combination with Vancomycin (12.5 µg/mL) of the SiO2/20 PVP was at a concentration of
100 mg/mL.

The results for the Bacillus cereus are similarly presented in Figure 8. As is well known,
spores of bacilli are extremely resistant to all physical and chemical agents. However,
when combining 100 mg/mL of the hybrid material with the antibiotic Vancomycin at a
concentration of 125 µg/mL, a bactericidal effect of two orders of magnitude was observed.
It is interesting to mention that the single action of SiO2/20PVP at a concentration of
25 mg/mL and an antibiotic at a concentration between 30 and 60 µg/mL has a stimulating
effect on this bacterium known as hormesis.

The experiments with the Gram-negative bacteria Escherichia coli and Pseudomonas
aeruginosa and the antibiotic Ciprofloxacin showed similar results in the resistance of the
bacteria against the antibiotic alone, and in the combination of Ciprofloxacin with the high-
est concentration of the hybrid. But these microorganisms are significantly more sensitive to
the combination of both the antibiotic and the SiO2/20PVP sample. This can be explained
by the difference in cell walls between Gram-positive and Gram-negative bacteria.
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Molecules 2024, 29, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 8. New SiO2/20PVP in combination with Vancomycin against Bacillus cereus. 

The experiments with the Gram-negative bacteria Escherichia coli and Pseudomonas 
aeruginosa and the antibiotic Ciprofloxacin showed similar results in the resistance of the 
bacteria against the antibiotic alone, and in the combination of Ciprofloxacin with the 
highest concentration of the hybrid. But these microorganisms are significantly more sen-
sitive to the combination of both the antibiotic and the SiO2/20PVP sample. This can be 
explained by the difference in cell walls between Gram-positive and Gram-negative bac-
teria. 

Figure 9 shows a significantly higher MBC of Ciprofloxacin alone than in combina-
tion with 100 mg/mL of the hybrid material. The MBC of the antibiotic against Escherichia 
coli was found to be 3.5 µg/mL, while that for the combination of Ciprofloxacin and the 
highest concentration (100 mg/mL) of SiO2/20PVP was 0.7 µg/mL. 

Pseudomonas aeruginosa showed higher resistance to the concentration of antibiotics. 
Here, the MBC of Ciprofloxacin alone was 6.25 µg/mL, while in a synergistic effect with 
the new hybrid material at a concentration of 100 mg/mL, the MBC decreased to 1.5 
µg/mL, as is shown in Figure 10. 

 
Figure 9. SiO2/20PVP in combination with Ciprofloxacin against E. coli. 

0

2

4

6

8

10

12

1000 ug/ml 500 ug/ml 250 ug/ml 125 ug/ml 62.5 ug/ml 31.5 ug/ml Control

lo
g 

10
 C

FU
/m

l

100 mg/ml TM20 50 mg/ml TM20 25 mg/ml TM20 Vancomycine effect only

0
1
2
3
4
5
6
7
8
9

10

3.1 ug/ml 1.5 ug/ml 0.7 ug/ml 0.35 ug/ml 0.18 ug/ml Control

lo
g 

10
 C

FU
/m

l

100 mg/ml TM15 50 mg/ml TM15 25 mg/ml TM15 Ciprofloxacin effect only

Figure 8. New SiO2/20PVP in combination with Vancomycin against Bacillus cereus.

Figure 9 shows a significantly higher MBC of Ciprofloxacin alone than in combination
with 100 mg/mL of the hybrid material. The MBC of the antibiotic against Escherichia coli
was found to be 3.5 µg/mL, while that for the combination of Ciprofloxacin and the highest
concentration (100 mg/mL) of SiO2/20PVP was 0.7 µg/mL.

Pseudomonas aeruginosa showed higher resistance to the concentration of antibiotics.
Here, the MBC of Ciprofloxacin alone was 6.25 µg/mL, while in a synergistic effect with the
new hybrid material at a concentration of 100 mg/mL, the MBC decreased to 1.5 µg/mL,
as is shown in Figure 10.
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Figure 9. SiO2/20PVP in combination with Ciprofloxacin against E. coli.
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Figure 10. SiO2/20PVP in combination with Ciprofloxacin against Pseudomonas aeruginosa.

2.5. Chemiluminescence Assay

Figure 11 presents the results about the chemiluminescence assay and the capability of
the tested hybrid to generate ROS and present antibacterial properties. As a suitable, highly
sensitive, and relatively inexpensive method, it allows to monitor the dynamics of free
radical reactions. Thus, the prooxidant/antioxidant activity of the investigated material
can be estimated [36,37].

