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Abstract: A molecule–electrode interface with different coupling strengths is one of the greatest
challenges in fabricating reliable molecular switches. In this paper, the effects of bridging manner
on the transport behaviors of a dimethyldihydropyrene/cyclophanediene (DHP/CPD) molecule
connected to two graphene nanoribbon (GNR) electrodes have been investigated by using the
non-equilibrium Green’s function combined with density functional theory. The results show that
both current values and ON/OFF ratios can be modulated to more than three orders of magnitude
by changing bridging manner. Bias-dependent transmission spectra and molecule-projected self-
consistent Hamiltonians are used to illustrate the conductance and switching feature. Furthermore,
we demonstrate that the bridging manner modulates the electron transport by changing the energy
level alignment between the molecule and the GNR electrodes. This work highlights the ability to
achieve distinct conductance and switching performance in single-molecular junctions by varying
bridging manners between DHP/CPD molecules and GNR electrodes, thus offering practical insights
for designing molecular switches.

Keywords: molecular switches; bridging manner; dimethyldihydropyrene/cyclophanediene; density
functional theory

1. Introduction

The insatiable demand for smaller and faster devices has driven the rapid develop-
ment of semiconductor technology in recent decades, leading to the emergence of new
manufacturing techniques and functional component requirements. These novel compo-
nents must be compatible with existing infrastructure to minimize costs. Therefore, one
potential solution for achieving miniaturization in electronic devices is the utilization of
molecular devices, which employ molecules as fundamental functional elements [1–4].
Due to their greater control flexibility compared to Si crystals, molecular systems offer
opportunities for tailored functionality based on their unique chemical properties. This
opens up possibilities for a wide range of molecular-based optoelectronic applications
such as molecular switches [5–7], molecular rectifiers [8–10], negative differential resistance
(NDR) devices [11–13] and spin filters [14–16].

A switch is an indispensable component for nearly all electronic devices. Molecular
switches play a crucial role in fundamental information systems, such as logic gates and
information storage [17,18]. Designing stable and reliable molecular switches has been a
paramount challenge in the field of molecular electronics over the past two decades [19–21].
However, only a few molecular systems have demonstrated the ability to act as stable
bidirectional switches during the process of electron conduction.

Photoresponsive molecules can be reversibly switched between two conductive states
through light stimulation and are commonly utilized as functional units of molecular
switches. Dimethyldihydropyrene/cyclophanediene (DHP/CPD) has been identified as
a promising candidate for photoswitches [22–24], with the ring-closed form DHP and
the ring-open form CPD being able to reversibly convert to each other via conrotatory
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electrocyclization under ultraviolet/visible (UV/Vis) light irradiation (Figure 1a). In 2013,
Roldan et al. investigated the switching performance of a DHP derivative molecule using
a mechanically controlled break junction (MCBJ) technique and found that the switching
ratio between the two isomers could exceed 104 [25]. In recent years, Han et al. discovered
through theoretical simulations that incorporating an [e]-fusion of aromatic systems on a
conjugated macrocycle in DHP/CPD-based molecular devices can enhance their switching
performance, with benzo-fused molecular devices achieving up to a 103 maximum switch-
ing ratio [26]. These works demonstrate the potential of the DHP/CPD molecule in the
construction of high-performance molecular switching devices.
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The conductance of molecular devices is influenced by various variables in addition
to the inherent characteristics of the molecule. One of the key challenges in fabricating
reliable molecular switches lies in obtaining molecule–electrode interfaces with different
coupling strengths using various methods, such as self-assembled monolayers (SAMs) or
MCBJs [27]. Numerous theoretical studies have also confirmed the significant influence of
the molecule–electrode interaction on electronic transport. Berdiyorov et al. investigated
the effect of halogen terminal groups on the electronic transport of aromatic and alkanethi-
olate molecules [28]. Zhang et al. discovered that linkage sites between molecules and gold
electrodes dramatically modulate the switching performance of DHP/CPD junctions [29].
However, exposure to UV/Vis light can induce changes in the interactions between the
core molecules and metallic electrode materials, which further impact the performance of
molecular switches [30]. For example, the switching process in a diarylethene molecule
junction self-assembled on gold electrodes is unidirectional and it can only change from the
ring-closed form to the ring-open form, which can be attributed to the strong coupling be-
tween the diarylethene molecule and the gold electrodes [31]. Carbon-based materials such
as carbon nanotubes and graphene have been alternatively employed in molecular devices
for achieving stable and controlled contact [32–35]. Graphene nanoribbons (GNRs) possess
high electron mobility and stable chemical properties, making them ideal replacements
for traditional electrode materials. However, connecting molecules with GNR electrodes
involves various bridging configurations, resulting in a more complex electronic structure
and molecule–electrode interaction compared to molecule–metal electrode interfaces. Jia
et al. successfully achieved a stable bidirectional reversible single-molecule switch by
introducing three CH2 groups between the diarylethene molecule and GNR electrodes to
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weaken the molecule–electrode coupling [36]. Yang et al. reported, from theoretical simula-
tions, that different lateral linking groups including –BO2, –CH3, –COOH, –NH2 and –OH
significantly affect conductance and switching ratio in biphenyl-2,2′-dithiol devices with
GNR electrodes [37]. Therefore, understanding the effect of the molecule–GNR electrode
interaction on the performance of molecular switches is of utmost importance in order to
design and fabricate highly stable and high-performance molecular switches.

