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Abstract: 2,6-pyridine dicarboxylic acid (DPA) is an exceptional biomarker of notorious anthrax
spores. Therefore, the rapid, sensitive, and selective quantitative detection of DPA is extremely
significant and urgent. This paper reports a Zn(II) metal–organic framework with the formula of
{[Zn6(NDA)6(DPBT)3] 2H2O·3DMF}n (MOF-1), which consists of 2,6-naphthalenedicarboxylic acid
(2,6-NDA), 4,7-di(4-pyridyl)-2,1,3-benzothiadiazole (DPBT), and Zn(II) ions. Structural analysis
indicated that MOF-1 is a three-dimensional (3D) network which crystallized in the monoclinic
system with the C2/c space group, revealing high pH, solvent, and thermal stability. Luminescence
sensing studies demonstrated that MOF-1 had the potential to be a highly selective, sensitive, and
recyclable fluorescence sensor for the identification of DPA. Furthermore, fluorescent test paper was
made to detect DPA promptly with color changes. The enhancement mechanism was established by
the hydrogen-bonding interaction and photoinduced electron transfer transition between MOF-1 and
DPA molecules.

Keywords: metal–organic framework; turn-on; biomarker; fluorescence sensor

1. Introduction

Biomarkers refer to biochemical indicators that can label structural or functional
changes or potential changes in systems, organs, tissues, cells, and subcellular systems.
The timely and reliable monitoring of biomarkers is crucial for preventing the outbreaks of
related diseases [1,2]. As a unique component of anthrax spores, 2,6-Dipicolinic acid (DPA)
is regarded as an appropriate biomarker for Bacillus spores [3]. Bacillus anthracis belongs
to the aerobic Bacillus genus and can cause anthrax in animals such as sheep, cattle, horses,
and humans. Bacillus anthracis spores have a tenacious vitality and can adapt to harsh
environments such as vacuum, high temperature, and radiation [4]. According to reports,
inhaling more than 104 spores of Bacillus anthracis can lead to death without treatment with
timely medication within 24–48 h [5]. Bacillus anthracis not only causes food poisoning and
health problems, but is also a potential biological reagent [6,7]. Consequently, accurately
identifying the DPA level is essential for preventing disease outbreaks and safeguarding
homeland security. DPA quantification has been evaluated by Raman spectroscopy [8],
polymerase chain reaction (PCR) [9], electrochemical methods [10], liquid chromatogra-
phy [11], etc. However, the majority of the above methods are typically constrained by the
inefficiencies of time-consumption pretreatment and high equipment costs.
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Benefitting from their stable and various structures, tunable pore size, facile modi-
fication of pore surface, and intrinsic features, metal–organic frameworks (MOFs) have
displayed great potential applications in gas adsorption, catalysis, drug delivery, organic
molecule identification, and pollutant recognition [12–18]. In particular, a fluorescence MOF
can effectively monitor target analytes in real time, which has attracted widespread atten-
tion in the field of biological systems [19–22]. Among them, the accurate and rapid monitor-
ing of altered biochemical indicators in the content of biomarkers is of great significance for
the diagnosis and even therapy of disease [23,24]. For example, a three-dimensional zinc(II)-
MOF assembly by conjugated (E)-4,4′-(ethene-1,2-diyl)bis[(N-pyridin-3-yl)benzamide] and
1,3,5-benzenetricarboxylic acid was reported by Wang’s group. The Zn-MOF can be used
as an effective fluorescence sensor for sensing the biomarker 3-nitrotyrosinea (3-NT) with a
KSV value of 6.596 × 104 M−1 [25]. Recently, Fan’s group proposed a Ni(II) metal–organic
framework under a mixed-ligand method, and subsequently proved its excellent sensing
properties in detecting 3-NT biomarker and HA biomarker in real samples [26]. As of
now, “turn-off” responses (where fluorescence intensity decreases) are frequently used in
documented examples to detect any analytes; on the contrary, “turn-on” responses (where
fluorescence intensity increases) are uncommon [27]. Compared with “turn-off” responses,
the signal change in fluorescence enhancement is easier to detect, and the fluorescence
of the probe itself is weak, which can reduce the background signal and improve the
sensitivity of the probe. At present, most fluorescence probes in applications belong to the
type of enhanced fluorescence probes [28–30]. The above studies have not only verified the
feasibility of planning MOF-based luminescence sensors as biomarkers, but also pointed
out the direction for the next steps of research.

