Advancements in the Synthesis and Functionalization of Zinc Oxide-Based Nanomaterials for Enhanced Oral Cancer Therapy
Abstract
:1. Introduction
2. Synthesis Methods for Zinc Oxide-Based Nanomaterials
2.1. Physical Synthesis Methods
2.2. Chemical Synthesis Methods
2.3. Biological Synthesis Methods
3. Influence of Synthesis Parameters on Nanomaterial Properties
3.1. Precursor Selection
3.2. Reaction Temperature
3.3. Growth Conditions
4. Surface Functionalization and Modification Strategies
4.1. Ligand Conjugation
4.2. Polymer Coating
4.3. Surface Charge Modification
4.4. Bioconjugation Techniques
5. The Therapeutic Efficacy of Zinc Oxide-Based Nanomaterials in Oral Cancer
5.1. Anticancer Mechanisms
5.2. In Vitro Studies
5.3. In Vivo Studies
5.4. Clinical Potential
6. Challenges in the Fabrication of ZnO-Based Nanomaterials for Oral Cancer Therapy
7. Future Perspectives
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, B.; Zhang, T.; Dai, N.; Luo, D.; Wang, X.; Qiao, C.; Liu, J. Global research trends in tongue cancer from 2000 to 2022: Bibliometric and visualized analysis. Clin. Oral Investig. 2024, 28, 130. [Google Scholar] [CrossRef] [PubMed]
- Gavas, S.; Quazi, S.; Karpiński, T.M. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett. 2021, 16, 173. [Google Scholar] [CrossRef] [PubMed]
- Chehelgerdi, M.; Chehelgerdi, M.; Allela, O.Q.B.; Pecho, R.D.C.; Jayasankar, N.; Rao, D.P.; Thamaraikani, T.; Vasanthan, M.; Viktor, P.; Lakshmaiya, N. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol. Cancer 2023, 22, 169. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Zhang, M.; Huang, X.; Chen, B.; Ding, Y.; Zhang, Y.; Yu, D.; Kim, I. Smart l-borneol-loaded hierarchical hollow polymer nanospheres with antipollution and antibacterial capabilities. Mater. Today Chem. 2022, 26, 101252. [Google Scholar] [CrossRef]
- Yu, Z.; Gao, L.; Chen, K.; Zhang, W.; Zhang, Q.; Li, Q.; Hu, K. Nanoparticles: A new approach to upgrade cancer diagnosis and treatment. Nanoscale Res. Lett. 2021, 16, 88. [Google Scholar] [CrossRef] [PubMed]
- Liao, Q.; Kim, E.J.; Tang, Y.; Xu, H.; Yu, D.G.; Song, W.; Kim, B.J. Rational design of hyper-crosslinked polymers for biomedical applications. J. Polym. Sci. 2024, 62, 1517–1535. [Google Scholar] [CrossRef]
- Mohamed, K.; Benitto, J.J.; Vijaya, J.J.; Bououdina, M. Recent advances in ZnO-based nanostructures for the photocatalytic degradation of hazardous, non-biodegradable medicines. Crystals 2023, 13, 329. [Google Scholar] [CrossRef]
- Anjum, S.; Hashim, M.; Malik, S.A.; Khan, M.; Lorenzo, J.M.; Abbasi, B.H.; Hano, C. Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers 2021, 13, 4570. [Google Scholar] [CrossRef] [PubMed]
- Rafique, M.S.; Rafique, M.; Tahir, M.B.; Hajra, S.; Nawaz, T.; Shafiq, F. Synthesis methods of nanostructures. In Nanotechnology and Photocatalysis for Environmental Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 45–56. [Google Scholar]
- Fatima, H.; Jin, Z.Y.; Shao, Z.; Chen, X.J. Recent advances in ZnO-based photosensitizers: Synthesis, modification, and applications in photodynamic cancer therapy. J. Colloid Interface Sci. 2022, 621, 440–463. [Google Scholar] [CrossRef]
- Chawla, U.; Dahiya, D.; Kumar, Y.; Bala, A.; Genwa, M.; Agasti, N.; Tandon, S.; Singh, S.P.; Meena, P. A Review on ZnO-based Targeted Drug Delivery System. Lett. Drug Des. Discov. 2024, 21, 397–420. [Google Scholar] [CrossRef]
- Lama, S.; Merlin-Zhang, O.; Yang, C. In vitro and in vivo models for evaluating the oral toxicity of nanomedicines. Nanomaterials 2020, 10, 2177. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Yan, Y.; Jayaraman, S.; Rajagopal, P.; Natarajan, P.M.; Umapathy, V.R.; Gopathy, S.; Roy, J.R.; Sadagopan, J.C.; Thalamati, D. A review on advancements in the application of starch-based nanomaterials in biomedicine: Precision drug delivery and cancer therapy. Int. J. Biol. Macromol. 2024, 265, 130746. [Google Scholar] [CrossRef] [PubMed]
- Vagena, I.-A.; Gatou, M.-A.; Theocharous, G.; Pantelis, P.; Gazouli, M.; Pippa, N.; Gorgoulis, V.G.; Pavlatou, E.A.; Lagopati, N. Functionalized ZnO-Based Nanocomposites for Diverse Biological Applications: Current Trends and Future Perspectives. Nanomaterials 2024, 14, 397. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Liu, B.; Yu, L.; Tong, Y.; Yan, M.; Zhang, R.; Han, W.; Hao, Y.; Shangguan, L.; Zhang, S. Research progresses in preparation methods and applications of zinc oxide nanoparticles. J. Alloys Compd. 2023, 956, 170316. [Google Scholar] [CrossRef]
- Choi, S.C.; Lee, D.K.; Sohn, S.H. Effects of experimental configuration on the morphology of two-dimensional ZnO nanostructures synthesized by thermal chemical-vapor deposition. Crystals 2020, 10, 517. [Google Scholar] [CrossRef]