In this work, inspired by the aforementioned experimental and theoretical works,
we aim to investigate the effect of the bridging manner between the molecule and the
GNR electrodes on the electronic transport and switching performance of photoswitches.
The DHP/CPD photochromic isomers are chosen as our test bed with GNRs serving as
electrodes. The linkage groups consist solely of carbon and hydrogen atoms, including
CH2, CH=CH and C≡C groups. Additionally, we also consider the influence of the
electrode edge structure. The electric transport and switching properties of single-molecular
junctions, where the DHP/CPD molecule is positioned between two GNR electrodes in
different bridging manners, are investigated by using the nonequilibrium Green’s function
(NEGF) method in combination with density functional theory (DFT). Our computational
results demonstrate that altering the bridging manner significantly modulates the electronic
transport behaviors of DHP/CPD molecular junctions, including conductance and current
switching ratio. These modulations in transport properties can be attributed to variations
in energy alignment between the electronic states of the molecule and the electrodes caused
by bridging manner.

2. Results and Discussion

The schematic diagram of the molecular junction in this work is shown in Figure 1b.
The molecular junction can be divided into three parts: the left electrode, the central region
and the right electrode. Obviously, there are four bridging configurations of DHP/CPD
contacted to zigzag graphene nanoribbon (ZGNR) electrodes as shown in Figure 2. The
bridging manners are named as J1, J2, J3 and J4 configuration respectively, where J3 is the
bridging manner adopted by Han et al. in similar DHP/CPD molecular junctions [26].
The closed/open forms of J1 to J4 configurations of the molecular junctions are denoted as
J1c/J1o to J4c/J4o for convenience. It is evident that J1 and J2 exhibit distinct electrode edge
structures, wherein a vacancy at the C atom at the electrode in J2 exists, with all connected
C atoms being saturated by H atoms. Meanwhile, J2, J3 and J4 share identical electrode
edge structures, except for the bonding between the molecule and the GNR electrodes
via C-C, C=C and C≡C bonds, and the optimized bond lengths are 1.53 Å, 1.37 Å and
1.24 Å respectively. These values directly reflect variations in bridging strength between
the molecule and the electrodes. Consequently, we can investigate how the electrode
edge structure and covalent bond strength between molecule and electrode influence the
transport behavior through the four different bridging manners.