From the perspective of construction, multi-carboxylic organic ligands containing large
π-conjugated aromatic structures and d10 metals are chosen to increase the diversity of
MOF structures and the effectiveness of fluorescence recognition [31]. Firstly, π-conjugated
organic linkers commonly provide the stability to form the metal–organic framework.
Then, free π-electrons in the conjugated structure can freely move throughout the MOF
network, reduce the HOMO-LUMO energy gap, and deliver attractive photophysical
properties to the MOF. In addition, it is difficult for the d10 metal ions which contain a
closed shell electronic configuration to realize the d–d electronic transition. The network
formed from the d10 metal ions shows high luminescent intensity. This phenomenon could
be attributed to the chelation of the metal ion by the ligand, which successfully enhances
the rigidity of the ligand and diminishes the nonradiative decay. In short, to obtain MOFs
with effective luminescent properties, Zn(II) and Cd(II) transition metal ions have been
extensively adopted [32].

In light of the aforementioned factors, we employed 2,6-naphthalenedicarboxylic
acid (2,6-NDA), 4,7-di(4-pyridyl)-2,1,3-benzothiadiazole (DPBT) as the conjugated organic
ligand, and d10 metal ions (Zn2+ ion) (Scheme 1). 2,1,3-benzothiadiazole (BTD) has unique
photophysical chemical properties: (1) a large Stokes displacement; (2) a large molar ex-
tinction coefficient; (3) high quantum yield; and (4) when stored in solution or in pure
solid form, high stability, where even after a long-time, irradiation will not fade. A series
of benzothiadiazole-MOFs have been explored in recent years [33–35]. This paper suc-
cessfully synthesized a luminescent MOF, {[Zn6(NDA)6(DPBT)3]·2H2O·3DMF}n (MOF-1),
using the solvothermal method. MOF-1 was fully characterized by means of X-ray single-
crystal diffraction, thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD),
elemental analysis, and Fourier-transform infrared spectroscopy (FT-IR). According to the
characterization analysis, MOF-1 showed good luminescence, water stability, and thermal
stability. Luminescence tests illustrated that MOF-1 could be adopted as a turn-on response
luminescent sensor for the detection of DPA in EtOH solution and fluorescence test papers.
Furthermore, the mechanism of activating luminescence enhancement was discussed from
a theoretical calculation perspective.
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Scheme 1. Molecular structures of 2,6-NDA and DPBT used for the construction of MOF-1.

2. Results
2.1. X-ray Structure Determination

At room temperature, X-ray single-crystal data of MOF-1 were collected from a
Siemens (Bruker) SMART CCD diffractometer with monochromated Mo Kα radiation
(λ = 0.71073 Å). The structure was solved using the direct method and refined by the
full-matrix least-squares method on F2 with the SHELXTL software package [36,37]. PLA-
TON [38] and SQUEEZE [39] were employed to calculate the diffraction contribution of the
solvent molecules. Further crystallographic data and structural details are listed in Table 1
and Table S1, respectively. The CCDC number is 2324216 (MOF-1) (see Appendix A).

Table 1. Crystallographic data for the MOF-1.

MOF-1

Empirical formula C120H64N12O24S3Zn6
Formula weight 2546.23
Crystal system monoclinic

Space group C2/c
a, Å 17.6526 (17)
b, Å 19.6903 (19)
c, Å 37.142 (3)

α, deg 90
β, deg 90.106 (2)
γ, deg 90
V, Å3 12,910 (2)

Z 4
ρcalcd, g/cm−3 1.310

T/K 298.15
µ, mm−1 1.214
2θ, deg 3.794 to 50.038
F (000) 5152.0

Index ranges −20 ≤ h ≤ 20, −23 ≤ k ≤ 23, −26 ≤ l ≤ 44
Data/restraints/parameters 11,387/2403/779

GOF (F2) 1.067
R1

a,wR2
b (I > 2σ(I)) 0.1070, 0.2790

R1
a, wR2

b (all data) 0.1591, 0.3075

R1
a = Σ||Fo| − |Fc||/ΣFo|. wR2

b = [Σw(Fo
2 − Fc

2)2/Σw(Fo
2)2]1/2.
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2.2. Crystal Structure of MOF-1