- Li, Y.; Huang, B.; Liu, Y.; Lan, L.; Ji, Z. Sb2Se3/CdS/ZnO photodetectors based on physical vapor deposition for color imaging applications. Opt. Lett. 2023, 48, 2583–2586. [Google Scholar] [CrossRef] [PubMed]
- Haider, A.J.; Jabbar, A.A.; Ali, G.A. A review of pure and doped ZnO nanostructure production and its optical properties using pulsed laser deposition technique. J. Phys. Conf. Ser. 2021, 1795, 012015. [Google Scholar] [CrossRef]
- Ait hssi, A.; Amaterz, E.; Labchir, N.; Atourki, L.; Bouderbala, I.Y.; Elfanaoui, A.; Benlhachemi, A.; Ihlal, A.; Bouabid, K. Electrodeposited ZnO nanorods as efficient photoanodes for the degradation of rhodamine B. Phys. Status Solidi (A) 2020, 217, 2000349. [Google Scholar] [CrossRef]
- Stachowicz, M.; Sajkowski, J.; Pietrzyk, M.; Faye, D.N.; Magalhaes, S.; Alves, E.; Reszka, A.; Pieniążek, A.; Kozanecki, A. Investigation of interdiffusion in thin films of ZnO/ZnCdO grown by molecular beam epitaxy. Thin Solid Films 2023, 781, 140003. [Google Scholar] [CrossRef]
- Li, Z.; Yu, X.; Zhu, Y.; Liu, S.; Wen, X.; Lu, H.; Wang, C.; Li, X.; Li, M.-Y.; Yang, Y. High performance ZnO quantum dot (QD)/magnetron sputtered ZnO homojunction ultraviolet photodetectors. Appl. Surf. Sci. 2022, 582, 152352. [Google Scholar] [CrossRef]
- Ali, R.S.; Sharba, K.S.; Jabbar, A.M.; Chiad, S.S.; Abass, K.H.; HabubiP, N.F. Characterization of ZnO thin film/p-Si fabricated by vacuum evaporation method for solar cell applications. Neuroquantology 2020, 18, 26. [Google Scholar] [CrossRef]
- Millán Ordóñez, E.; Mota, N.; Guil-López, R.; Garcia Pawelec, B.; Fierro, J.L.G.; Navarro Yerga, R.M. Direct synthesis of dimethyl ether on bifunctional catalysts based on Cu–ZnO (Al) and supported H3PW12O40: Effect of physical mixing on bifunctional interactions and activity. Ind. Eng. Chem. Res. 2021, 60, 18853–18869. [Google Scholar] [CrossRef]
- Marín Ramírez, O.A.; Real, S.C.; Vega, N.C.; Tirado, M.C.; Comedi, D.M. ZnO Nanostructures Synthesized by Vapor Transport and Liquid Phase Synthesis Techniques: Growth and Properties. Sci. Rev. 2020, 1, 6–23. [Google Scholar]
- Arya, S.; Mahajan, P.; Mahajan, S.; Khosla, A.; Datt, R.; Gupta, V.; Young, S.-J.; Oruganti, S.K. Influence of processing parameters to control morphology and optical properties of Sol-Gel synthesized ZnO nanoparticles. ECS J. Solid State Sci. Technol. 2021, 10, 023002. [Google Scholar] [CrossRef]
- Ghodrati, M.; Mousavi-Kamazani, M.; Zinatloo-Ajabshir, S. Zn3V3O8 nanostructures: Facile hydrothermal/solvothermal synthesis, characterization, and electrochemical hydrogen storage. Ceram. Int. 2020, 46, 28894–28902. [Google Scholar] [CrossRef]
- Bekele, B.; Degefa, A.; Tesgera, F.; Jule, L.T.; Shanmugam, R.; Priyanka Dwarampudi, L.; Nagaprasad, N.; Ramasamy, K. Green versus chemical precipitation methods of preparing zinc oxide nanoparticles and investigation of antimicrobial properties. J. Nanomater. 2021, 2021, 9210817. [Google Scholar] [CrossRef]
- Zhang, X.; Han, Y.; Liu, W.; Pan, N.; Li, D.; Chai, J. A novel synthesis of hexagonal cylinder-like ZnO with an excellent performance by a surfactant-free microemulsion-hydrothermal method. J. Ind. Eng. Chem. 2021, 97, 326–336. [Google Scholar] [CrossRef]
- Shkir, M.; Palanivel, B.; Khan, A.; Kumar, M.; Chang, J.-H.; Mani, A.; AlFaify, S. Enhanced photocatalytic activities of facile auto-combustion synthesized ZnO nanoparticles for wastewater treatment: An impact of Ni doping. Chemosphere 2022, 291, 132687. [Google Scholar] [CrossRef] [PubMed]
- Huo, D.; Chen, B.; Li, M.; Meng, G.; Lei, Y.; Zhu, C. Template-assisted fabrication of Ag-nanoparticles@ ZnO-nanorods array as recyclable 3D surface enhanced Raman scattering substrate for rapid detection of trace pesticides. Nanotechnology 2021, 32, 145302. [Google Scholar] [CrossRef]
- Yalcin, M. Microwave-assisted synthesis of ZnO nanoflakes: Structural, optical and dielectric characterization. Mater. Res. Express 2020, 7, 055019. [Google Scholar] [CrossRef]
- Al-Wasidi, A.S.; Naglah, A.; Kalmouch, A.; Adam, A.M.A.; Refat, M.; Moustafa, G. Preparation of Cr2O3, MnO2, Fe2O3, NiO, CuO, and ZnO oxides using their glycine complexes as precursors for in situ thermal decomposition. Egypt. J. Chem. 2020, 63, 1109–1118. [Google Scholar]
- Abdulrahman, A.F.; Abd-Alghafour, N. Synthesis and characterization of ZnO nanoflowers by using simple spray pyrolysis technique. Solid·State Electron. 2022, 189, 108225. [Google Scholar] [CrossRef]
- Raha, S.; Ahmaruzzaman, M. ZnO nanostructured materials and their potential applications: Progress, challenges and perspectives. Nanoscale Adv. 2022, 4, 1868–1925. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.A.; Krithiga, T.; Manigandan, S.; Sathish, S.; Renita, A.A.; Prakash, P.; Prasad, B.N.; Kumar, T.P.; Rajasimman, M.; Hosseini-Bandegharaei, A. A focus to green synthesis of metal/metal based oxide nanoparticles: Various mechanisms and applications towards ecological approach. J. Clean. Prod. 2021, 324, 129198. [Google Scholar] [CrossRef]