The calculated current–voltage (I–V) characteristics of the molecular junctions in the
bias voltage range of [0, 2.0 V] are presented in Figure 3. It can be observed that the current
values of J1c and J2c gradually increase between 0 V and 1.5 V before experiencing a
rapid increase beyond 1.5 V (Figure 3a,b). J1o and J2o exhibit negligible current variations
throughout the entire bias range. The current of J3c demonstrates a noticeable increase
across the entire bias range, while the current of J3o exhibits a slower trend compared to J3c
and only shows significant enhancement when the bias exceeds 1.3 V (Figure 3c). Similar
variations in current values are observed for J4c and J4o as seen for J3. Notably, both J1
and J2, where molecules are connected to electrodes via CH2 groups, exhibit, as expected,
significantly lower currents than J3 and J4, which are connected via conjugated groups.
For instance, at a bias voltage of 2.0 V, the current values for ring-closed configurations
(J1c~J4c) are 571 nA, 855 nA, 44,960 nA and 41,000 nA, respectively. With only a difference
in bridging strength, the tunneling current in J3c is more than 52 times larger than that in
J2c at a bias voltage of 2.0 V alone. Moreover, the current magnitude flow through J3c is
nearly 80 times greater than that through J1c. For the ring-open configuration, the current
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values of J1o~J4o are 5 nA, 0.7 nA, 4366 nA and 4350 nA, respectively. The bridging manner
exhibits a current modulation exceeding three orders of magnitude, particularly with J3o
and J4o displaying even higher currents than J1c and J2c. This result suggests that the
electronic conductance of DHP/CPD molecular junctions is significantly influenced by the
manner in which they are bridged.
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The current through the ring-closed configurations is consistently observed to be
larger than that of the ring-open forms, thereby indicating significant switching effects
in J1~J4 junctions (Figure 3). To quantitatively characterize the switching performance of
these devices, we define the current ON/OFF ratio as follows: R(V) = Iclose/Iopen, where
Iclose and Iopen represent the current values through the ring-closed and ring-open forms
at the same bias V, respectively. As shown in Figure 3, J1~J4 exhibit maximum ON/OFF
ratios of 112, 10,623, 244 and 328, respectively. Notably, J2 achieves an exceptionally high
ON/OFF ratio exceeding 500 across the entire range of biases (Figure 3b), whereas J1 only
achieves a maximum value of 112 with a difference only in electrode edge. In contrast, J3
and J4 demonstrate better switching performance (ON/OFF ratio > 100) within the bias
range [0.1, 1.0 V] and [0.1, 1.2 V], respectively, compared to the higher bias range due to the
pronounced increase in current at high bias voltages for J3o and J4o (Figure 3c,d). These
results indicate that the switching performance of DHP/CPD devices can be significantly
modulated by altering the bridging manner. In addition, the zero-bias transmission at Fermi
level (EF) of J1~J4 is shown in Table 1, where the zero-bias transmission ratio is defined as:
Tclose/Topen. According to Table 1, the order of Tclose/Topen is ranked as: J2 > J4 > J3 > J1,
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perfectly aligning with their respective maximum ON/OFF ratios. This suggests that the
zero-bias transmission ratio can also be used to assess switching performance effectively.
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Table 1. Zero-bias transmission at EF of J1~J4 junctions.

J1 J2 J3 J4

Tclose 4.44 × 10−6 1.46 × 10−4 0.44 0.50
Topen 2.66 × 10−6 2.41 × 10−7 2.17 × 10−3 2.28 × 10−3