As is seen at pH 7.4 (physiological), the kinetic curves keep a plateau shape. The
Ciprofloxacin antibiotic does not affect the generation or neutralization of ROS in this model
reaction. This result confirms the safe administration of the tested antibiotic in vivo and
other than a free-radical generation activity mechanism. In all other cases, the recorded sig-
nal is higher than the control (more than 32,000 RLU), which is indicative of the stimulation
of the generation of ·OH and ·OOH radicals. The registered effects are as follows: TMOS—
340%; PVP—more than 220%; SiO2/20PVP—almost 33%; and SiO2/20PVP+ciprofloxacin—
almost 78%. The as-prepared hybrid SiO2/20PVP shows a significant prooxidant effect,
which is preserved with time, and an almost twice higher chemiluminescent signal than
the control reaction. This is indicative of definite antibacterial activity. The obtained re-
sults are in agreement with the antibacterial tests conducted with all Gram-positive and
Gram-negative bacteria. On the other hand, it is necessary to confirm the observed effects
in additional redox model systems using the method of activated luminescence (ex vivo),
at physiological pH and pH 8.5, in order to completely define the action mechanism of
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the tested hybrid. This will be performed in our future investigations as the obtained
information will predict its effect in vivo.
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Figure 11. Chemiluminescence induced by ·OH and ·OOH radicals at pH 7.4 and the effect of
materials: (a) maximum effects and (b) Fenton’s reaction in time (p ≤ 0.05).

2.6. Daphnia Magna Toxicity

Aiming to estimate the toxicity of the as-prepared SiO2/PVP hybrid, an acute toxicity
test with Daphnia magna was performed that allows predicting the possible maximum
permissible concentration in the environment without harm for water inhabitants. The
experiments were performed using four concentrations of the substance—0.1 mg/mL;
0.05 mg/mL; 0.01 mg/mL and 0.001 mg/mL with three replicates of each concentration
and two controls as shown in Figure 12. Generally, D. magna are extremely sensitive
organisms in the aquatic environment, which also allows conclusions to be drawn from the
obtained results about the influence of the as-prepared hybrid on other aquatic organisms.
The results of the survival of Daphnia were 97% at a concentration of 0.01 and 0.001 mg/mL
and 93% at a concentration of 0.1 and 0.05 mg/mL of the substance. Since 95% D. magna
survival was observed in the controls, it can be speculated that low concentrations below
0.01 mg/mL have a slight stimulatory effect, while the higher concentration of 0.05 mg/mL
has a weak inhibitory effect. Therefore, at these concentrations, the substance used can be
discharged into surface waters without harm to organisms.
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2.7. Analysis of the Results

Bearing in mind the obtained results, it has to be noted that one experimental fact still
provokes scientific interest. Irrespective of the absence of antibacterial activity of the sol–
gel-prepared pure SiO2/20PVP hybrid, in a synergistic effect with antibiotics, it acts specific
to both Gram-negative and Gram-positive bacteria. It is evident that the functionalization
of the silica hybrid with small molecules such as vancomycin and ciprofloxacin provokes
the antibacterial activity of the hybrid. Despite the differences in the cell wall of the tested
Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram-negative (Escherichia
coli and Pseudomonas aeruginosa) bacteria, it was established that the combination of both
the antibiotic and the SiO2/20PVP sample led to a significant increase in the antibacterial
properties. According to Bernardos et al. [61], this experimental result could be ascribed to
the fact that the antibiotic reacts with the outer surface of the hybrid, forming a hydrogen
bonding interaction with the terminal functional groups on the cell membrane. Supporting
this suggestion are the performed IR and NMR analyses which prove the presence of
hydrogen bonding interactions between the silica matrix and the OH hydrogens of the
silanol groups (Figures 4 and 5). Moreover, the registered prooxidant activity coincides well
with the suggested antibacterial properties of the tested substance and its combination with
antibiotics. On the other hand, it has already been stated that the size, shape, pore diameter,
surface properties, composition, and concentration features can all contribute to these
properties of the synthesized material [62–64]. For example, some authors established that
sol–gel-derived PVP powders composed of spherical particles exhibited higher antibacterial
properties as compared to ellipsoid ones [65]. This experimental fact corresponds well
to the results obtained by us. Moreover, the investigated hybrid exhibited good killing
efficiency at the 24th hour.

One complementary investigation concerning the D. magna toxicity test highlights
this paper’s originality. It was observed that the effect of the hybrid material on Crustacea
D. magna is estimated to be harmless at a concentration of 0.1 mg/mL. This could be
related with the fact that the silica-based compounds are hydrolytically unstable and they
progressively transform into harmless silicic acid or polysilicic acid that the body can
safely absorb or excrete [61]. It is evident that, at these concentrations, the sol–gel-derived
substance can be discharged into surface waters without harm to aquatic organisms.