- Haghighat, M.; Alijani, H.Q.; Ghasemi, M.; Khosravi, S.; Borhani, F.; Sharifi, F.; Iravani, S.; Najafi, K.; Khatami, M. Cytotoxicity properties of plant-mediated synthesized K-doped ZnO nanostructures. Bioprocess Biosyst. Eng. 2022, 45, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Suba, S.; Vijayakumar, S.; Vidhya, E.; Punitha, V.; Nilavukkarasi, M. Microbial mediated synthesis of ZnO nanoparticles derived from Lactobacillus spp: Characterizations, antimicrobial and biocompatibility efficiencies. Sens. Int. 2021, 2, 100104. [Google Scholar] [CrossRef]
- Waqif, H.; Munir, N.; Farrukh, M.A.; Hasnain, M.; Sohail, M.; Abideen, Z. Algal macromolecular mediated synthesis of nanoparticles for their application against citrus canker for food security. Int. J. Biol. Macromol. 2024, 263, 130259. [Google Scholar] [CrossRef] [PubMed]
- Balčiūnaitienė, A.; Štreimikytė, P.; Puzerytė, V.; Viškelis, J.; Štreimikytė-Mockeliūnė, Ž.; Maželienė, Ž.; Sakalauskienė, V.; Viškelis, P. Antimicrobial activities against opportunistic pathogenic bacteria using green synthesized silver nanoparticles in Plant and Lichen Enzyme-Assisted Extracts. Plants 2022, 11, 1833. [Google Scholar] [CrossRef] [PubMed]
- Barani, M.; Masoudi, M.; Mashreghi, M.; Makhdoumi, A.; Eshghi, H. Cell-free extract assisted synthesis of ZnO nanoparticles using aquatic bacterial strains: Biological activities and toxicological evaluation. Int. J. Pharm. 2021, 606, 120878. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Singh, G.; Singh, J. Sustainable synthesis of biogenic ZnO NPs for mitigation of emerging pollutants and pathogens. Environ. Res. 2023, 219, 114952. [Google Scholar] [CrossRef]
- Pomastowski, P.; Król-Górniak, A.; Railean-Plugaru, V.; Buszewski, B. Zinc oxide nanocomposites—Extracellular synthesis, physicochemical characterization and antibacterial potential. Materials 2020, 13, 4347. [Google Scholar] [CrossRef] [PubMed]
- Murali, M.; Gowtham, H.; Shilpa, N.; Singh, S.B.; Aiyaz, M.; Sayyed, R.; Shivamallu, C.; Achar, R.R.; Silina, E.; Stupin, V. Zinc oxide nanoparticles prepared through microbial mediated synthesis for therapeutic applications: A possible alternative for plants. Front. Microbiol. 2023, 14, 1227951. [Google Scholar] [CrossRef] [PubMed]
- Aadnan, I.; Zegaoui, O.; Daou, I.; da Silva, J.C.E. Synthesis and physicochemical characterization of a ZnO-Chitosan hybrid-biocomposite used as an environmentally friendly photocatalyst under UV-A and visible light irradiations. J. Environ. Chem. Eng. 2020, 8, 104260. [Google Scholar] [CrossRef]
- Aldeen, T.S.; Mohamed, H.E.A.; Maaza, M. ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity. J. Phys. Chem. Solids 2022, 160, 110313. [Google Scholar] [CrossRef]
- Akintelu, S.A.; Folorunso, A.S. A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications. BioNanoScience 2020, 10, 848–863. [Google Scholar] [CrossRef]
- Gorup, L.F.; Amorin, L.H.; Camargo, E.R.; Sequinel, T.; Cincotto, F.H.; Biasotto, G.; Ramesar, N.; La Porta, F.d.A. Methods for design and fabrication of nanosensors: The case of ZnO-based nanosensor. In Nanosensors for Smart Cities; Elsevier: Amsterdam, The Netherlands, 2020; pp. 9–30. [Google Scholar]
- Wojnarowicz, J.; Chudoba, T.; Lojkowski, W. A review of microwave synthesis of zinc oxide nanomaterials: Reactants, process parameters and morphologies. Nanomaterials 2020, 10, 1086. [Google Scholar] [CrossRef]
- Sağlam, H.K.; Sarıtaş, S.; Ertugrul, M. Effect of Various Precursors on ZnO Thin Films by USP Technique. Erzincan Univ. J. Sci. Technol. 2021, 14, 926–935. [Google Scholar] [CrossRef]
- Droepenu, E.K.; Wee, B.S.; Chin, S.F.; Kok, K.Y.; Maligan, M.F. Zinc oxide nanoparticles synthesis methods and its effect on morphology: A review. Biointerface Res. Appl. Chem. 2022, 12, 4261–4292. [Google Scholar]
- Abdullah, J.A.A.; Guerrero, A.; Romero, A. Efficient and Sustainable Synthesis of Zinc Salt-Dependent Polycrystal Zinc Oxide Nanoparticles: Comprehensive Assessment of Physicochemical and Functional Properties. Appl. Sci. 2024, 14, 1815. [Google Scholar] [CrossRef]
- Akhtar, H.; Alhamoudi, F.H.; Marshal, J.; Ashton, T.; Darr, J.A.; Rehman, I.U.; Chaudhry, A.A.; Reilly, G. Synthesis of cerium, zirconium, and copper doped zinc oxide nanoparticles as potential biomaterials for tissue engineering applications. Heliyon 2024, 10, e29150. [Google Scholar] [CrossRef]
- Saha, J.K.; Bukke, R.N.; Mude, N.N.; Jang, J. Significant improvement of spray pyrolyzed ZnO thin film by precursor optimization for high mobility thin film transistors. Sci. Rep. 2020, 10, 8999. [Google Scholar] [CrossRef]
