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Abstract: The worrying and constant increase in the quantities of food and beverage industry
by-products and wastes is one of the main factors contributing to global environmental pollution.
Since this is a direct consequence of continuous population growth, it is imperative to reduce waste
production and keep it under control. Re-purposing agro-industrial wastes, giving them new life and
new directions of use, is a good first step in this direction, and, in global food production, vegetables
and fruits account for a significant percentage. In this paper, brewery waste, cocoa bean shells, banana
and citrus peels and pineapple wastes are examined. These are sources of bioactive molecules such as
polyphenols, whose regular intake in the human diet is related to the prevention of various diseases
linked to oxidative stress. In order to recover such bioactive compounds using more sustainable
methods than conventional extraction, innovative solutions have been evaluated in the past decades.
Of particular interest is the use of deep eutectic solvents (DESs) and compressed solvents, associated
with green techniques such as microwave-assisted extraction (MAE), ultrasonic-assisted extraction
(UAE), pressurized liquid extraction (PLE) and pulsed-electric-field-assisted extraction (PEF). These
novel techniques are gaining importance because, in most cases, they allow for optimizing the
extraction yield, quality, costs and time.

Keywords: agri-food by-products; natural bioactive compounds; extraction methodologies; green
impacts and sustainability; deep eutectic solvents; green chemistry

1. Introduction

Recent studies have demonstrated that continuous population growth is leading to a
significant increase in total food demand (the current forecast data indicate it will grow
by 26% between 2010 and 2050) [1]. This trend could lead to a significant increase in food
by-products and waste, with important and non-negligible environmental impacts. In
fact, the food and beverage industry’s global production activity is currently estimated to
contribute 30% of the whole environmental impact of human activity, and this worrying
percentage increases to more than 50% if we consider eutrophication, a process by which
the concentration of oxygen in water systems, such as estuaries and lakes, increases as a
consequence of enhanced plant growth caused by an excess of dissolved nutrients [2].

Food waste, which has gained increasing attention in the last decades, can be defined
as “any edible or inedible food loss from the food-supply chain” [3]. Fruit-based and
plant-based wastes are particularly important, considering that ~10–60% of the total weight
of fresh vegetables and fruit, produced in massive quantities, is inevitably discarded [4],
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with around half of the harvest lost every year (FAO, 2011) [5]. Wastes also arise due to the
presence of inedible components (mostly outer layers, pomace, seeds and peels), which are
usually discarded and account for different percentages in weight depending on the source
(from 12% for apples up to 46% for pineapples) [5,6]. These inedible parts can still play an
important role as “secondary raw materials” thanks to their content in bioactive compounds
such as proteins, dietary fibers, polysaccharides and phytochemicals, including secondary
metabolites [5,7–10]. Phytochemicals are a large group of low-molecular-weight organic
substances, including phenols/polyphenols, terpenoids and alkaloids. They can be defined
as plant-derived compounds with beneficial effects on human or animal health [8,10,11].
Phenolic compounds are particularly attractive, given their involvement in important
physiological mechanisms, along with their antioxidant, anti-inflammatory, antimicrobial,
anti-allergenic, antithrombotic and cardioprotective activities [5,8]. Many epidemiologi-
cal studies associate the constant intake of polyphenol-rich foods or beverages with the
prevention of several chronic diseases [8,10]. This is because polyphenols, together with
vitamin E, vitamin C and carotenoids, act as reducing agents, protecting the body’s tissues
against oxidative-stress-based pathologies [12].

The aim of this review is to change the current point of view on five different industrial
waste products, and to highlight their potential as resources. We consider both “conven-
tional” waste products, whose nutraceutical and other applications have been well-known
for many years (banana, pineapple waste and citrus peels), and “unconventional” ones
(cocoa bean shells and brewers’ spent grain), which have been studied only in the past two
decades. Although the presence of inedible compounds or toxic contaminants places a
limit on the usage of these waste products [13], it can be overcome by extracting bioactive
compounds, which also serves to concentrate these substances [14].

Extraction can be performed using various technologies and solvents, but to follow
a virtuous cycle of sustainable use of food waste, it must be designed according to the
principles of green chemistry [14]. The main green solvents that will be reported in addition
to the conventional ones are DESs and compressed solvents (e.g., supercritical liquids,
pressurized water). The extraction process can be assisted by other green techniques, such
as MAE, UAE, PLE and PEF. Their application can optimize yields and reduce the extraction
time, making the whole procedure more energy efficient [14].

2. Alternative Methods for Green Extraction of Bioactive Compounds from Vegetable/
Fruit-Based Waste
2.1. New Sustainable and Innovative Extraction Techniques

Usually, traditional extraction techniques are very time-consuming and require high
amounts of solvents and energy for heating and/or stirring. These problems are solved,
completely or partially, using novel environmentally friendly extraction methods (Figure 1),
which can be used to optimize the whole extraction process in terms of quantitative yield,
extract quality and extraction time.

They can be summarized as follows:

- DES-based extraction. DESs are considered green solvents thanks to their non-flammability,
chemical and thermal stability, low volatility and toxicity [15]. In some cases, their use
can also lead to higher extraction yields and extract quality [15]. Among the most studied
DESs, choline-chloride-based DESs are of great interest, since it is possible to modify their
physicochemical properties by varying the hydrogen bond donor. Thus, their viscosity,
pH and polarity can be tailored to their application [16].

- Supercritical fluid extraction (SCFE). SCFE is a technique that uses a fluid at temperatures
and pressures above its critical point [17]. Under these conditions, the fluid exhibits
properties that are between those of a liquid and gas, so that higher diffusivity and
lower surface tension, density and viscosity are shown compared to conventional
solvents [17].

- Microwave-assisted extraction (MAE). This technique consists of internally and externally
heating the samples without using any thermal gradient [18,19]. Since microwaves
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are strongly absorbed by polar molecules, such as ionic solutions, the consequent
internal superheating of water molecules of a matrix leads to cellular disruption, with
enhanced extraction of compounds of interest from the matrix itself [18,20]. However,
microwave power is usually kept under 500 W in order to avoid a considerable
decrease in the total flavonoid content and scavenging activity caused by overheating
and degradation of antioxidant molecules [18].