Structural analysis indicated that MOF-1 was a three-dimensional (3D) network, which
crystallized in the monoclinic system with the C2/c space group. The binuclear Zn(II) ion
was surrounded by two DPBT ligands and four deprotonated 2,6-NDA ligands, adopting
bidentate bridge (µ2-η1η1) coordination mode (Figure 1a). The central Zn(III) ion was
five-coordinated with a slightly irregular quadrangular pyramid coordination geometry
occupied by eight oxygen atoms (O1, O3, O6, O7, N3) (Figure 1b). The bond distances of Zn–
O/Zn-N were between 2.024 (7) and 2.066 (6) Å. The O(N)–Zn–O bond angles were located
in the range of 87.0 (3) to 159.5 (3)◦. The above data were similar to the values of the reported
Zn-MOFs [40]. Furthermore, in the framework of MOF-1, the binuclear {Zn2(COO)4} as
secondary building units (SBUs) with a non-bonding distance of Zn· · ·Zn of 2.979 Å were
observed (Figure 1c). Along the ab plane, SBUs were linked by four deprotonated 2,6-
NDA ligands to form a two-dimensional (2D) structure, which was further connected by
DPBT ligands to extend to a 3D network along c axial (Figure 1d). Within the framework,
weak hydrogen bonding was observed between benzothiadiazole groups and protonated
carboxylate groups of the ligands, such as C–H· · ·O and C–H· · ·N interactions.
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Figure 1. (a) The repeat unit MOF-1 (Zn2 center core); (b) coordination geometry of Zn(II) and 2D of
MOF-1 through SBU and 2,6-NDA; (c) 3D of MOF-1 through DBPT along c axial; (d) interpenetrating
3D structure of MOF-1. (For clarity, the disordered and redundant atoms were omitted).

2.3. Photoluminescence Properties

At room temperature, the luminescence properties of the free ligand 2,6-NDA, DPBT,
and MOF-1 were thoroughly tested. As shown in Figure 2a, the carboxylate ligand 2,6-
NDA exhibited prominent emission peaks with maximum values at 403 nm upon excitation
at 362 nm, and the DPBT displayed emission peaks at 474 nm with λex = 363 nm [41].
Compared with the emission peaks of free ligand 2,6-NDA and DPBT, the emissions peak
of MOF-1 at 495 nm showed an obvious red-shift. This phenomenon should be attributed
to the electron transition by coordination between O/N and Zn2+ in the framework [42].
Moreover, the CIE chromaticity diagrams of MOF-1, 2,6-NDA and DPBT are also drawn in
Figure 2b. MOF-1, 2,6-NDA, and DPBT showed blue, purple, and green light with peaks
of 495 nm, 403 nm, and 474 nm, respectively. In addition, the CIE coordinates of MOF-1,
2,6-NDA, and DPBT are (0.1470, 0.2142), (0.1548, 0.0641), and (0.1756, 0.3978), respectively.
In addition, the emission peak of MOF-1 was 456 nm in ethanol solution, as shown in
Figure S1.
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Figure 2. (a) The excitation and emission spectrum of solid-state 2,6-NDA, DPBT, and MOF-1 at room
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2.4. FT-IR, PXRD analysis and Stability of MOF-1

The IR spectra of MOF-1 and the free ligands were examined in the range of
4000–400 cm−1 and shown in Figure S2. The characteristic peaks of 2,6-NDA at 1683 cm−1,
1425 cm−1 could be attributed to the asymmetric and symmetric vibrations of the C=O
bonds. Compared with the IR absorption spectra of 2,6-NDA, the characteristic vibrational
peaks in MOF-1 shifted to 1637 cm−1 and 1407 cm−1, suggesting that the -COOH group
undergoes deprotonation to form the organometallic framework [43]. Furthermore, the ob-
served peak at 1292 cm−1 vanished in MOF-1, verifying the coordination with Zn(II). This
FT-IR spectra information was consistent with the behavior of the X-ray crystal structure.

Powder X-ray diffraction (PXRD) analysis was used to characterize the purity and
stability of the framework structure of MOF-1. The experimental data matched well with
the simulated data, indicating that the obtained bulk sample was pure (Figure 3a). In order
to evaluate the solvent and acid-base stabilities of MOF-1, the ground powder of the MOF-1
sample was soaked in common solvents and an acidic/alkaline aqueous solution (pH = 3,
5, 9, and 13) for 3 days, and the obtained PXRD remained in its original state (Figure 3a,b).
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Figure 3. (a) PXRD patterns of MOF-1 after soaking in common solvent and (b) different pH aqueous
solution for three days.