- Szczesny, R.; Scigala, A.; Derkowska-Zielinska, B.; Skowronski, L.; Cassagne, C.; Boudebs, G.; Viter, R.; Szłyk, E. Synthesis, optical, and morphological studies of ZnO powders and thin films fabricated by wet chemical methods. Materials 2020, 13, 2559. [Google Scholar] [CrossRef] [PubMed]
- Aspoukeh, P.K.; Barzinjy, A.A.; Hamad, S.M. A novel approach to the green synthesis of zinc oxide nanorods using Thymus kotschyanus plant extract: Effect of ammonium hydroxide and precursor concentration. Nano Express 2023, 4, 045001. [Google Scholar] [CrossRef]
- Thakur, S.; Mandal, S.K. Precursor-and time-dependent morphological evolution of ZnO nanostructures for comparative photocatalytic activity and adsorption dynamics with methylene blue dye. ACS Omega 2020, 5, 16670–16680. [Google Scholar] [CrossRef]
- Shaba, E.Y.; Jacob, J.O.; Tijani, J.O.; Suleiman, M.A.T. A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Appl. Water Sci. 2021, 11, 48. [Google Scholar] [CrossRef]
- Oh, D.K.; Choi, H.; Shin, H.; Kim, K.; Kim, M.; Ok, J.G. Tailoring zinc oxide nanowire architectures collectively by catalytic vapor-liquid-solid growth, catalyst-free vapor-solid growth, and low-temperature hydrothermal growth. Ceram. Int. 2021, 47, 2131–2143. [Google Scholar] [CrossRef]
- Chang, C.; Rad, S.; Gan, L.; Li, Z.; Dai, J.; Shahab, A. Review of the sol–gel method in preparing nano TiO2 for advanced oxidation process. Nanotechnol. Rev. 2023, 12, 20230150. [Google Scholar] [CrossRef]
- Govender, K.; Boyle, D.S.; Kenway, P.B.; O′Brien, P. Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem. 2004, 14, 2575–2591. [Google Scholar] [CrossRef]
- Boyle, T.J.; Bunge, S.D.; Andrews, N.L.; Matzen, L.E.; Sieg, K.; Rodriguez, M.A.; Headley, T.J. Precursor structural influences on the final ZnO nanoparticle morphology from a novel family of structurally characterized zinc alkoxy alkyl precursors. Chem. Mater. 2004, 16, 3279–3288. [Google Scholar] [CrossRef]
- Yusoff, A.H.; Salimi, M.N.; Jamlos, M.F. A review: Synthetic strategy control of magnetite nanoparticles production. Adv. Nano Res. 2018, 6, 1. [Google Scholar]
- Cojocaru, L.; Olivier, C.; Toupance, T.; Sellier, E.; Hirsch, L. Size and shape fine-tuning of SnO2 nanoparticles for highly efficient and stable dye-sensitized solar cells. J. Mater. Chem. A 2013, 1, 13789–13799. [Google Scholar] [CrossRef]
- Weng, Z.; Xu, Y.; Gao, J.; Wang, X. Research progress of stimuli-responsive ZnO-based nanomaterials in biomedical applications. Biomater. Sci. 2023, 11, 76–95. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, J.W.; Martinez, E.; Louka, P.; Wingett, D.G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv. 2010, 7, 1063–1077. [Google Scholar] [CrossRef]
- Kunjiappan, S.; Pavadai, P.; Vellaichamy, S.; Ram Kumar Pandian, S.; Ravishankar, V.; Palanisamy, P.; Govindaraj, S.; Srinivasan, G.; Premanand, A.; Sankaranarayanan, M. Surface receptor-mediated targeted drug delivery systems for enhanced cancer treatment: A state-of-the-art review. Drug Dev. Res. 2021, 82, 309–340. [Google Scholar] [CrossRef]
- Vyas, K.; Rathod, M.; Patel, M.M. Insight on nano drug delivery systems with targeted therapy in treatment of oral cancer. Nanomed. Nanotechnol. Biol. Med. 2023, 49, 102662. [Google Scholar] [CrossRef] [PubMed]
- Amgoth, C.; Phan, C.; Banavoth, M.; Rompivalasa, S.; Tang, G. Polymer properties: Functionalization and surface modified nanoparticles. In Role of Novel Drug Delivery Vehicles in Nanobiomedicine; IntechOpen: London, UK, 2019. [Google Scholar]
- Rafeeq, H.; Hussain, A.; Ambreen, A.; Waqas, M.; Bilal, M.; Iqbal, H.M. Functionalized nanoparticles and their environmental remediation potential: A review. J. Nanostructure Chem. 2022, 12, 1007–1031. [Google Scholar] [CrossRef]
- Batool, M.; Khurshid, S.; Daoush, W.M.; Siddique, S.A.; Nadeem, T. Green synthesis and biomedical applications of ZnO nanoparticles: Role of PEGylated-ZnO nanoparticles as doxorubicin drug carrier against MDA-MB-231 (TNBC) cells line. Crystals 2021, 11, 344. [Google Scholar] [CrossRef]
- Bao, J.; Zhang, Q.; Duan, T.; Hu, R.; Tang, J. The fate of nanoparticles in vivo and the strategy of designing stealth nanoparticle for drug delivery. Curr. Drug Targets 2021, 22, 922–946. [Google Scholar] [CrossRef]
- Caldorera-Moore, M.E.; Liechty, W.B.; Peppas, N.A. Responsive theranostic systems: Integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc. Chem. Res. 2011, 44, 1061–1070. [Google Scholar] [CrossRef]
- Canta, M.; Cauda, V. The investigation of the parameters affecting the ZnO nanoparticle cytotoxicity behaviour: A tutorial review. Biomater. Sci. 2020, 8, 6157–6174. [Google Scholar] [CrossRef]
- Wingett, D.; Louka, P.; Anders, C.B.; Zhang, J.; Punnoose, A. A role of ZnO nanoparticle electrostatic properties in cancer cell cytotoxicity. Nanotechnol. Sci. Appl. 2016, 9, 29–45. [Google Scholar] [CrossRef]