- Ultrasound-assisted extraction (UAE). Ultrasound energy and solvents are used to re-
cover target compounds from a wide range of plant matrices [21]. Ultrasound waves
induce the formation of cavitation areas in liquids, leading to increased displacement
of the molecules from their positions [22]. Ultrasound action results in increased
solvent permeability and diffusivity in matrices [23]. It also helps to increase the
volume of the plant tissue matrix (swelling index), which is important for the diffusion
of solutes during extraction processes [22,24]. A UAE system can be defined as a
cost-effective, efficient, environmental friendly and easy-to-use procedure [25].

- Pressurized liquid extraction (PLE). Extraction occurs at a temperature between the
boiling point and the critical point of the solvent (usually water), improving extraction
kinetics [18,26]. The operating pressure must be high enough to keep the solvent in its
liquid state [18,26].

- Pulsed electric field (PEF) technology. This is a promising short-duration extraction
technique, in which high-intensity pulsed electric fields are applied [27], producing
electroporation and thus increasing the permeability of cell membranes, leading to
higher extraction yields [28,29].
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2.2. Plant Waste Matrices under Study

Despite their cultivation in tropical and sub-tropical areas [30], bananas are among
the most popular fruit worldwide. Banana peels have potential utility for oil sorption [31],
production of biomass energy [32] and biofuel (methane and bioethanol) [33], bioadsor-
bent for dyes [34] and synthesis of biodegradable plastic material [35]. Thus, beyond its
nutraceutical value, this waste material has multiple applications—mostly due to its high
content of polyphenols—on which we will focus later.

Citrus peel’s chemical composition and nutraceutical potential are very well-known,
and this waste material is mostly reused for the production of essential oils, for the recovery
of antioxidant compounds and for the production of biofilm for food packaging [36].

Pineapple is a complex fruit, and both its edible and non-edible parts are sources of
many micronutrients and valuable compounds. Nonetheless, there are many discarded
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parts (core, peel, seeds, stem, crown, leaves) and those account for a significant percentage of
the total fruit weight [37]; thus, it is imperative to find additional uses for them. In addition
to its nutraceutical value, pineapple waste has been recognized as a good bioadsorbent
material, easily regenerable and suitable for water treatment [38], as well as the production
of biogas [39] and nanocellulose-based material [40].

Brewers’ spent grain is the main by-product of beer production [41]. Its usage as a
source of polyphenols has been explored in depth in recent times, and it may have many
other meaningful features that are not yet known. Brewers’ spent grain has been proposed
as a starting material to produce value-added food, mostly bakery products [42], or as a
source of components (cellulose, xylitol, lignin and arabinoxylan) to produce sustainable
food packaging [43].

Finally, the large diffusion of and demand for cocoa and chocolate-based food, and
the fact that cocoa production has a very significant environmental impact [44], make it
necessary to try and give new life to the many by-products that are inevitably produced by
this industry. One of these by-products is the cocoa bean shell, which has several potential
applications as a starting material for biopolymer production, an absorbent of contaminants
in wastewater and a corrosion-inhibitor agent, along with offering a potential source for
the formulation of functional foods and beverages [45].

A series of papers on different extraction methodologies applied to the above-mentioned
by-products are reviewed in the next sub-sections and summarized in Table 1.

2.2.1. Banana Peels

The significant nutritional content of banana and its popularity [46] make its peel,
which makes up about 35% of the total fruit weight and which is produced in a quantity of
around 36 million tons annually [47,48], a precious material. In fact, more than forty pheno-
lic compounds, such as flavonols, flavan-3-ols, hydroxycinnamic acids and catecholamines,
have been detected in the raw material [48].

As already observed in other matrices, for banana peel, conventional solid–liquid
extraction techniques, such as Soxhlet extraction and maceration, are gradually being
replaced by innovative ones (e.g., MAE, UAE, subcritical water extraction and avoiding too-
high temperatures that could affect thermolabile bioactive compounds). Traditional Soxhlet
extraction leads to higher extraction yields but a worse extract quality than subcritical
water extraction. Microwave-assisted extraction (MAE), instead, can be carried out with a
significantly shorter extraction time and at a lower temperature than Soxhlet extraction,
with an enhanced extract quality [49]. The use of ultrasound-assisted extraction (UAE) also
represents an improvement on Soxhlet extraction in multiple regards (energy, time and
quality), but can lead to the degradation of phenolic acids [49].

In 2022, an interesting study was published highlighting the difference between
sonication and maceration techniques in terms of polyphenol recovery from banana peel.
UAE showed better results in terms of extraction yield (=weight of extract/weight of
sample × 100, 13.48% at 45 ◦C) in a very short time (1 h). The authors also observed that the
best solvent to obtain and preserve bioactive substances was 50% ethanol in water, which
reached a total polyphenolic content (TPC) of 31.46 mg GAE/g with a sample/solvent ratio
of 1:20 [50].

Bello et al. [51], instead, used supercritical CO2 as the extraction solvent for a milled
banana peel sample by adding a 5% volume of ethanol as a co-solvent with a flow rate of
9.8 g/min). In the best operating conditions (80 ◦C, 25 MPa, 2.5 h), a yield of 1.58% was
achieved and the extract was found to contain a significant quantity of important bioactive
compounds such as gallic acid, quercetin and beta-carotene [51].

Encouraging results were also obtained in a recent investigation [52] using homogenizer-
assisted extraction (HAE). In this case, milled banana peel was extracted using an ethanol:water
solution with a sample–solvent ratio of 2.5–7.5% (w/v; best result: 7.5%) and a concentration
of 20–70% (v/v; best result: 54%). The extraction process, in which Ultra-Turrax Homogenizer
set at 11,000 rpm was used, took only thirty seconds, and the total phenolic content (2.44 g
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GAE/100 g dw, dry weight) as well as the antioxidant activity (estimated with three different
assays) of the extract were high [52].

