An Attempt to Replace Pure Citric Acid with Natural Lemon Juice during Potato Starch Esterification
Abstract
:1. Introduction
2. Discussion of Results
2.1. Percentage of Esterification of Starch Citrates
2.2. Swelling Power and Water Solubility of Starch Citrates
2.3. Resistance of Starch Citrates to the Activity of Amyloglucosidase
2.4. Thermal Properties of Starch Citrates
2.5. Starch Citrate Molecular Weight Distribution
3. Materials and Methods
3.1. Materials
3.2. Production of Starch Preparations
3.3. Determination of the Percentage of Esterification
3.4. Determination of Water-Holding Capacity
3.5. Determination of the Resistance of Starch Preparations to the Action of Amyloglucosidase
3.6. Determination of the Swelling Power in Water
3.7. Determination of the Thermal Gelatinization Characteristics of the Preparations
3.8. Analysis of Molar Mass Distribution of Starches by Size Exclusion Chromatography
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Sikorski, Z.E.; Staroszczyk, H. Chemia Żywności; PWN Warszawa: Warsaw, Poland, 2017. [Google Scholar]
- Lopez-Alt, K.J. The Food Lab, 3rd ed.; Norton Associates LLC.: Oakland, CA, USA, 2024. [Google Scholar]
- Commission Regulation (EU). No 1129/2011 of 11 November 2011. In Official Journal of the European Union L295; EU Commission; Publications Office of the European Union: Luxembourg, 2011; Volume 295, pp. 16–17. [Google Scholar]
- Zdybel, E.; Zięba, T.; Rymowicz, W.; Tomaszewska-Ciosk, E. Organic acids of the microbiological post-culture medium as substrates to be used for starch modification. Polymers 2019, 11, 469. [Google Scholar] [CrossRef] [PubMed]
- Zdybel, E.; Zięba, T.; Tomaszewska-Ciosk, E.; Rymowicz, W. Effect of the esterification of starch with a mixture of carboxylic acids from Yarrowia lipolitica fermentation broth on its selected properties. Polymers 2020, 12, 1383. [Google Scholar] [CrossRef]
- Apelbland, A. Citric Acid; Springer International Publishing: Cham, Switzerland, 2014; pp. 1–10. [Google Scholar]
- Golachowski, A.; Drożdż, W.; Golachowska, M.; Kapelko-Żeberska, M.; Raszewski, B. Production and properties of starch citrates—Current research. Foods 2020, 9, 1311. [Google Scholar] [CrossRef] [PubMed]
- Kapelko-Żeberska, M.; Buksa, K.; Szumny, A.; Zięba, T.; Gryszkin, A. Analysis of molecular structure of starch citrate obtained by a well-stabilished metod. LWT—Food Sci. Technol. 2016, 69, 334–341. [Google Scholar] [CrossRef]
- Karunarathna, S.; Wickramasinghe, I.; Truong, T.; Brennan, C.; Navaratne, S.B.; Chandrapala, J. Development of Low-Calorie Food Products with Resistant Starch-Rich Sources—A Review. Food Rev. Int. 2024, 40, 814–831. [Google Scholar] [CrossRef]
- Zhong, C.; Xiong, Y.; Lu, H.; Luo, S.; Wu, J.; Ye, J.; Liu, C. Preparation and characterization of rice starch citrates by superheated steam: A new strategy of producing resistant starch. LWT—Food Sci. Technol. 2022, 154, 112890. [Google Scholar] [CrossRef]
- Reddy, N.; Yang, Y. Citric acid cross-linking of starch films. Food Chem. 2010, 118, 702–711. [Google Scholar] [CrossRef]
- Kapelko-Żeberska, M.; Zięba, T.; Pietrzak, W.; Gryszkin, A. Effect of citric acid esterification conditions on the properties of the obtained resistant starch. Int. J. Food Sci. Technol. 2016, 51, 1647–1654. [Google Scholar] [CrossRef]
- Karma, V.; Gupta, A.D.; Yadav, D.K.; Singh, A.A.; Verma, M.; Singh, H. Recent developments in starch modification by organic acids: A review. Starch 2022, 74, 1–14. [Google Scholar] [CrossRef]
- Ačkar, D.; Babić, J.; Jozinović, A.; Miličević, B.; Jokić, S.; Miličević, R.; Rajič, M.; Šubarić, D. Starch modification by organic acids and their derivatives: A review. Molecules 2015, 20, 19554–19570. [Google Scholar] [CrossRef]
- Leszczyński, W. Resistant starch—classification, structure, production. Pol. J. Food Nutr. Sci. 2004, 54, 37–50. [Google Scholar]