- Srivastav, A.K.; Dhiman, N.; Khan, H.; Srivastav, A.K.; Yadav, S.K.; Prakash, J.; Arjaria, N.; Singh, D.; Yadav, S.; Patnaik, S. Impact of surface-engineered ZnO nanoparticles on protein corona configuration and their interactions with biological system. J. Pharm. Sci. 2019, 108, 1872–1889. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Sun, P.; Liang, Y.; Ma, Y.; Qin, Z.; Cui, S. In-situ fabrication of polyelectrolyte-CSH superhydrophilic coatings via layer-by-layer assembly. Chem. Eng. J. 2014, 253, 198–206. [Google Scholar] [CrossRef]
- Sapsford, K.E.; Algar, W.R.; Berti, L.; Gemmill, K.B.; Casey, B.J.; Oh, E.; Stewart, M.H.; Medintz, I.L. Functionalizing nanoparticles with biological molecules: Developing chemistries that facilitate nanotechnology. Chem. Rev. 2013, 113, 1904–2074. [Google Scholar]
- Lee, C.-M.; Jeong, H.-J.; Kim, D.W.; Sohn, M.-H.; Lim, S.T. The effect of fluorination of zinc oxide nanoparticles on evaluation of their biodistribution after oral administration. Nanotechnology 2012, 23, 205102. [Google Scholar] [CrossRef] [PubMed]
- Yakimova, R.; Selegård, L.; Khranovskyy, V.; Pearce, R.; Lloyd Spetz, A.; Uvdal, K. ZnO materials and surface tailoring for biosensing. Front. Biosci. (Elite Ed.) 2012, 4, 254–278. [Google Scholar] [CrossRef]
- Cozzens, Y. Functionalization of Gold and Zinc Oxide Nanoparticles with Thiol-Containing Biomolecules and Polymers. Doctoral Dissertation, University of Massachusetts Lowell, Lowell, MA, USA, 2023. [Google Scholar]
- Zhang, Y.; R Nayak, T.; Hong, H.; Cai, W. Biomedical applications of zinc oxide nanomaterials. Curr. Mol. Med. 2013, 13, 1633–1645. [Google Scholar] [CrossRef]
- Kumar, S.G.; Rao, K.K. Zinc oxide based photocatalysis: Tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. Rsc Adv. 2015, 5, 3306–3351. [Google Scholar] [CrossRef]
- Singh, T.A.; Das, J.; Sil, P.C. Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Adv. Colloid Interface Sci. 2020, 286, 102317. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gao, S.; Wang, S.; Xu, Z.; Wei, L. Zinc oxide nanoparticles induce toxicity in CAL 27 oral cancer cell lines by activating PINK1/Parkin-mediated mitophagy. Int. J. Nanomed. 2018, 13, 3441–3450. [Google Scholar] [CrossRef]
- Marunganathan, V.; Kumar, M.S.K.; Kari, Z.A.; Giri, J.; Shaik, M.R.; Shaik, B.; Guru, A. Marine-derived κ-carrageenan-coated zinc oxide nanoparticles for targeted drug delivery and apoptosis induction in oral cancer. Mol. Biol. Rep. 2024, 51, 89. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Singh, S. Non-invasive oral cancer detection from saliva using zinc oxide-reduced graphene oxide nanocomposite based bioelectrode. MRS Commun. 2019, 9, 1227–1234. [Google Scholar] [CrossRef]
- Shaik, M.R.; Kandaswamy, K.; Guru, A.; Khan, H.; Giri, J.; Mallik, S.; Shah, M.A.; Arockiaraj, J. Targeted piperine-coated zinc oxide nanoparticle induces the biofilm inhibition of dental pathogens and apoptosis of oral cancer through the BCL-2/BAX/P53 signaling pathway. BMC 2024. preprint. [Google Scholar] [CrossRef]
- Tayyeb, J.Z.; Priya, M.; Guru, A.; Kishore Kumar, M.S.; Giri, J.; Garg, A.; Agrawal, R.; Mat, K.B.; Arockiaraj, J. Multifunctional curcumin mediated zinc oxide nanoparticle enhancing biofilm inhibition and targeting apoptotic specific pathway in oral squamous carcinoma cells. Mol. Biol. Rep. 2024, 51, 423. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, K.; Sellappan, S.; Alahmadi, T.A.; Almoallim, H.S.; Natarajan, N.; Veeraraghavan, V.P. Green synthesized zinc oxide nanoparticles from Cinnamomum verum bark extract inhibited cell growth and induced caspase-mediated apoptosis in oral cancer KB cells. J. Drug Deliv. Sci. Technol. 2022, 74, 103577. [Google Scholar] [CrossRef]
- Wang, S.-W.; Lee, C.-H.; Lin, M.-S.; Chi, C.-W.; Chen, Y.-J.; Wang, G.-S.; Liao, K.-W.; Chiu, L.-P.; Wu, S.-H.; Huang, D.-M. ZnO nanoparticles induced caspase-dependent apoptosis in gingival squamous cell carcinoma through mitochondrial dysfunction and p70S6K signaling pathway. Int. J. Mol. Sci. 2020, 21, 1612. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, O.; Marunganathan, V.; Kumar, M.S.K.; Mohan, M.; Shaik, M.R.; Shaik, B.; Guru, A.; Mat, K. Zinc oxide nanoparticles functionalized with cinnamic acid for targeting dental pathogens receptor and modulating apoptotic genes in human oral epidermal carcinoma KB cells. Mol. Biol. Rep. 2024, 51, 352. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, S.; Mahmoudvand, H.; Shakibaei, M.; Mousavi, S.A.H.; Sepahvand, A. Antifungal effects of zinc nanoparticles green synthesized by Lavandula angustifolia extract, alone and combined with nystatin against Candida albicans, a major cause of oral candidiasis. J. HerbMed Pharmacol. 2022, 11, 540–545. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M. Preferential cytotoxicity of ZnO nanoparticle towards cervical cancer cells induced by ROS-mediated apoptosis and cell cycle arrest for cancer therapy. J. Nanoparticle Res. 2016, 18, 219. [Google Scholar] [CrossRef]