Thus, it could be generalized that the present study, which is devoted to obtaining a
SiO2-containing hybrid material and evaluating its antibacterial properties, represents an
attempt to elucidate the composition–structure–property relationship. Based on the above
discussed results, it could be suggested that the as-prepared material can be used in further
research related to other possible applications of SiO2/20PVP for environmental protection.

3. Experimental Procedure
3.1. Materials

The gels were prepared using a combination of the alkoxid—tetramethyl orthosilane
(TMOS)—Sigma Aldrich Chemical (Burlington, MA, USA) and poly(vynyl pyrrolidon)
K25-(PVP), Fluka Chemie AG (Buchs, Switzerland). The preparation procedure is described
in details below.

3.2. Preparation of Silica–Polyvinylpyrrolidone (SiO2-PVP) Hybrids

The precursor tetramethyl orthosilicate {TMOS, Si(OCH3)4}, distilled H2O, and 0.1 M
HCl in the molar ratio 4:1:1 were mixed and stirred together. Aiming to obtain a hybrid
material with improved properties, the added amount of PVP was 20wt %. It was dissolved
in ethanol and added dropwise to the stirred solution. Stirring continued until the mixture
became clear. The gelation occurred at room temperature and it took about 20 h. All steps
of the hybrid preparation are shown in Figure 13. The investigated samples were denoted
as TMOS, PVP, and SiO2/20PVP.
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3.3. Methods of Characterization

Powder X-ray diffraction data were obtained on a Philips PW1730/10 diffractometer
using Ni-filtered CuKα radiation (Philips Corporation, Almelo, the Netherlands). The
scanning rate for crystallinity was 1.2º 2θ/min. SEM images were obtained on a Hitachi
S-4100 (Hitachi Ltd., Tokyo, Japan) microscope at an accelerating voltage of 25.0 kV. TEM
images were taken on a Hitachi H-600A (Tokyo, Japan). A powdered hybrid sample was
suspended in a mixture of ethanol and polysorbate 80 (1:1 v/v) using an ultrasonic generator
(with an intensity of 250 W) for 3 min. One or two drops of the resulting dispersion were
dropped on a 300-mesh copper grid (Tedpella, Inc., Redding, CA, USA) coated with carbon
film and left to evaporate. FTIR spectra were registered using the KBr pellet technique
on an FTIR spectrophotometer—Nicolet 6700 FT (Matson, UK). 29Si MAS NMR spectra
were recorded on a Bruker Avance HD III 600 NMR spectrometer (Billerica, MA, USA)
operating at 599.98 MHz proton frequency (150.84 MHz for 13C, 119.18 MHz for 29Si), using
4 mm solid state i-CP/MAS dual 1H/31P-15N probehead (Billerica, MA, USA). The samples
were loaded in 4 mm zirconia rotors and spun at a magic-angle-spinning (MAS) rate of
10 kHz for both the 13C and 29Si measurements. 1H→13C cross-polarization MAS (CP
MAS) spectra were acquired with the following experimental parameters: 8 K time domain
data points, a spectrum width of 50 kHz, an 1H excitation pulse of 3.6 µs, a contact time
of 2 ms, 2048 scans, and a recycle delay of 5 s. The 1H SPINAL-64 decoupling scheme
was used during the acquisition of the CP experiments. The spectra were processed with
an exponential window function (line broadening factor 10) and zero-filled to 32 K data
points. The quantitative direct-excitation 29Si NMR spectra were recorded with one-pulse
sequence, a 90◦ pulse length of 4.5 µs, 3 K time domain data points, a spectrum width
of 70 kHz, 1024 scans, and a relaxation delay of 60 s. Exponential window function was
applied (line broadening factor 10) prior to Fourier transformation.

3.4. Antimicrobial Activity Testing

The tested microbial strains, Gram-negative bacteria Escherichia coli ATCC 25922 and
Pseudomonas aeruginosa ATCC 27853, and Gram-positive bacteria Staphylococcus aureus
ATCC 25923 and Bacillus cereus NBIMCC 1090, were provided by the National Bank of
Microorganisms and Cell Cultures (NBIMCC), Bulgaria, and cultured in the nutrient
medium (Conda, Spain). The pure culture of every strain was prepared as a bacterial
suspension in exponential phase with OD 0.5 McFarland.
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The SiO2/20PVP sample was tested for antibacterial efficacy alone and in combi-
nation with conventional antibiotics in liquid medium too. Antibiotics were selected
from five groups with a different mode of action, including vancomycin (Glycopeptide)
and ciprofloxacin (Quinolone). Vancomycin is a tricyclic glycopeptide antibiotic used for
the treatment of Gram-positive bacterial infections. It belongs to the cell-wall-synthesis
inhibitor class of antimicrobial drugs. Almost all quinolone antibiotics used are fluoro-
quinolones, which contain a fluorine atom in their chemical structure and are effective
against both Gram-negative and Gram-positive bacteria [66].