Aziz et al. [53] performed the extraction of phenolic compounds from various plant
waste materials, including banana peel, by using different types of natural deep eutectic
solvents (NADESs; e.g., choline chloride, ChCl/glucose, ChCl/lactic acid, ChCl/ascorbic
acid, glucose/lactic acid, glucose/ascorbic acid, sucrose/ascorbic acid, sucrose/lactic acid),
each one at the molar ratios of 1:1, 1:2 and 2:1, at room temperature and in a shaker set at
100 rpm for 20 min. The most efficient combination was choline chloride/ascorbic acid at
1:2 (mol/mol) [53].

Hendrawan et al. [54] demonstrated that PEF, rather than a standalone extracting
method, is a useful preliminary procedure to increase the phenolic yield recovered from
Kepok banana peel. In fact, both the total phenolic content and antioxidant activity were
higher than in the control sample not pre-treated with PEF (1.090 ± 0.165 mg GAE/g dry
extract). In their study, the electric field strength of 4 kV/cm for 2 min led to the highest
value of total phenol content (1.664 ± 0.226 mg GAE/mg dry extract), while considering
antioxidant activity, the highest value was reached using the same electric field strength for
4 min (IC50 = 13.086 ± 4.547 mg/mL; DPPH assay) [54].

2.2.2. Citrus Peels

As already mentioned, citrus fruits, considering the different species distributed
throughout much of the world, are a valuable source of bioactive phytochemicals [55].
Despite this, the potential of citrus peel is usually undervalued and neglected, wasting,
during citrus juice processing, thousands of tons of this precious material [55,56], including
carotenoids and ascorbic acid but also flavanones, polymethoxylated flavones and phenolic
acids [55,57–61].

The main innovative methods that have been employed in recent years to extract
these antioxidant compounds from citrus peels are green solvents, supercritical CO2, PEF-
assisted extraction, pressurized fluid extraction, high-pressure-assisted extraction, MAE,
UAE, anaerobic digestion and enzyme-assisted extraction [62–65].

In order to extract flavonoids from citrus peel, recently, a series of tailor-made DESs
were tested [66] using, as a hydrogen bond donor, choline chloride, and, as hydrogen
bond acceptors, carboxylic acids, different amides, sugars and alcohols. The best choice to
perform the extraction was found to be a DES consisting of a ternary system composed of
choline chloride, levulinic acid and methyl urea (ChCl/LeA/MU 1:1.2:0.8 mol/mol, with
20% of water) [66]. It was observed that this DES, under optimized conditions (solid–liquid
ratio of 1:50 w/v at 50 ◦C for 25 min), provided a yield of 65.82 mg/g of total flavonoids,
a value that confirmed the effectiveness of this DES over the most useful conventional
solvent tested (using methanol, 53.08 mg/g of total flavonoids was obtained) [66].

Among the innovative green methods described above, supercritical CO2 extraction
seems to be the most eligible for extracting essential oils and lipophilic compounds, but
it is less efficient for phenolic compounds [63]. This was recently confirmed in a study
conducted by Šafranko et al. on mandarin peel [67] using a two-step green extraction
technique consisting of supercritical CO2 treatment and then subcritical water extraction
(SWE) [67]. The first extraction was carried out under a CO2 mass flow rate of 2 Kg/h,
at 40 ◦C at 100 or 300 bar for 1.5 h. After this treatment, limonene was the major volatile
biomolecule extracted at both pressures used, with a yield of around 13% at 100 bar and
31% at 300 bar, followed by α-farnesene, linoleic and hexadecanoic acids. The following
SWE extraction was performed in order to also recover phenolic compounds, the most
abundant of which were hesperidin (extracted in a quantity of 15.05 mg/g at 153 ◦C, 15 min
and 30 mL/g molar ratio), rutin (3.79 mg/g obtained at 168 ◦C, 10 min and 30 mL/g),
narirutin (5.05 mg/g at 140 ◦C, 15 min and 29 mL/g) and chlorogenic acid (68.76 mg/g
at 219 ◦C, 9 min and 30 mL/g) [67]. On the other hand, El Kantar et al. demonstrated
that PEF treatment (at 10 kV/cm), using a 50% ethanol aqueous solution at 50 ◦C for 1 h,
improves polyphenol yields (22 mg/g DM) compared to conventional extraction (12 mg/g
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DM), using the same solvent, starting from the skins of different citrus fruits, particularly
from orange peel [62].

Considering lime peel, an interesting extraction process was conducted through UAE
and MAE [68]. The optimized protocol required, respectively, the use of 55% ethanol
solution and 38% of the ultrasonic amplitude for 4 min, and 55% ethanol solution and 140
W of microwave power for 45 s, repeating the extraction procedure 8 times. In the described
conditions, UAE was more efficient and fast than MAE to extract the total phenolics (with
total phenolic contents of 53 ± 1 mg GAE/g and 54 ± 1 mg GAE/g, respectively), leading
to extracts with comparable high antioxidant activities (18 ± 0.2 µM Trolox/g and 19 ± 0.4
µM Trolox/g, respectively, for the DPPH assay) [68].

A relatively recent trial on the use of the UAE technique for Kinnow mandarin peels
demonstrated its higher efficiency than maceration, with a recovery of eleven phenolic
compounds (including four flavonoids and five phenolic acids, with hesperidin and ferulic
acid as the most abundant ones) [69]. The best solvent used was 80% methanol-water
solution (together with methanol, ethanol was also tested at three concentrations: 50%, 80%
and 100%) under the optimal conditions, consisting of a sample/solvent ratio of 1:20, at
45 ◦C, for 60 min, in an ultrasound bath at a frequency of 35 kHz. Under these operating
parameters, a total polyphenol content of 32.48 mgGAE/g was reached, and a scavenging
activity of 72.83 ± 0.65% was obtained (evaluated using the DPPH assay) [69]. Montero-
Calderon et al. also used UAE (400 W, 50% ethanol, 30 min) on orange peel, obtaining
significant values of total carotenoid content (0.63 ± 0.01 mg β-carotene/100 g), vitamin
C (53.78 ± 3.36 mg AA/100 g) and phenolic concentration (105.96 mg GAE/100 g), with
an antioxidant capacity, expressed as the oxygen radical absorbance capacity, of 27.08 mM
Trolox Equivalent (TE) [70].