- He, G.; Nie, J.-J.; Liu, X.; Ding, Z.; Luo, P.; Liu, Y.; Zhang, B.-W.; Wang, R.; Liu, X.; Hai, Y. Zinc oxide nanoparticles inhibit osteosarcoma metastasis by downregulating β-catenin via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway. Bioact. Mater. 2023, 19, 690–702. [Google Scholar] [CrossRef]
- Hou, J.; Liu, H.; Zhang, S.; Liu, X.; Hayat, T.; Alsaedi, A.; Wang, X. Mechanism of toxic effects of Nano-ZnO on cell cycle of zebrafish (Danio rerio). Chemosphere 2019, 229, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.J.; Ahamed, M.; Kumar, S.; Khan, M.M.; Ahmad, J.; Alrokayan, S.A. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int. J. Nanomed. 2012, 7, 845–857. [Google Scholar]
- Al-darwesh, M.Y.; Ibrahim, S.S.; Mohammed, M.A. A Review on Plant Extract Mediated Green Synthesis of Zinc oxide Nanoparticles and Their biomedical Applications. Results Chem. 2024, 7, 101368. [Google Scholar] [CrossRef]
- Xie, X.; Zhang, Y.; Li, F.; Lv, T.; Li, Z.; Chen, H.; Jia, L.; Gao, Y. Challenges and opportunities from basic cancer biology for nanomedicine for targeted drug delivery. Curr. Cancer Drug Targets 2019, 19, 257–276. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.K.; Mishra, H.; Ekielski, A.; Talegaonkar, S.; Vaidya, B. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discov. Today 2017, 22, 1825–1834. [Google Scholar] [CrossRef] [PubMed]
- León-Buitimea, A.; Garza-Cárdenas, C.R.; Román-García, M.F.; Ramírez-Díaz, C.A.; Ulloa-Ramírez, M.; Morones-Ramírez, J.R. Nanomaterials-based combinatorial therapy as a strategy to combat antibiotic resistance. Antibiotics 2022, 11, 794. [Google Scholar] [CrossRef] [PubMed]
- Khaitan, T.; Prajapati, V. Zinc oxide eugenol paste as a dressing material on surgical raw wounds after wide excision of oral potentially malignant disorders: A prospective controlled clinical trial. Indian J. Dent. Sci. 2021, 13, 98–102. [Google Scholar] [CrossRef]
- Rosenberg, M.; Visnapuu, M.; Vija, H.; Kisand, V.; Kasemets, K.; Kahru, A.; Ivask, A. Selective antibiofilm properties and biocompatibility of nano-ZnO and nano-ZnO/Ag coated surfaces. Sci. Rep. 2020, 10, 13478. [Google Scholar] [CrossRef] [PubMed]
- Gholamali, I.; Yadollahi, M. Doxorubicin-loaded carboxymethyl cellulose/Starch/ZnO nanocomposite hydrogel beads as an anticancer drug carrier agent. Int. J. Biol. Macromol. 2020, 160, 724–735. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, L.; Li, Y.; Wang, J.; He, X.; Zhang, J.; Qiao, Y.; Wu, H.; Zhu, L. Targeting and sensitizing MDR cancer by an MMP2 and pH dual-responsive ZnO-based nanomedicine. Cancer Nanotechnol. 2023, 14, 56. [Google Scholar] [CrossRef]
- Khabir, Z.; Holmes, A.M.; Lai, Y.-J.; Liang, L.; Deva, A.; Polikarpov, M.A.; Roberts, M.S.; Zvyagin, A.V. Human epidermal zinc concentrations after topical application of ZnO nanoparticles in sunscreens. Int. J. Mol. Sci. 2021, 22, 12372. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Casas, B.; Galdamez-Martinez, A.; Gutierrez-Flores, J.; Ibañez, A.B.; Panda, P.K.; Santana, G.; de la Vega, H.A.; Suar, M.; Rodelo, C.G.; Kaushik, A. Bio-acceptable 0D and 1D ZnO nanostructures for cancer diagnostics and treatment. Mater. Today 2021, 50, 533–569. [Google Scholar] [CrossRef]
- Cevaal, P.M.; Ali, A.; Czuba-Wojnilowicz, E.; Symons, J.; Lewin, S.R.; Cortez-Jugo, C.; Caruso, F. In vivo T cell-targeting nanoparticle drug delivery systems: Considerations for rational design. ACS Nano 2021, 15, 3736–3753. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zeng, S.; Ji, W.; Yao, H.; Lin, L.; Cui, H.; Santos, H.A.; Pan, G. Emerging theranostic nanomaterials in diabetes and its complications. Adv. Sci. 2022, 9, 2102466. [Google Scholar] [CrossRef]
- Xu, X.; Li, T.; Jin, K. Bioinspired and biomimetic nanomedicines for targeted cancer therapy. Pharmaceutics 2022, 14, 1109. [Google Scholar] [CrossRef]
S. No | Synthesis Methods | Advantages | Limitations | |
---|---|---|---|---|
1. | Physical Synthesis Methods | Chemical Vapor Deposition | High control over film thickness, morphology, and crystallinity; suitable for large-scale production. | Requires high temperatures and sophisticated equipment; relatively high cost. |
Physical Vapor Deposition | Can deposit thin films without chemical reactions; versatile and precise. | Often requires vacuum conditions; may involve high-energy processes. | ||
Pulsed Laser Deposition | High purity and control over film composition; suitable for complex structures. | Expensive equipment; may have low deposition rates. | ||