Tclose/Topen 2 606 203 219

To elucidate the origin of the conductance disparity among the molecular junctions,
we have performed calculations on the zero-bias transmission spectra (Figure 4) and the
bias-dependent transmission spectra (Figure 5) of J1~J4. As shown in Figure 4, both J1c and
J2c exhibit two distinct narrow transmission peaks within the energy range [−1.5, 1.5 eV],
which are significantly distanced from the EF, indicating their limited conductance at low
bias voltage. With the increase of bias voltage, the transmission peaks around 1.2 eV of J1c
and J2c gradually shift towards and eventually enter into the bias window after reaching
1.5 V, resulting in a rapid increase in current flow (as shown in Figure 3a,b). Conversely, no
discernible transmission peak is observed within the energy range [−1.5, 1.5 eV] at zero
bias for either J1o or J2o (Figure 4), even when the bias increases to 2.0 V, hence explaining
their low conductance within the [0, 2.0 V] bias range (Figure 3a,b). In contrast, multiple
broad and strong transmission peaks can be identified in the spectra of J3c and J4c and, in
particular, the peaks at EF play a major role in low-bias electronic transport (Figure 4). With
an increasing bias voltage, the transmission peak at EF for J3c and J4c splits into two distinct
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peaks, which remain within the bias window while exhibiting enhanced intensity and
width; this is the driving force behind the continuous increase in current flow through J3c
and J4c (Figure 5). It is noteworthy that, despite the utilization of diverse simulation details,
the transmission spectral characteristics of J3 exhibit consistency with the computational
findings reported by Han et al. for similar molecular junctions [26], thereby substantiating
the reliability of our calculations. In contrast, the transmission spectra of J3o and J4o exhibit
no transmission peaks at low biases within the bias window (Figure 5). However, after
reaching 1.5 V, two transmission peaks at about -0.8 eV and 0.7 eV enter the bias window,
thereby enhancing the current under high bias conditions and reducing the ON/OFF ratio
in J3 and J4 (Figure 3c,d). Consequently, it is evident that the transmission spectra of J1
and J2 differ significantly from those of J3 and J4, indicating that both the broadening and
intensity of the transmission peaks depend on the bridging manner. In addition, despite
having different bonding strengths, similar conductive properties are observed between J3
and J4 due to their comparable transmission spectra.
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From the comparison of transmission spectra, it is found that the difference in conduc-
tance between these molecular junctions with different bridging manners mainly depends
on the transmission peak near EF. To further reveal the origin of these transmission peaks,
the projected density of states (PDOS) spectra of J1c~J4c under 0 V and 1.0 V bias are plotted
to demonstrate the contribution of each component to the transmission peaks (Figure 6a,b).
As depicted in Figure 6a, strong PDOS peaks at EF originating from the GNR electrodes are
observed in all four junctions, while the PDOS peaks at EF contributed by the molecule are
only detected in J3c and J4c, albeit with weak intensity. Notably, distinct differences can
be observed in the shape of PDOS peaks contributed by the GNR electrodes between J1c
and other junctions due to variations in electrode edge structure. With an increase in bias
voltage, all PDOS peaks at EF split into two separate peak groups and shift towards the
boundaries of the bias window (Figure 6b), which aligns with characteristics exhibited in
the transmission spectra of J3c and J4c. Meanwhile, the PDOS peaks contributed by the
GNR electrodes (especially the left GNR) in J3c and J4c exhibit multiple peaks and a broader
energy distribution, thereby overlapping with the split peaks of the molecule (at about
−0.4 eV and 0.25 eV). However, no PDOS peaks contributed by the molecule are observed
within the bias window for J1c and J2c. This indicates that the transmission peak is strongly
dependent on the overlapping region of the PDOS peaks originating from the molecule
and electrodes that reflects the energy-matching degree of electronic state between them.
The local density of states (LDOS) distributions provide further clarity on this matter, as
depicted in Figure 6c, as the zero-bias electronic states at EF of J1c and J2c are all localized
on the electrodes, thus failing to establish an electron transmission channel. In contrast, the
electronic states of J3c and J4c are distributed across both electrodes and the molecule; such
delocalized electronic states are favorable for electron transport. Therefore, the electronic
state distribution on the molecule plays a pivotal role in facilitating electron transmission.
The establishment of an effective channel for electron transport necessitates matching
energy levels between the molecule and electrodes, and altering the bridging manner can
modulate the energy level alignment between the molecule and electrodes. This elucidates
why introducing CH2 groups weakens the molecule–electrode coupling [36,38,39], as it
reduces the energy level matching between the molecule and electrodes.

Through the density of state analysis, it has been observed that the electronic state
distribution of the same molecule undergoes change due to the influence of the bridging
manner. To clarify the influence of the bridging manner on the molecular electronic struc-
tures, the molecule-projected self-consistent Hamiltonians (MPSH) technique is utilized
to compute the eigenvalues of DHP/CPD in J1~J4 (presented in Table 2). In this analysis,
the self-consistent Hamiltonian of the entire junction is projected onto the molecule moiety,
excluding the electrodes and bridging groups, to assess the influence of different bridging
manners on the eigenvalues of identical molecules. As shown in Table 2, the highest
occupied molecular orbital (HOMO) and the lowest molecular orbital (LUMO) of the same
molecule are shifted due to different bridging manners. Specifically, the LUMO energies of
J3 and J4 are lower than those of J1 and J2, resulting in smaller energy gaps. The energy gaps
for closed/open forms with distinct bridging manners follow this order: J1 > J2 > J4 > J3, which is
generally consistent with the current magnitude trend (Figure 3). For the same bridging manner,
the energy gap of the ring-open configuration is always larger than that of the closed one due to
the destruction of the central benzene rings during DHP conversion to CPD, resulting in
reduced planar conjugation within the molecule (Figure 1a). Therefore, the relationship
between the HOMO–LUMO gap and conductance in molecular junctions J1~J4 can be
simply summarized as follows: a smaller energy gap corresponds to higher conductance.
This observation is consistent with our previous findings, as molecules with smaller energy
gaps exhibit energy levels that are in closer proximity to the EF of electrodes, which means
that the energy levels between the molecule and the electrodes are better matched.
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Figure 6. Projected density of states (PDOS) spectra for the central region of J1c~J4c junctions when
the bias voltage is set to 0 V (a) and 1.0 V (b). The projection subspace of the scattering region can be
divided into three parts, i.e., the left GNR (including the left bridging group), the molecule and the
right GNR (including the right bridging group). Local density of states (LDOS) for the central region
at EF under 0 V bias (c). An isovalue of 0.005 is chosen for all plots.