The thermal stability of MOF-1 was carried out by thermogravimetric analyzer (TGA)
from 30 to 800 ◦C under a N2 atmosphere (Figure S3). The first weight loss of 9.25%
(cal. 9.11%) was attributed to the reduction in uncoordinated solvent molecules (three
DMF and two H2O) at 200 ◦C. The abrupt weight loss at about 400 ◦C could be induced
by decomposition of organic ligands and the collapse of the framework, indicating the
comparatively exceptional thermal stability of MOF-1.
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2.5. Fluorescence Detection of DPA

To precisely detect DPA and monitor the disease caused by Bacillus, luminescent
experiments were carried out towards on MOF-1. Selectivity is an important characteristic
of a luminescent sensor. Common ions or similar structure molecules Mg(NO3)2, NaNO3,
Zn(NO3)2, KI, p-Cresol, 1,3-Dinitrobenzene (1,3-DNB), 2,5-thiophenedicarboxylic acid
(2,5-TDCA), L-α-phenylglycine (L-Phg), glutamic acid (Glu), and L-Serine (L-Ser) were
selected for the selectivity experiment. A 2 mg sample of MOF-1 was dispersed in ethanol
with the 10−3 M analytes mentioned above. The luminescence intensities of MOF-1 were
prominently dependent on the intrinsic features of the analytes (Figure 4a,b). Particularly,
the DPA solution had a significant effect on the change in the fluorescence intensity of MOF-
1, which greatly enhanced its fluorescence intensity. Compared with the blank emission
of MOF-1 at 456 nm, a blue-shift of 13 nm from 456 nm to 443 nm was generated after
being supplemented with DPA. On the contrary, no significant changes in the fluorescence
spectra of MOF-1 were noticed in the presence of other analytes. According to this, MOF-1
could be a viable turn-on fluorescence sensor for accurately identifying DPA.
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Subsequently, the relationship between fluorescence intensity and DPA dosage was
evaluated by quantitative experiments. As illustrated in Figure 5a, accompanied by adding
DPA (1 × 10−2 M) to the suspension solution of MOF-1, the emission intensity showed a
gradual increase and a blue shift. To further evaluate the emitting color change in MOF-1
toward DPA concentration, the CIE coordinates of the emission spectra of MOF-1 accom-
panied by an increase in DPA concentration were calculated (Figure 5b). The computed
chromaticity gradually changes from green to blue, and there is a good consistency between
DPA concentration and CIE coordinates. This could confirm the practicability of quantita-
tively detecting DPA by gauging the transformation in luminescent color. This change in
solution fluorescence was also achieved through color changes observed with the naked
eye under ultraviolet light (inset of Figure 5b). The relationship between the emission
intensities of MOF-1 and the DPA concentration is illustrated in Figure 5c. At low DPA
concentrations, the fluorescence enhancement curve can be quantitatively calculated with
the Stern–Volmer equation (S-V): I0/I = 1+Ksv [M] [44] (I0/I represents the ratio of emission
intensity before and after DPA addition to MOF-1, [M] represents the concentration of DPA,
and Ksv represents the fluorescence enhancement constant). As we expected, the detection
of DPA had a satisfactory linear relationship (R2 > 0.98), and the enhancement constant
(Ksv) of MOF-1 was 1.38 × 104 M−1. Meanwhile, the detection limit was determined by the
equation (LOD): LOD = 3σ/K (σ: calculate the standard deviation of 10 standard blank
samples), and the corresponding LOD was 0.025 µM.
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It is worth noting that a few examples of MOF-based luminescent chemical sensors for
sensing DPA have been reported. To compare with the reported MOFs, the classic sensors
are listed in Table S2 [45–47]. Considering the significant complexity of the samples detected
in practical applications, the anti-interference sensing ability of MOF-1 was determined
through competitive experiments. The experiments have shown that in the presence of
other interfering substances, the emission spectra and fluorescent test strip detection still
have good recognition effects on DPA (Figures 5d and S4).

2.6. Recyclability and Visualizable Sensing

The cyclic performance of sensing is an important prerequisite for a good fluorescence
sensor in practical applications. As shown in Figure 6a, after numerous times washing
with DMF and EtOH, the sensing experiment proved that the fluorescence intensity of
the processed MOF-1 can be restored to its original intensity. The aforementioned tests
provided evidence that MOF-1 may function as a promising material with exceptional
economy for DPA sensing.