It has also been recently demonstrated that PLE achieves higher extraction yields of
glycosylated flavonoids from orange peel—and PLE also requires a shorter extraction time
and lower temperatures—not only compared to Soxhlet conventional extraction but also
to UAE [71]. In detail, a preliminary supercritical CO2 treatment (40 ◦C, 35 MPa) was
able to extract an essential oil highly enriched in α-terpineol. Then, PLE was conducted
for the optimized time of 20 min, at 45–65 ◦C and with the pressure set at 10 MPa using
ethanol in water at three different concentrations (50%, 75% and 99.5 v/v) [71]. The highest
phenolic compounds’ recovery (14.9 ± 0.7 and 15.9 ± 0.2 mg GAE/g dry peel for the
sample untreated with supercritical CO2 and the treated sample, with scavenging activities
of 4.6 ± 0.3 and 5.1 ± 0.3 mg TE/g dry peel, respectively) was reached at 65 ◦C and with
75% ethanol [71].

A study conducted by Casquete et al. [72] confirmed that high-pressure processing
(HPE), used to extract phytochemicals from orange and lime peels (a pressure of 300 MPa
was applied for 10 min on orange peel, and 500 MPa for 3 min on lemon peel) with an
80% ethanol-water solution, leads to a higher total phenolic compound content (400 mg
GAE/100 g and 344.53 mg GAE/100 g fresh peel extracts, respectively) than control
samples, resulting in enhanced antioxidant effects (136.85 mg Trolox/100 g and 149.41 mg
Trolox/100 g fresh peel extracts, respectively) [72].

Finally, Li et al. reported that, with regards to the enzyme-assisted extraction of
phenolic compounds from citrus peel, Celluzyme MX gave the highest total phenolic
content with a recovery of up to 65.5% (50 ◦C, 3 h, 2:16 m/v frozen citrus peel powder:
enzyme solution) [73].

2.2.3. Pineapple Wastes

Globally, pineapple is one of most highly produced tropical fruits, and more than
10,000 km2 of soil is dedicated to its cultivation [74,75]. The derived wastes (peel, core,
crown, stem and leaves), which are generally eliminated in the course of processing, account
for about 50% (w/w) of the total pineapple weight [37]. These parts are a rich potential
source of bioactive polyphenols such as myricetin, tannic acid, salicylic acid, trans-cinnamic
acid, p-coumaric acid [37] and bromelain, a mixture of different enzymes (including thiol
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endopeptidases, protease inhibitors and others) with confirmed therapeutic benefits in
many studies [76].

Microwave-assisted extraction has been recently used in a published study as a more
efficient alternative to conventional Soxhlet and maceration techniques [77]. The best
conditions to reach the highest yield of phenolic compounds (207.72 mg GAE/g dw) and
the highest antioxidant activity (13.2 mg/mL of DPPH value) consisted of operating at
60 ◦C with 750 W of microwave power for 20 min, using 50% ethanol in deionized water as
the solvent [77]. The standard Soxhlet extraction obtained a lower total phenolic content
(28.78 mg GAE/g dw) as well as antioxidant activity (2.78 mg/L) [77].

Instead of ethanol, the use of two DESs (choline chloride–glycerol 1:2 with 10% water
and choline chloride–malic acid 1:1.5 with 50% water) in MAE, with a 2.55 MHz operating
frequency, has been experimented with as an alternative method for extracting phenolic
compounds from pineapple peel [78]. Choline chloride–glycerol was found to be the best
DES for this purpose, and pre-treating the solid sample at the optimum drying temperature
of 67 ◦C and using a liquid/solid ratio of 60.5 mL/g for 87 s were found to be the optimized
parameters that permitted extracts to be obtained with a high concentration of total phenolic
compounds (35.95 mg GAE/gdw, compared with 7.98 mg eq GAE/gdw obtained by using
traditional solvents) and high antioxidant activity (28,630 µMeq Trolox/g dw) assayed with
the DPPH assay [78]. The application of Box Behnken design optimization to MAE was also
tested in a trial [79] in which three parameters were varied and evaluated: the substrate ratio
(the interval 10:1–20:1 mL/g was investigated) using ethanol/water 50:50 as the solvent,
microwave power (from 300 W to 600 W) and extraction time (from 40 min to 50 min) [79].
Optimization processes led 20:1 mL/g, 600 W and 40 min to be determined as the optimal
conditions, obtaining a total phenolic content of 14.88 mg GAE/gdw, a total flavonoid
content of 12.925 mg QE/g dw and a total tannin content of 371.25 mg TAE/g dw [79].

Paz-Arteaga et al. [80] used UAE to extract polyphenols from pineapple waste but, in
order to increase their release, they preliminarily fermented the samples with microfungi
(Aspergillus niger) for 32 h (the optimized process required 86 mg of fermented material per
each mL of solvent, 26% ethanol in water and two cycles of sonication using a vortex at
9000 rpm for 1 min with a frequency of 40 kHz at 37 ◦C) [80]. The final extracts showed
significant antimicrobial activity against L. monocytogenes and S. aureus, dangerous bacteria
that contaminate food [80].

Another paper reported UAE combined again with preliminary solid-state fermenta-
tion (SSF) on some samples of Golden pineapple peels, using an ultrasonic bath at 35 kHz
and varying the ethanol concentration, time and temperature [81]. Under optimal condi-
tions (58% ethanol, 62 ◦C and 30 min), the extracts had a total phenolic content of 866.26 mg
GAE/g and an activity (DPPH method) of 63.53 ± 2.02% [81]. UAE was also used in the
study of Yahya et al., using 50% ethanol as the solvent at 30 ◦C [82]. The highest total phe-
nolic (1078.68 ± 1.32 mg GAE/g dw) and flavonoid (1276.64 ± 5.92 mg QE/g DW) contents
were achieved after a sonication time of 5.92 min (acting at 100% sonication amplitude:
130 W) [82]. On the other hand, Soxhlet extraction (7.98 mg GAE/g dw) and maceration
(51.10 ± 0.20 mg GAE/g dw) gave a considerably lower total phenolic content [82–84].