- Qiao, J.; Jia, M.; Niu, J.; Zhang, Z.; Xing, B.; Liang, Y.; Li, H.; Zhang, Y.; Ren, G.; Qin, P.; et al. Amylopectin chain length distributions and amylose content are determinants of viscoelasticity and digestibility differences in mung bean starch and proso millet starch. Int. J. Biol. Macromol. 2024, 267, 131488. [Google Scholar] [CrossRef]
- Liu, W.; Xu, J.; Shuai, X.; Geng, Q.; Guo, X.; Chen, J.; Li, T.; Liu, C.; Dai, T. The interaction and physicochemical properties of the starch-polyphenol complex: Polymeric proanthocyanidins and maize starch with different amylose/amylopectin ratios. Int. J. Biol. Macromol. 2023, 253, 126617. [Google Scholar] [CrossRef]
- Hong, J.S.; Chung, H.J.; Lee, B.H.; Kim, H.S. Impact of static and dynamic modes of semi-dry heat reaction on the characteristics of starch citrates. Carbohydr. Polym. 2020, 233, 115853. [Google Scholar] [CrossRef] [PubMed]
- Butt, N.A.; Ali, T.M.; Hasnain, A. Rheological characterization of cold water soluble rice (Oryza sativa) starch lactates and citrates prepared via alcoholic-alkaline method. Int. J. Biol. Macromol. 2019, 123, 558–568. [Google Scholar] [CrossRef]
- Falade, K.F.; Ayetigbo, O.E. Effects of annealing, acid hydrolysis and citric acid modifications on physical and functional properties of starches from four yam (Dioscorea spp.) cultivars. Food Hydrocoll. 2015, 43, 529–539. [Google Scholar] [CrossRef]
- Remya, R.; Jyothi, A.N.; Sreekumar, J. Effect of chemical modification with citric acid on the physicochemical properties and resistant starch formation in different starches. Carbohydr. Polym. 2018, 202, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Luo, S.; Huang, A.; Chen, J.; Liu, C.; McClements, D.J. Synthesis and characterization of citric acid esterified rice starch by reactive extrusion: A new method of producing resistant starch. Food Hydrocoll. 2019, 92, 135–142. [Google Scholar] [CrossRef]
- Zdybel, E.; Tomaszewska-Ciosk, E. Modification of starch with succinic acid residues. Przemysł Chem. 2015, 94, 1138–1141. [Google Scholar]
- Mei, J.Q.; Zhou, D.N.; Jin, Z.Y.; Xu, X.M.; Chen, H.Q. Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch. Food Chem. 2015, 187, 378–384. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, H.S. Impact of reactive extrusion parameters on the resistant contents and pasting properties of starch citrates. Food Eng. Prog. 2015, 19, 193–200. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, K.Y.; Lee, H.G. Effect of different pH conditions on the in vitro digestibility and physicochemical properties of citric acid-treated potato starch. Int. J. Biol. Macromol. 2018, 107, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Li, M.N.; Xie, Y.; Chen, H.Q.; Zhang, B. Effects of heat-moisture treatment after citric acid esterification on structural properties and digestibility of wheat starch, A- and B-type starch granules. Food Chem. 2019, 272, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Zięba, T.; Kapelko, M.; Szumny, A. Effect of preparation method on the properties of potato starch acetates with an equal degree of substitution. Carbohydr. Polym. 2013, 94, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Xie, H.; Hu, H.; Ouyang, K.; Li, G.; Zhong, J.; Hu, X.; Xiong, H.; Zhao, Q. V-type granular starches prepared by maize starches with different amylose contents: An investigation in structure, physicochemical properties and digestibility. Int. J. Biol. Macromol. 2024, 266, 131092. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Han, J.; Men, Y.; Yang, Y.; Long, L.; Liu, L.; Sun, Z. Analysis of genotype-by-environment effects on starch content in 281 Tartary buckwheat varieties and evaluation of the physicochemical properties of two elite varieties. LWT—Food Sci. Technol. 2024, 197, 115866. [Google Scholar] [CrossRef]