Fluorescent test papers can not only respond more quickly, but also allow for easier
visualization. Hence, fluorescent test strips were prepared by immersing the filter paper in
MOF-1 suspension and ultrasonic treatment for 30 min. Compared with blank fluorescent
test strips, the presence of DPA can be revealed through color changes when irradiated with
a 365 nm UV lamp. As depicted in Figure 6b, only the test paper titrated with DPA showed
a significant color change, which clearly supported the high selectivity of MOF-1 for DPA.
This change provided the possibility for rapid and simple testing with the naked-eye
detection of DPA in ethanol solution.
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3. Discussion
Mechanism of Luminescence Enhancing

To gain a deeper understanding of the DPA turn-on response mechanism, further
experiments including PXRD, UV-vis, FT-IR, and DFT calculation were arranged. Firstly, the
PXRD patterns and IR spectra remain unchanged after immersing in DPA for 24 h, excluding
the reasons of crystal collapse and disintegration during the sensing process (Figures S5 and
S6). Then, Figure S7 demonstrates a slight overlap between the emission bands/excitation
bands of MOF-1 and the UV–vis absorption spectra of DPA, indicating that the reason for
the fluorescence-enhanced response of MOF-1 to DPA is not mainly due to competitive
absorption mechanisms or Förster resonance energy transfer mechanisms [48].

According to earlier reports, one reason for the chemo-sensor for fluorescence quench-
ing is that the energy of the lowest unoccupied molecular orbital (LUMO) of the analyte falls
within the valence band (VB) and conduction band (CB) of the chemical sensor. When the
fluorescence intensity is enhanced due to the transfer of electrons from the chemical sensor
CB to the LUMO of the analyte, a clear contrast phenomenon can be observed. Therefore,
the Gaussian 16 program [49] was used to calculate the molecular orbitals of 2,6-NDA,
DPBT, and DPA. Single-point calculation and optimization were carried on the level of
B3LYP/def2-SVP and B3LYP/def2-TZVP [50,51], considering the DFT-D3 (BJ) dispersion
correction [52] and the SMD solvation model. The molecular orbitals were analyzed and
mapped by VMD 1.9.4 [53] combined with Multiwfn 3.8(dev) software [54]. As shown in
Figure 7, the LUMO (−2.43 eV) of 2,6-NDA and (−2.89 eV) of DPBT are lower than the
LUMO (−2.36 eV) of DPA. As a result, there will be an electron transfer from the LUMO of
DPA to the LUMO of the linker, resulting in the observed “turn-on” of luminescence. The
lifetime decay experiment can further promote researchers’ understanding of the recogni-
tion mechanism. The fluorescence lifetime of MOF-1 is 0.98 ns, and after adding DPA, the
lifetime value of MOF-1 increases to 6.09 ns. In addition, the fluorescence amplification
curve of MOF-1 (EtOH), MOF-1 (EtOH) @18 µM DPA can be observed (Figure S8), and
this series of data show the same intensification trend, indicating that this is a dynamic
turn-on mechanism.

The red shift observed in the fluorescence emission indicates substantial exciplex
formation between MOF-1 and DPA. Compared to fresh MOF-1, there is neither the ap-
pearance of new bands nor the disappearance of existing bands in the IR spectrum, which
were measured by MOF-1 after soaking in DPA solution. This indicates that there is no
coordination between DPA and MOF-1. Considering the porosity of MOF-1, these phe-
nomena are different from the common guest-induced sensing mechanism, which may be
caused by some interactions between MOF-1 and DPA absorbed on the surface of MOF-1.
The independent gradient model based on Hirshfeld partition (IGMH) [55] using the VMD
program was used to evaluate the weak intermolecular interactions such as van der Waals
distance, hydrogen bonding, and steric effects between DPA molecules and 2,6-NDA/DPBT
ligands. By distinguishing different weak interactions through color, it can be observed that
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strong hydrogen bonds are represented by the blue part between the optimized structures
of 2,6-NDA ligands with DPA (Figure 8a), while in the optimized structures of DPBT
ligands and DPA, the van der Waals distance is represented by the green part (Figure 8b).
The DFT result was further supported by the link between absorbance and DPA titration.
The UV–vis absorption value of MOF-1 gradually increases with the addition of different
amounts of DPA (Figure S9), which further illustrates the interaction between the DPA
and the MOF-1 structure. That is to say, the hydrogen bonding between DPA and the
2,6-NDA ligands can increase affinity and easily accept electrons, which is beneficial for the
charge flow in the ligand-to-ligand charge transfer process, leading to a turn-on response
at 443 nm.
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Overall, the noticeable enhancement in the emission intensity and the red shift of the
emission wavelength suggested the possibility of electron transfer from the LUMO of DPA
to MOF-1, together with the formation of hydrogen bonding interactions between DPA
and MOF-1.
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4. Materials and Methods
4.1. Reagents and Methods