Further experiments have been reported by Zampar et al. [85]. In particular, different
solvents (ethanol, water and 1 mol/L HCl solution) were mixed in various proportions,
in order to obtain the most effective solvent for UAE in terms of polyphenol extraction
capability [85]. The effects of temperature (30–60 ◦C), time (5–45 min) and ultrasonic power
(0–100 W) were investigated, leading the authors to conclude that the maximum total
phenolic content (405.06 mg GAE/100 g) can be obtained using, as a solvent, a mixture of
ethanol (0.50) and acid solution (0.50) for 30 min at 60 ◦C, and using an ultrasonic power of
50 W [85].

UAE and MAE technologies have also been employed for bromelain and other bioac-
tive peptides’ extraction by T. Mala et al. on various pineapple by-products (crown, peel
and core) [86]. They obtained extracts with a proteolytic activity of 196.46 ± 3.29 U/mL
for UAE and 154.08± 1.49 U/mL for MAE by using distilled water as the solvent [86]. The



Molecules 2024, 29, 2682 8 of 19

best operating parameters for UAE consisted of an ultrasonic amplitude of 99.6% and a
water/solid material ratio of 20.96 mL/g for 26.83 min. For MAE, the optimal parameters
were 100 W of microwave irradiation power and a solid material/distilled water ratio of
1:8 g/mL for 8.99 min [86]. Ultrasound-assisted liquid-phase microextraction (UA-LPME)
was applied on pineapple leaves, peels and stems, combined with the use the use of
NADESs, as extracting solvents by Balaraman et al. [87]. The best NADES was found to
be tetrabutyl ammonium chloride:imidazole:glycerol (1:1:1), with a liquid/solid ratio of
25 mL/g, at 45 ◦C for 17.5 min of irradiation, obtaining an high yield (87%) of bromelain
that was purified by final gel filtration chromatography [87].

Autohydrolysis, in which only water is used as the extraction solvent, seems to be an
interesting method for the sustainable extraction of high-value-added molecules. Sepùlveda
et al. [88] used this technique for pineapple wastes, reporting a high polyphenol recovery
(1.75 g/L) in the following optimized conditions: 30 min at 200 ◦C with a 1:10 w/v solid–
liquid ratio [88]. The phenolic compounds that were detected were epicatechin, gallic,
hydroxybenzoic, coumaric, chlorogenic and caffeic acids [88].

2.2.4. Brewery Waste

Beer has a prominent place among the alcoholic beverages most consumed world-
wide [89]. It has been estimated that more than 194 billion liters were produced globally
in 2018, for which around 130 thousand tons of hop were necessary [90–92]. The large
amounts of solid waste generated by the brewery industry (around 134 thousand tons in
2019 according to FEOSTAT 2022) can be divided into three types: brewers’ spent grains
(BSGs), which reach quantities of around 14–20 kg for each 1 hL of brewed beer, spent
brewers’ yeast (SBY) and spent hops [93,94].

Brewers’ spent grain, the most abundant solid waste generated during beer production,
has an unexpectedly valuable chemical composition. Among the most represented com-
pounds in this by-product, arabinoxylans and β-glucans are the main fibers and, along with
phenolic components, such as hydroxycinnamic acids (mostly sinapic, ferulic, p-coumaric
and caffeic acids), have great importance for human health [41,95]. Proteins are around
20% of the total dry mass [95], while lipids are only a small part, among which triglyc-
erides are the main constituents (accounting around 67%), followed by a smaller amount
(around 18%) of fatty acids [41,96]. Other micronutrients such as calcium, phosphorus and
magnesium are also found in BSG [95,97], as well as traces of iron, manganese, copper
and potassium [98]. The vitamins found, meanwhile, are niacin, folic acid, biotin, choline,
thiamine, pantothenic acid, riboflavin and pyridoxine [97,99,100]. In addition to all these
important components, resins, waxes, gums, essential oils, tannins and other cytoplasmatic
components have been detected as well in numerous analyses [41,100].

An efficient MAE process to recover polyphenols—in particular, ferulic acid—from
BSG has been developed by Moreira et al., simply by modulating the pH of aqueous
media [101]. The results for this MAE application showed that using an extraction time
of 15 min at 100 ◦C with a ratio of solvent (NaOH 0.75% v/v) to raw material of 20:1
under the maximum stirring speed led to a fivefold higher ferulic acid yield (1.31 ± 0.04%
w/w). These results were compared to those of the conventional extraction techniques,
such as mechanical stirring (methanol 70%, 30 min at 25 ◦C), alkaline hydrolysis (NaOH
2% v/v, 90 min at 110 ◦C) and Soxhlet extraction (ethanol, 4 h at the boiling point of the
solvent) [101].

DESs have been proposed as an alternative to hydroalcoholic or aqueous solutions
for the microwave-assisted extraction of phenolic compounds from BSG [102]. It has been
reported that ChCl:glycerol (with a molar ratio of 1:2) is the most efficient DES for this
purpose (ChCl/lactic acid 1:2 mol/mol, ChCl/ethylene glycol 1:2 mol/mol and ChCl/1,2-
propanediol 1:2 mol/mol were tested, as well) compared to the conventional solvent,
methanol (80% in water, v/v; 1.2 mg GA/g BSG). The optimal conditions found were
13.30 min of extraction time, 100 ◦C and 37.46% (v/v) water used in the DES, generating a
liquid extract with the highest antioxidant power (2.89 mg GA/g BSG) [102].



Molecules 2024, 29, 2682 9 of 19

Polyphenols and flavonoids have also been extracted from BSG by Spinelli et al. [103]
using supercritical CO2 (the solvent was composed of CO2 + 60% ethanol v/v). The optimal
temperature was 40 ◦C, with a pressure of 35 MPa and with a CO2 flow rate equal to
2 L/min. This treatment, which took 240 min, led to higher phenolic and flavonoid contents
(30% and 50%, respectively) and a better antioxidant activity than the control samples.
Importantly, this can be followed by a microencapsulation process, preserving the stability
of polyphenols and flavonoids and covering their bad taste [103].