Electrodeposition | Low-cost and scalable; allows fine control over nanostructure growth. | Limited to conductive substrates; may produce uneven films. | ||
Molecular Beam Epitaxy | Atomic-level control over layer composition; produces high-quality epitaxial films. | Extremely expensive and complex; low throughput. | ||
Sputtering | High deposition rates; good for uniform thin films. | Requires vacuum and high-energy ions; potential for target contamination. | ||
Evaporation | Simple and straightforward; effective for thin films. | Limited to materials that can be evaporated; control over thickness can be challenging. | ||
Magnetron Sputtering | Enhanced ionization efficiency; better control over film properties. | More complex setup than regular sputtering; still requires a vacuum. | ||
Physical Mixing and Milling | Simple and cost-effective; good for producing nanoparticles. | Limited control over particle size and shape; potential contamination. | ||
Gas Phase Synthesis | Precise control over nanoparticle size; scalable for large production. | Requires specialized equipment; can be energy-intensive. | ||
2. | Chemical Synthesis Methods | Sol–Gel Method | Versatile; allows fine control over nanoparticle size and distribution. | Requires careful control of reaction conditions; potential for organic solvent use. |
Hydrothermal/ Solvothermal Synthesis | High-quality nanostructures; precise control over shape and size. | High pressure and temperature conditions; longer reaction times. | ||
Precipitation Method | Simple and cost-effective; scalable. | Limited control over particle size and morphology; potential for agglomeration. | ||
Microemulsion Method | Good control over particle size and uniformity; mild reaction conditions. | Use of surfactants and organic solvents; may require complex purification. | ||
Combustion Synthesis | Fast and energy-efficient; high-purity products. | Exothermic reactions can be difficult to control; potential safety hazards. | ||
Template-Assisted Methods | Allows precise control over nanostructure shape and size. | Removal of templates can be challenging; potential for template contamination. | ||
Microwave-Assisted Synthesis | Rapid heating; reduced reaction times and energy consumption. | Requires microwave-specific equipment; uneven heating can occur. | ||
Complex Precursor Decomposition | Controlled release of ZnO; precise control over particle properties. | Complex synthesis and purification steps; potential for by-product formation. | ||
Spray Pyrolysis | Suitable for large-scale production; uniform thin films. | Requires high-temperature substrates; control over particle size can be difficult. | ||
3. | Biological Synthesis Methods | Plant-Mediated Synthesis | Eco-friendly and sustainable; uses natural reducing agents. | Variability in plant extract composition; scalability can be challenging. |
Microbial Synthesis | Green synthesis route; utilizes natural biological processes. | Requires careful control of microbial culture conditions; slower reaction times. | ||
Algal-Mediated Synthesis | Utilizes bioactive compounds from algae; environmentally friendly. | Limited control over particle size and shape; scalability issues. | ||
Enzyme-Assisted Synthesis | High specificity and mild reaction conditions; eco-friendly. | High cost of enzymes; potential for enzyme denaturation. | ||
Cell-Free Extracts | Uses a rich mixture of biomolecules; green synthesis. | Variability in extract composition; reproducibility can be challenging. | ||
Biogenic Precipitation | Mimics natural mineralization processes; sustainable. | Slow process; limited control over particle properties. | ||
Extracellular Synthesis | Simple and eco-friendly; avoids cell lysis. | Lower yields; potential for extracellular contamination. | ||
Intracellular Synthesis | Protects nanoparticles from aggregation; precise control within cells. | Requires cell lysis for extraction; complex purification needed. | ||
Biocomposite Formation | Enhanced properties for specific applications; eco-friendly. | Complex synthesis; limited scalability. | ||
Green Synthesis Approaches | Low toxicity and biocompatibility; environmentally sustainable. | Often slower and less efficient; may have lower yields. |
S. No | Comparison and Analysis | Physical Methods | Chemical Methods | Biological Methods |
---|---|---|---|---|
1. | Control Over Nanostructure Properties | Physical methods generally offer precise control over size, morphology, and crystallinity but require sophisticated equipment and conditions. | Chemical methods provide versatility and scalability but often involve hazardous chemicals. | Biological methods are environmentally friendly and sustainable but can be less controllable and slower. |