3.5. Methodology for the Evaluation of the Minimum Inhibitory and Minimum Bactericidal
Concentration (MBC) and Antibacterial Mode of Inhibition of SiO2/20PVP

The MBC of the SiO2/20PVP hybrid combined with antibiotics was determined using
the broth microdilution method and spot-test on agar. A standard suspension of bacterial
pathogens (100 µL/0.5 MFU) was added to micro dilution wells containing 50 µL of the
corresponding concentration of the investigated sample (25 mg/mL, 50 mg/mL, and
100 mg/mL) and 50 µL of different concentrations of the antibiotic for each well to obtain a
final volume of 200 µL in 11 variants. The final (12th) column was left for control (100 µL
bacterial suspension and 100 µL autoclaved physiological saline solutions). After 24 h
incubation at 36 ± 1 ◦C, the wells were examined for growth. The lowest concentration that
showed no growth was assessed as a minimum bactericidal concentration (MBC). It can be
determined from broth tests by sub-culturing to agar plates that do not contain the tested
agent [30]. Experiments were performed with three independent runs of three replicates
per run.

3.6. Chemiluminescence Assay
3.6.1. Materials

Purchased with high purity: iron sulphate (p. a.) (Merck, Darmstadt, Germany), hy-
drogen peroxide (30%) (Merck, Darmstadt, Germany), lucigenin (bis-N-methylacridinium
nitrate) (p. a.) (Sigma-Aldrich, St. Louis, MI, USA and Burlington, MA, USA), dimethyl
sulfoxide (p. a.) (DMSO, Sigma-Aldrich, St. Louis, MI, USA), and buffer pH 7.4 (Sigma-
Aldrich, St. Louis, MI, USA and Burlington, MA, USA). All chemicals were used
as purchased.

3.6.2. Method

The redox activity of the newly synthesized material was tested in Fenton’s model
chemical reaction system, generating free radicals and ROS, at pH 7.4 (physiological),
by means of the activated chemiluminescence method [67]. The chemical probe that we
applied for signal amplification was lucigenin. Thus, reliable, comparable differences
were achieved.

Fenton’s system generates .OOH and .OH radicals. The control samples do not contain
the tested material (active concentration 100 mg/mL). The reactions are monitored for
3 min, every 3 s, at 37 ◦C, and measured in triplicate. All materials are sonicated for 20 min
prior to testing to ensure good dispersion.

Fenton’s system:
Fe2+ + H2O2 → Fe3+ + ·OH + −OH (1)

Fe3+ + H2O2 → Fe2+ + ·OOH + H+ (2)

In general, the higher the signal, the more ROS are formed and a prooxidant effect is
described. On the contrary, if the signal is below the control level, antioxidant activity can
be described.
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3.6.3. Statistics

All experiments were performed using LUMIstar Omega (BMG Labtech GmbH, Or-
tenberg, Germany, 2020) in triple reproducible measurements; statistical analysis was
performed using OriginPro 8 and Microsoft Office Excel 2010.

3.7. Daphnia Magna

A toxicity test was conducted according to the acute lethality toxicity protocol OECD
(2004) and the guidelines for the testing of chemicals’ acute immobilization test (2012),
Test No: 211 [68]. The experiments used 4 concentrations of the hybrid SiO2/20PVP
nanoparticles (0.1 mg/mL; 0.05 mg/mL; 0.01 mg/mL; and 0.001 mg/mL) with 3 replicates
of each concentration and 2 controls.

4. Conclusions

Hybrid nanocomposites containing TMOS and PVP were synthesized via the sol–gel
method at room temperature. The obtained products were characterized using several
methods. They established homogeneous and amorphous samples which showed useful
structural properties. The IR and 29Si MAS NMR spectra proved the formation of a
polymerized silica network as well as the hydrogen bonding interactions between the silica
matrix and the OH hydrogens of the silanol groups. The TEM showed spherical particle
formation along with increased agglomeration tendency.

The minimum bactericidal concentration (MBC) in the synergistic effect of the hybrid
material (SiO2/20PVP) with the corresponding antibiotic was three to five times lower
than in the case of the antibiotic action alone. These findings suggest that the synthesized
SiO2/20PVP hybrid may be a new, effective, and broad-spectrum antibacterial agent, even
at lower doses than those currently used in clinical trials to treat bacterial infections. The ob-
served prooxidant activity confirmed and explained the registered antibacterial properties
of the tested substance and its combination with antibiotics, especially ciprofloxacin. The
low concentrations below 0.01 mg/mL had a slight stimulatory effect on Daphnia magna,
while the higher concentration of 0.05 mg/mL had a weak inhibitory effect. Therefore, at
these concentrations, the substance can be discharged into surface waters without harm to
water organisms.
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