PLE has recently (2021) been tested in a new method that employs ethanol in water
with a percentage from 0% to 100%, a temperature that ranged from 25 to 155 ◦C and an
extraction time of from 3 to 17 min [104]. Different extracts were obtained, and the highest
content of phenolic compounds (1.72 ± 0.07 g GAE/100 g BSG) (coumaric, transferulic
and p-hydroxybenzoic acids were present) was reached under the optimized conditions of
155 ◦C, 35% ethanol and a 17 min extraction time [104].

Martín-García et al. [105] applied PEF treatment as a preliminary procedure for con-
ventional solid–liquid extraction in order to improve phenolic recovery using different
parameters of time (5, 10 and 15 s), electric field strength (0.5, 1.5 and 2.5 kV/cm) and
frequency (0.05, 0.1 and 0.15 kHz) and employing, as the extracting solvent, ethanol/water
(4:1 v/v) [105]. The results showed that, when using PEF treatment before the extraction
and the optimal operating conditions (14.5 s, electric field strength of 2.5 kV/cm and fre-
quency of 0.05 kHz), the extraction yield and the antioxidant activity improved compared
to the non-pre-treated procedure [105].

Alonso-Riaño et al. [106] demonstrated that water UAE (47 ◦C; solvent volume-to-dry
BSG mass ratio (v/w) of 21.7 mL:g BSG dry; and 30 min of sonication) is much more efficient
in the extraction of polyphenols than conventional extraction. UAE results in a significant
improvement of final extraction yields, reaching 55% for non-ground BSG and 30% for
ground BSG (the productivity was found to be 0.109 mg GAE/g BSG dry·min for UAE
and 0.0078 mg GAE/g BSG dry·min for the conventional extraction) [106]. However, UAE
shows a lower efficiency than other hydrolytic extraction methods such as basic hydrolysis,
owing to the impossibility of extracting phenolic compounds linked through ester bonds to
the cell wall. Mussatto et al. [107] used basic hydrolysis to recover ferulic and p-coumaric
acids, concluding that the optimal conditions for this with a 1:20 (w/w) solid:liquid ratio
were a 2% NaOH concentration, 90 min and 120 ◦C, with final quantities extracted of 145.3
mg/L and 138.8 mg/L, respectively [107].

A revalorization method of BSG, proposed by Wagner et al. [43], is the so-called
“acid autohydrolytic saccharification”, where enzymatic treatment works as a preliminary
procedure of acid autohydrolysis. During this process, the release of polyphenols from BSG
is thought to occur after the saccharification of structural polymers [108].

Finally, Gandolpho et al. made use of UAE to extract phenolic compounds from hot
trub (the second main solid waste after BSG) [109]. The extraction’s optimal conditions
consist of using 58% ethanol in water, a solid–liquid ratio of 1:32 (w/v) and 36 ◦C for 30 min,
and this protocol resulted in a total phenolic content of 7.23 mg GAE/g [109].

2.2.5. Cocoa Bean Shells

Around 23 thousand tons of cocoa are produced every year in Ecuador (PROE-
CUADOR, 2013) [110] to support the demand for chocolate and cocoa-derivative foods
(e.g., cocoa paste, powder, butter and liquor) [111]. Cocoa bean shells (CBSs) are one of
the main by-products of this production process, and their high nutritional value allows
them to be further used in the food industry, as well as in the cosmetic, pharmaceutical
and agricultural industries [112]. The CBS is a precious source of valuable nutrients such
as phenolic compounds (catechin and epicatechin, flavonols and procyanidins), dietary
fibers, methylxanthines (mainly theobromine and caffeine) and vitamin D, which, during
the fermentation process, move from the bean to the cocoa shell [113–117].

Mazzutti et al. [118] integrated two green techniques by first using supercritical CO2
(99.9%) to perform an initial defatting process (20 MPa, 40 ◦C, 20 min), followed by pres-
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surized liquid extraction with 99.8% CO2 (10 MPa, 70 ◦C, 20 min), obtaining both a higher
total phenolic content (from 35 to 51 mg GAE/g) and antioxidant activity (EC50 values
from 115 to 177 µg·mL−1, DPPH assay) compared to non-integrated methods [118].

In a study by Okiyama et al. [119], PLE was tested using absolute ethanol for flavanoid
extraction. The evaluated temperatures were 60, 75 and 90 ◦C, the extracting time was from
5 to 50 min, the mass ratio (solid:solvent) was kept constant at 1:3 and the system pressure
was fixed at 10.35 MPa [119]. The flavanol extraction yield increased by increasing the
temperature and extraction time but, as a result of doing so, the procyanidin B2 decreased
gradually [119].

Jokić et al. [120] used subcritical water extraction (SWE) and noted that the total
phenolic content (catechin and epicatechin, gallic and chlorogenic acids were detected)
changed significantly with the extraction temperature, from 27.26 mg GAE/g (120 ◦C,
75 min, 20 mL/g) to 130.33 mg GAE/g (220 ◦C, 75 min, 20 mL/g), and that the antioxidant
activity changed from 19.20% DPPH scavenging (120 ◦C, 75 min, 20 mL/g) to 91.69%
DPPH scavenging (220 ◦C, 75 min, 20 mL/g) [120]. Methylxanthines such as theobromine,
theophylline and caffeine were also detected in the extractions performed from 120 ◦C to
170 ◦C. Beyond 170 ◦C, it was found that the theobromine content started to decrease [120].

MAE showed promising results when various choline-chloride-based DESs (ChCl/lactic
acid 1:1, ChCl/tartaric acid 1:1, ChCl/urea 1:2, ChCl/sorbitol 1:1, ChCl/oxalic acid 1:1)
were used as extraction solvents [121]. The highest yields of caffeine and theobromine were
achieved when operating at 60 ◦C for 10 min using 30% water with 500 mg of ground CBS and
10 mL of solvent. Their extraction yields in DESs ranged from 2.145 to 4.682 mg/g for caffeine
and from 0.681 to 1.524 mg/g for theobromine. For DES/MAE, the extraction yields of these
compounds were 2.502–5.004 mg/g for caffeine and 0.778–1.599 mg/g for theobromine [121].
Determination of the antioxidant activity (DPPH method) showed 24.027–74.805% activity for
DES extracts and 11.751–55.444% for DES-MAE extracts [121].