Table 2. MPSH eigenvalues of DHP/CPD molecule moiety in J1~J4 junctions.

MPSH Eigenvalues (eV)
Closed Form Open Form

HOMO LUMO Gap HOMO LUMO Gap

J1 −0.74 1.17 1.91 −1.02 1.38 2.40
J2 −0.76 1.10 1.86 −0.36 1.67 2.03
J3 −0.72 0.56 1.28 −1.02 0.72 1.74
J4 −0.66 0.74 1.40 −1.12 0.84 1.96

Furthermore, the self-consistent Hamiltonian of J1~J4 junctions are projected onto
the central regions to calculate the spatial distribution of frontier molecular orbitals to
display the interaction between the GNR electrodes and the DHP/CPD molecule more
clearly (as shown in Figure 7). It is clear that the HOMO and LUMO of J1 and J2 junctions,
including the closed and open form, are predominantly localized at the electrodes or
molecule segment, which serve as nonconducting channels. Conversely, both the HOMO
and LUMO of J3 and J4 exhibit delocalization across the entire junction, enabling more
efficient electron transport. It is worth noting that the orbitals localized on the molecule (the
HOMO of J1c) are delocalized on the molecular moiety, and those localized on the electrode
(the other orbitals of J1 and J2) are also delocalized on their respective electrode parts, thus
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indicating that their localization characteristics primarily depend on the bridging group.
The spatial distribution of frontier molecular orbitals closely resembles that of the LDOS
distribution of J1c~J4c (Figure 6c), further demonstrating that the bridging CH2 group can
weaken the molecule-electrode interaction, while conjugated CH=CH and C≡C groups
facilitate stronger molecule-electrode coupling.
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3. Computational Methods

All calculations are performed by DFT and NEGF methods implemented in Quantu-
mATK software (version P-2019.03-SP1) [40]. The Perdew–Burke–Ernzerhof (PBE) func-
tional [41] of the generalized gradient approximation (GGA) is used to calculate the ex-
change and correlation energies of valence electrons, while the optimized norm-conserving
Vanderbilt pseudopotentials [42] are adopted to describe the ionic nuclei. The mesh cutoff
is set to 250 Ry and a 1 × 1 × 300 grid is chosen for the Brillouin-zone k-sampling. To
prevent the influence of boundary conditions in the x- and y-axes perpendicular to the
electron transmission direction, we take a vacuum layer of 15 Å in these two directions.

The tunneling current through the molecular junctions can be calculated by the
Landauer–Büttiker formula [43]:

I(V) =
2e
h

∫
T(E, V)[ f (E − µL)− f (E − µR)]dE (1)

where V is the bias voltage applied to the molecular junctions, T(E, V) is the bias-dependent
transmission coefficient, f (E − µL)/ f (E − µR) is the Fermi–Dirac distribution function of
the left/right electrodes and µL/µR is the chemical potential of the left/right electrode.

4. Conclusions

In summary, we have investigated the electronic transport properties of four all-carbon
molecular junctions, wherein a DHP/CPD molecule is connected to GNR electrodes in
different bridging manners. Our calculations demonstrate that the electronic transport
and switching performance of the molecular junctions are significantly influenced by the
bridging manner. By altering the structure of the electrode edge and the bond level of
the bridging group, both current values and ON/OFF ratios can be modulated to more
than three orders of magnitude. Particularly for the molecular junction connected by a
C–C bond with an edge C atom vacancy at the electrode, an ON/OFF ratio exceeding 103

is achieved over a wide bias voltage range. The junctions connected by C=C bonds and
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C≡C bonds exhibit similar conductance, which significantly surpass that of C–C bond
connections, and display better switching performance (ON/OFF ratio > 100) in the low
bias range (<1.0 V). Importantly, altering the bridge manner can modulate the energy level
alignment between the molecule and the electrodes, which is the fundamental determinant
for the change in conductance of a single-molecule junction. This study demonstrate how
varying bridging configurations between electrodes and core molecules can yield distinct
transport and switching characteristics in single-molecule junctions, thereby highlighting
the importance of the choice of bridging manner when designing molecular devices.
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