2. | Scalability | They are more easily scalable for industrial production. | They are more easily scalable for industrial production. | Biological methods face challenges in scaling up due to their variability in biological materials. |
3. | Environmental Impact | Physical methods can be energy-intensive. | Chemical methods often involve toxic reagents and solvents. | Biological methods are the most environmentally friendly, using natural agents and mild conditions. |
4. | Cost | Chemical methods vary widely in cost depending on the specific process and reagents used. | Physical methods often involve high initial capital investments in equipment. | Biological methods are typically less expensive due to the use of natural and renewable resources, but the complexity of control can increase costs. |
5. | Application Suitability | Physical methods are suitable for high-tech applications requiring precise control, such as electronics and optoelectronics. | Chemical methods are versatile and suitable for a wide range of applications, including catalysis and sensing. | Biological methods are particularly suitable for biomedical and environmental applications due to their biocompatibility and eco-friendliness. |
S. No. | Materials | Size | Preparation Method | Characterization Methods | Biological Studies (In Vitro/In Vivo) | Key Findings in Oral Cancer | References |
---|---|---|---|---|---|---|---|
1. | ZnO nanoparticles | ~50 nm | Not specified | TEM, XRD, DLS | In vitro | Promoting toxicity in CAL 27 oral cancer cell lines via the activation of PINK1/Parkin-mediated mitophagy. | [84] |
2. | ZnO-CR Nanoparticles | 100–200 nm | Green synthesis method | SEM, FTIR, XRD | In vitro | Induced apoptosis in KB cells. | [85] |
3. | ZnO—reduced graphene oxide (ZnO–rGO) nanocomposite | 3–5 nm | Sol–gel process | Powder XRD, UV–Vis spectroscopy, EDX, TEM | In vitro | The ZnO–rGO nanocomposite exhibited high sensitivity and a low detection limit for IL8, demonstrating its potential for non-invasive oral cancer detection. | [86] |
4. | ZnO—Piperine Nanoparticles (ZnO-PIP NPs) | 50–100 nm | Green synthesis | UV spectroscopy, SEM, XRD, FTIR, EDAX | In vitro | Induction of apoptosis in oral cancer cells via the BCL2/BAX/P53 signaling pathway. | [87] |
5. | ZnO-CU Nanoparticles (Curcumin-mediated ZnO NPs) | 100–200 nm | Green synthesis | SEM, EDAX, UV spectroscopy, FTIR, XRD | In vitro | Induced apoptosis in oral cancer cells through the BCL2/BAX/P53 pathway. | [88] |
6. | ZnO Nanoparticles (CV-ZnONPs) | 30–45 nm | Green synthesis | UV–Vis spectrophotometry, XRD, TEM, EDX, FT-IR, PL | In vitro | Inhibited KB cell viability, decreased MMP, enhanced ROS levels, induced apoptotic cell death, altered nuclear morphology, increased caspase activity. | [89] |
7. | ZnO Nanoparticles | 50–100 nm | Synthesized using a precipitation method | TEM, XRD, FTIR | In vitro | ZnO-NPs induced growth inhibition and apoptosis in gingival squamous cell carcinoma (GSCC) cells but not in normal cells. | [90] |
8. | ZnO-CA Nanoparticles | 100–200 nm | Chemical synthesis | SEM, FTIR, XRD | In vitro | ZnO-CA NPs exhibit dose-dependent anticancer activity against Human Oral Epidermal Carcinoma KB cells. | [91] |
9. | ZnO Nanoparticles | 30–80 nm | Green synthesis | UV-VIS spectral analysis, EDX analysis, XRD pattern analysis, FTIR analysis, SEM analysis | In vitro | Potent antifungal effect against Candida albicans, synergistic effect with nystatin, cytotoxic to oral cancer cells but non-toxic to normal cells. | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, J.; Natarajan, P.M.; Umapathy, V.R.; Swamikannu, B.; Sivaraman, N.M.; Krishnasamy, L.; Palanisamy, C.P. Advancements in the Synthesis and Functionalization of Zinc Oxide-Based Nanomaterials for Enhanced Oral Cancer Therapy. Molecules 2024, 29, 2706. https://doi.org/10.3390/molecules29112706
Pei J, Natarajan PM, Umapathy VR, Swamikannu B, Sivaraman NM, Krishnasamy L, Palanisamy CP. Advancements in the Synthesis and Functionalization of Zinc Oxide-Based Nanomaterials for Enhanced Oral Cancer Therapy. Molecules. 2024; 29(11):2706. https://doi.org/10.3390/molecules29112706
Chicago/Turabian StylePei, Jinjin, Prabhu Manickam Natarajan, Vidhya Rekha Umapathy, Bhuminathan Swamikannu, Nandini Manickam Sivaraman, Lakshmi Krishnasamy, and Chella Perumal Palanisamy. 2024. "Advancements in the Synthesis and Functionalization of Zinc Oxide-Based Nanomaterials for Enhanced Oral Cancer Therapy" Molecules 29, no. 11: 2706. https://doi.org/10.3390/molecules29112706
APA StylePei, J., Natarajan, P. M., Umapathy, V. R., Swamikannu, B., Sivaraman, N. M., Krishnasamy, L., & Palanisamy, C. P. (2024). Advancements in the Synthesis and Functionalization of Zinc Oxide-Based Nanomaterials for Enhanced Oral Cancer Therapy. Molecules, 29(11), 2706. https://doi.org/10.3390/molecules29112706