The application of choline-chloride-based DESs for the extraction of coffee and cocoa
waste matrices was also carried out by Ruesgas-Ramón et al. [122]. In this case, the combi-
nation of ChCl and lactic acid (2:1 molar ratio) with 10% water was found to be the best
choice in terms of the total phenol content detected in cocoa husks (obtaining 52.86 ± 0.78 g
GAE/100 g according to the Folin–Ciocalteu method and 0.62 ± 0.08 gGAE/100 g with
HPLC) [122]. Interestingly, the extraction yields, when still using the same DES as the
solvent, increased when the process was coupled with ultrasound-probe-assisted extrac-
tion (3 min/constant duty cycle, 200 W, at 72 ◦C), even compared to heat-stirring-assisted
extraction (HSE) (60 ◦C for 1 h) [122]. The main bioactive compounds identified in the
extracts were theobromine, caffeine and chlorogenic acid [122].

Barbosa et al. proposed PEF-assisted technology, as a pre-treatment, to increase the
extraction yield of polyphenols from CBS and coffee silver skin (CS) [123]. They added
50 mL of ethanol at 25 ◦C to 0.1 g of CBS or CS using different ethanol concentrations
in water (from 30 to 70% v/v). Different time intervals of PEF pre-treatment, numbers
of pulses, PEF strengths (from 1.5 to 3 kVcm−1 for CBS and from 1.30 to 4.40 kV cm−1

for CS) and solid–liquid extraction times (from 30 to 120 min) were applied, as well [123].
The optimal conditions for the recovery of polyphenols from CS were a PEF strength of
1.37 kV/cm for 75 min using 62.67% ethanol, while for CBS, a PEF strength of 1.74 kV/cm
for 118.54 min using 39.15% ethanol was optimal [123]. Moreover, this protocol registered
around 20% higher recovery yields of polyphenols and methylxanthines compared to
conventional extraction [123].

UAE and hydrodynamic cavitation (HC) have also been used to develop alterna-
tive green extraction methods from this matrix. Notably, HC reactors are gaining im-
portance to assist conventional solid/liquid plant extraction [124]. HC techniques use
high-speed rotating cylinders to create cavitation bubbles inside the matrix. Their collapse
significantly increases solid/liquid interactions [124]. The optimized extraction proto-
col, which lasted 15 min (150 W, 19.9 kHz) at around 40 ◦C, uses an HC reactor with a
ternary water/ethanol/hexane (30:49:21) solvent, giving an extract rich in methylxanthines
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(32.7 ± 0.12 mg/g of theobromine, 1.76 ± 0.08 mg/g of caffeine) and polyphenols (total
phenolic content of 197.4 mg GAE per gram of extract, associated with a radical scavenging
activity of 62.0 ± 3.1 µg/mL) [124].

Yusof et al. investigated the application of UAE for the recovery of flavonoids from
Malaysian cocoa shell extracts [125]. The study focused on three variables: ethanol concen-
tration (70–90% v/v), temperature (45–65 ◦C) and irradiation time (30–60 min). Optimizing
the procedure led to the highest total flavonoid content, resulting in 7.47 mg RE/g dried
weight, which was detected at 55 ◦C when using 80% ethanol for 45 min [125].

Rebollo-Hernanz et al. focused on a green aqueous extraction method of phenolic
compounds from CBS, using the response surface methodology (RSM) and artificial neural
networks (ANNs) to optimize various parameters such as temperature, time, acidity and
the solid-to-liquid ratio [126]. The best operating conditions to extract phenolic compounds,
phenolic acids, ortho diphenols, flavanols, flavonols and prothoantocyanidins and to reach
the highest antioxidant activity were found to be water with 0% citric acid, 100 ◦C, 90 min
and a 0.02 g cocoa shell/mL S/L ratio [126]. The experimental results obtained when
adopting these conditions matched those predicted by the model [126].

Another novel green extraction process has been recently investigated, obtaining very
high yields (up to 100%) of phenolic compounds, theobromine, caffeine, catechin and
epicatechin in a single extraction step, reducing the consumption of conventional organic
solvents [127]. This requires preliminary hot water extraction (PHWE) (140 ◦C, 10 CV/h,
solvent ratio of 25), followed by anti-solvent (60% ethanol in water)-induced precipitation.
Subsequently, the obtained supernatant is used for liquid–liquid extraction (using 40%
aqueous citrate buffer/30% aqueous phosphate buffer with a 70/30 phase ratio) with
consequent ethanol salting-out [127].

Finally, PHWE (pressurized hot water extraction) was also applied by Pagliari et al. for
the extraction of methylxanthines from cocoa by-products (optimal conditions: 15% ethanol
at 90 ◦C for five cycles with a static time of 6 min) and, as a result, 156% and 160% increased
efficiencies for theobromine and caffeine, respectively, were obtained in comparison with
the UAE technique [128].

Table 1. Summary of the reviewed extraction procedures.

Starting Material Extraction Media Method T (◦C) Extraction Time Ref.

Banana peels

Ethanol 50% UAE 45 ◦C 1 h [50]

CO2 with 5% volume of
ethanol SFE 80 ◦C 150 min [51]

Ethanol 50% (v/v) HAE RT 30 s [52]

ChCl–ascorbic acid 1:2 DES Shaking RT 20 min [53]

Kepok banana skin Water PEF pre-treatment
maceration RT

2 min (highest
TPC)

4 min (highest
antioxidant

activity)

[54]

Citrus peel ChCl–LeA–MU 1:1.2:0.8 DES
20% water UAE 50 ◦C 25 min [66]

Mandarin peel CO2 (99.97 w/w),
water/SC-CO2 pre-treatment SFE-SWE

40 ◦C
(pre-treatment)

140–219 ◦C
(extraction)

90 min
(pre-treatment)

9–15 min
(extraction)

[67]

Lime peel Ethanol 55% MAE
UAE

Below 60 ◦C
(MAE)

45 s (MAE)
4 min (UAE) [68]
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Table 1. Cont.

Starting Material Extraction Media Method T (◦C) Extraction Time Ref.