2,6-NDA, DPBT, N, N-Dimethylformamide (DMF) and other organic reagents (ana-
lytical grade) were purchased from Bide Pharmatech Ltd. (Shanghai, China). Zn(NO3)2
was purchased from Aladdin Bio Chem Technology Co. Ltd. (Shanghai, China). The
raw materials were commercially purchased and did not require purification. NICOLET
5700F-IR spectrometer (Shanghai, China) was used to measure the infrared spectrum in
the range of 4000–400 cm−1. Elemental analyses were examined on a PE 2400 II analyzer.
Under a N2 atmosphere, thermal gravimetric (TG) data were collected and recorded on
a Netzsch STA-449F5 (Selbu, Germany) thermo analyzer with heating rate of 10 ◦C/min.
Powder X-ray diffraction (PXRD) was carried out using a Bruker D8 Advance diffractome-
ter with Cu-Kα radiation at room temperature. Fluorescence decay lifetime was recorded
on an Edinburgh FLS 1000 fluorescence spectrometer (Livingston, UK). All the fluorescence
spectrum tests were implemented with a Hitachi F-7000 spectrometer (Tokyo, Japan).

4.2. Synthesis of MOF-1

DPBT (2.9 mg, 0.010 mmol), 2,6-NDA (2.16 mg, 0.010 mmol), Zn(NO3)2·6H2O (11.90 mg,
0.04 mmol), and HNO3 (2 drops, 2 M) were successively added into a Teflon vessel with
a mixture of VDMF/VH2O/VCH3CN (3:4:1). After ultrasound for 30 min, the above mixture
was sealed and heated to 100 °C for one day. After cooling, yellow rodlike crystals were
obtained. Yield: 62% based on 2,6-NDA ligand. IR Spectra (KBr, m/cm−1): 3430 s, 2923 s,
1670 s, 1637 s, 1552 w, 1407 s, 1361 s, 1223 w, 1089 s, 1032 w, 822 m, 792 s, 482 s.

5. Conclusions

In summary, one Zn(II)-MOF (MOF-1) based on 2,6-naphthalenedicarboxylic acid
(2,6-NDA) and 4,7-di(4-pyridyl)-2,1,3-benzothiadiazole was effectively synthesized by a
mixed-ligand approach. MOF-1 exhibited high purity, pH stability, and thermal stability.
Luminescent experiments demonstrated that MOF-1 could be employed as a selective,
sensitive, and convenient turn-on response sensor for DPA detection. In addition, based
on the results of PXRD, UV–vis, FT-IR, XPS, and theoretical calculations, the enhancement
mechanism between MOF-1 and DPA could be summarized by photoinduced electron
transfer and hydrogen bonding interactions. The visualization of the fluorescent test paper
makes it possible for the practical application of MOF-1. More biomarker sensors will be
fabricated by our group in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29122755/s1, Figure S1: the excitation and emission
of MOF-1 in EtOH; Figure S2: IR of MOF-1 and organic ligand 2,6-NDA; Figure S3: the TGA curve
of MOF-1 under N2 atmosphere from 30 to 800 ◦C; Figure S4. interference experiments of different
analytes with and without DPA-test strips (a) and the emission spectrum curves (b). Figure S5: the
PXRD pattern of MOF-1-and the sample after sensing DPA; Figure S6: IR of MOF-1 after sensing
of DPA; Figure S7: absorption spectra of DPA and emission bands/excitation of MOF-1; Figure S8:
fluorescence lifetime of MOF-1 before and after DPA; Figure S9: absorption spectra of MOF-1
dispersed in EtOH solution after adding different concentrations of DPA; Table S1: selected bond
lengths (Å) and angles (◦) for MOF-1; Table S2: comparison of the literature reports for MOFs as
sensors of DPA.
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