- Kapelko-Żeberska, M.; Zięba, T.; Singh, A.V. Physically and chemically modified starches in food and non-food industries. In Surface Modification of Biopolymers, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 173–193. [Google Scholar]
- Zięba, T.; Kapelko-Żeberska, M.; Gryszkin, A.; Wilczak, A.; Raszewski, B.; Spychaj, R. Effect of the Botanical Origin on Properties of RS3/4 Type Resistant Starch. Polymers 2019, 11, 81. [Google Scholar] [CrossRef] [PubMed]
- Menzel, C.; Olsson, E.; Plivelic, T.S.; Andersson, R.; Johansson, C.; Kuktaite, R.; Järnström, L.; Koch, K. Molecular structure of citric acid cross-linked starch films. Carbohydr. Polym. 2013, 96, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Gryszkin, A.; Zięba, T.; Kapelko, M.; Buczek, A. Effect of thermal modifications of potato starch on its selected properties. Food Hydrocoll. 2014, 40, 122–127. [Google Scholar] [CrossRef]
- Buksa, K.; Gambuś, H.; Nowotna, A.; Ziobro, R. Rye flour enriched with arabinoxylans in rye bread making. Food Sci. Technol. Int. 2015, 21, 45–54. [Google Scholar] [CrossRef]
Roasting Temperature [°C] | Substrate Source | |
---|---|---|
Citric Acid (SA) | Lemon Juice (SJ) | |
non-roasted | 0.08 a | 0.22 b |
100 | 3.62 d | 2.10 c |
120 | 4.86 e | 3.55 d |
Roasting Temperature [°C] | Substrate Source | ||
---|---|---|---|
None (S) | Citric Acid (SA) | Lemon Juice (SJ) | |
non-roasted | 1.17 a | 1.16 a | 1.18 a |
100 | 1.14 a | 3.95 d | 1.45 b |
120 | 1.15 a | 4.08 d | 2.57 c |
Roasting Temperature [°C] | Substrate Source | ||
---|---|---|---|
None (S) | Citric Acid (SA) | Lemon Juice (SJ) | |
non-roasted | 1.42 b | 1.23 a | 1.15 a |
100 | 1.16 a | 4.85 e | 2.12 c |
120 | 1.10 a | 6.35 f | 4.16 d |
Roasting Temperature [°C] | Substrate Source | ||
---|---|---|---|
None (S) | Citric Acid (SA) | Lemon Juice (SJ) | |
non-roasted | 0.50 a | 0.75 a | 1.66 a |
100 | 0.68 a | 14.37 b | 37.49 c |
120 | 0.75 a | 43.29 d | 95.15 e |
Roasting Temperature [°C] | Substrate Source | ||||||
---|---|---|---|---|---|---|---|
None (S) | Citric Acid (SA) | Lemon Juice (SJ) | |||||
Mww × 104 [g/mol] | Ð | Mww × 104 [g/mol] | Ð | Mww × 104 [g/mol] | Ð | ||
non-roasted | A + B | 181.4 | 3.8 | 157.0 | 6.9 | 131.5 | 4.8 |
A | 226.2 | 1.7 | 207.8 | 1.7 | 177.9 | 1.6 | |
B | 22.3 | 2.6 | 20.7 | 3.5 | 21.0 | 2.6 | |
100 | A + B | 116.6 | 6.7 | 53.8 | 9.9 | 62.9 | 19.2 |
A | 164.0 | 1.5 | 155.8 | 1.5 | 158.2 | 1.6 | |
B | 20.3 | 3.5 | 11.6 | 13.4 | 6.2 | 29.9 | |
120 | A + B | 75.2 | 4.9 | 43.4 | 13.8 | * | * |
A | 127.6 | 1.4 | 137.7 | 1.4 | * | * | |
B | 19.8 | 3.4 | 7.9 | 15.6 | * | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomaszewska-Ciosk, E.; Zdybel, E.; Kapelko-Żeberska, M.; Raszewski, B.; Buksa, K.; Maj, A.; Zięba, T.; Gryszkin, A. An Attempt to Replace Pure Citric Acid with Natural Lemon Juice during Potato Starch Esterification. Molecules 2024, 29, 2687. https://doi.org/10.3390/molecules29112687
Tomaszewska-Ciosk E, Zdybel E, Kapelko-Żeberska M, Raszewski B, Buksa K, Maj A, Zięba T, Gryszkin A. An Attempt to Replace Pure Citric Acid with Natural Lemon Juice during Potato Starch Esterification. Molecules. 2024; 29(11):2687. https://doi.org/10.3390/molecules29112687
Chicago/Turabian StyleTomaszewska-Ciosk, Ewa, Ewa Zdybel, Małgorzata Kapelko-Żeberska, Bartosz Raszewski, Krzysztof Buksa, Agnieszka Maj, Tomasz Zięba, and Artur Gryszkin. 2024. "An Attempt to Replace Pure Citric Acid with Natural Lemon Juice during Potato Starch Esterification" Molecules 29, no. 11: 2687. https://doi.org/10.3390/molecules29112687
APA StyleTomaszewska-Ciosk, E., Zdybel, E., Kapelko-Żeberska, M., Raszewski, B., Buksa, K., Maj, A., Zięba, T., & Gryszkin, A. (2024). An Attempt to Replace Pure Citric Acid with Natural Lemon Juice during Potato Starch Esterification. Molecules, 29(11), 2687. https://doi.org/10.3390/molecules29112687