Kinnow mandarin
peel Methanol 80% UAE 45 ◦C 60 min [69]

Citrus peels Ethanol 50% UAE Below 40 ◦C 30 min [70]

Orange peel CO2 with 99% purity, ethanol
75% SFE-PLE

40 ◦C
(pre-treatment)

65 ◦C (extraction)

20 min
pre-treatment)

20 min (extraction)
[71]

Orange and lime
peels Ethanol 80% HPE RT

10 min (orange
peel)

3 min (lemon peel)
[72]

Citrus peels Aqueous enzyme solution
(Celluzyme MX) 1.5% (w/w)

Enzyme-assisted
aqueous extraction 50 ◦C 3 h [73]

Pineapple skin Ethanol 50% MAE 60 ◦C 20 min [77]

Pineapple peel,
core and crown

ChCl–glycerol 1:2 DES with
10% water MAE 67 ◦C (drying

temperature) 87 s [78]

Pineapple peel Ethanol 50% MAE 40 min [79]

Pineapple waste Ethanol 26% UAE 37 ◦C 1 min [80]

Pineapple peel Ethanol 58% UAE 62 ◦C 30 min [81]

Pineapple skin Ethanol 50% UAE 30 ◦C 5.92 min [82]

Pineapple peel Etanol:solution of 1 mol/L
HCl (50:50) UAE 60 ◦C 30 min [85]

Pineapple crown,
peel and core Water UAE

MAE

Solvent
temperature below

10 ◦C (UAE)

20.96 min (UAE)
8.99 min (MAE) [86]

Pineapple leaves,
peel and stem

Tetrabutyl ammonium chlo-
ride:imidazole:glycerol(1:1:1)/

sodium sulfate NADES
UA-LPME 45 ◦C 17.5 min [87]

Pineapple core and
skin Water Autohydrolysis 200 ◦C 30 min [88]

Brewers’ spent
grain

NaOH 0.75% MAE 100 ◦C 15 min [101]

ChCl-Gly (1:2) DES, with
37.46% water MAE 100 ◦C 13.30 min [102]

Supercritical CO2 + 60%
ethanol SFE 40 ◦C 240 min [103]

Ethanol 35% PLE 155 ◦C 17 min [104]

Ethanol:water (4:1 v/v) PEF-assisted
extraction RT 14.5 s [105]

Water UAE 47 ◦C 30 min [106]

NaOH 2% Basic hydrolysis 120 ◦C 90 min [107]

Hot trub Ethanol 58% UAE 36 ◦C 30 min [109]

Cocoa bean shell

CO2 with 99.9% purity,
ethanol 99.8% SFE-PLE

40 ◦C (SFE
pre-treatment)

70 ◦C (PLE)
(extraction)

20 min (SFE
pre-treatment)
20 min (PLE)
(extraction)

[118]

Absolute ethanol PLE 90 ◦C 50 min [119]

Water SWE 220 ◦C 75 min [120]

ChCl-based DES with 30%
water MAE 60 ◦C 10 min [121]
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Table 1. Cont.

Starting Material Extraction Media Method T (◦C) Extraction Time Ref.

Coffee and cocoa
wastes

ChCl-lactic acid 1:2 DES with
10% water UPAE 72 ◦C 3 min [122]

Cocoa bean shell
and coffee silver

skin

Ethanol 62.67% (coffee silver
skin)

Ethanol 39.15% (cocoa bean
shell)

PEF-assisted
extraction 25 ◦C

75 min (coffee
silver skin)

118.54 min (Cocoa
bean shell)

[123]

Cocoa bean shell Water:ethanol:hexane
(30:49:21) UAE and HC 40 ◦C 15 min [124]

Malaysian cocoa
bean shell Ethanol 80% UAE 55 ◦C 45 min [125]

Cocoa bean shell
(different varieties)

Water Heat-assisted
extraction 100 ◦C 90 min [126]

(1) Water
(2) Ethanol 60 wt.%

(3) 40 wt.% citrate buffer and
a 30 wt.% phosphate buffer

(70/30 phase ratio)

(1) PHWE
(2) Precipitation
(3) Liquid–liquid
extraction from

precipitation
supernatant

140 ◦C (PHWE) 1 L/h for 0.1 L of
solvent (PHWE) [127]

Ethanol 15% PHWE 90 ◦C 5 cycles with static
time 6 min [128]

UAE, ultrasound-assisted extraction; SFE, supercritical fluid extraction; HAE, homogenizer-assisted extraction;
ChCl, choline chloride; DES, deep eutectic solvent; PEF, pulsed electric field; LeA, levulinic acid; MU, methyl
urea; SC-CO2, supercritical CO2; SWE, supercritical water extraction; MAE, microwave-assisted extraction; PLE,
pressurized liquid extraction; HPE, high-pressure extraction; NADES, natural deep eutectic solvent; UA-LPME,
ultrasound-assisted liquid-phase microextraction; Gly, glycerol; UPAE, ultrasound-probe-assisted extraction; HC,
hydrodynamic cavitation; PHWE, pressurized hot water extraction.

3. Conclusions

The articles reviewed in this paper were found on well-known databases (Scopus,
PubMed) and, as regards the innovative extraction techniques, they date, in almost all cases,
to the last five years. These studies, although complete, give us some certainty but also
leave other questions open. The advantage of using these methods is certainly evident in
terms of saving time and energy, as well as having lower solvent disposal costs. However,
it remains difficult to make a reliable comparison between the different extraction methods
in order to carry out a concrete assessment of which is the most effective and economically
advantageous. To do this, it would be necessary to operate on the same matrix, using all
the innovative techniques described in this review and not just design studies that compare
one or some of the techniques with a traditional one, as has happened so far.

Food wastes and by-products have great hidden nutritional potential, which will
otherwise be lost. This applies both to waste matrices traditionally used as secondary raw
materials and exploited, even if only partially, for their potential, as well as to wastes that
have not yet become resources for the industry and currently only represent an economic
burden. For these reasons, the development and optimization of sustainable techniques for
the extraction of bioactive compounds from the most disparate food matrices is gaining
importance. Furthermore, it has been demonstrated that some new alternative green
techniques not only contribute to reducing pollution and wastage but can also be optimized
to improve extraction yields and rates compared to conventional methods. Certainly, this
constitutes a sustainable practice from the perspective of the circular economy.
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