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Abstract: Electrospinning is a cost-effective and flexible technology for producing nanofibers with
large specific surface areas, functionalized surfaces, and stable structures. In recent years, electrospun
nanofibers have attracted more and more attention in electrochemical biosensors due to their excellent
morphological and structural properties. This review outlines the principle of electrospinning
technology. The strategies of producing nanofibers with different diameters, morphologies, and
structures are discussed to understand the regulation rules of nanofiber morphology and structure.
The application of electrospun nanofibers in electrochemical biosensors is reviewed in detail. In
addition, we look towards the future prospects of electrospinning technology and the challenge of
scale production.
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1. Introduction

Nanofibers, as one-dimensional nanomaterials, have attracted much attention due
to their unique advantages of large specific surface areas, functionalized surfaces, and
stable structures. The large specific surface areas contribute to the excellent adsorption
performance of nanofibers [1,2]. In particular, nanofibers with suitable pore size distribution
can provide a large number of sites to accommodate the high loading of active materials [3].

The electrospinning technique is a process of spinning polymer solutions or melts
under a strong electric field. Under the action of the electric field, the spinning fluid
expands into a tiny jet that solidifies into a fiber. Electrospinning devices are simple and
have low cost. Electrospinning can produce a wide variety of materials, and the process is
controllable. These advantages make it one of the most popular techniques for producing
polymer nanofibers. In addition, carbon nanofibers can be obtained by carbonized polymer
precursors [4]. Electrospinning is also a common technique for producing composite
nanofibers. In contrast with the traditional spinning technique, a high-voltage electrostatic
field can stretch polymer solution (or melt) into nanofiber, making the diameter of the fiber
produced by electrospinning to be as small as one nanometer [5]. Moreover, the technique
is simple, cost-effective, and versatile, making it suitable for industrial production, as will
be discussed later in the review.

Nowadays, with the development of industry, more and more pollutants of inorganic
and organic contaminants have been produced. Therefore, qualitative and quantitative
analyses of these pollutants play an important role in environmental protection and food
safety [6–9]. Many techniques have been developed such as fluorescence, UV-Vis spec-
troscopy, mass spectrometry, and electroanalysis [10–14]. Among them, electrochemical
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sensors have received more and more attention due to their excellent sensitivity, accuracy,
wide detection range, easy operation, and low price [15].

In biosensors, electrospun nanofibers can be used as substrate materials or functional
components of sensors. As the base material, electrospun nanofibers can provide a large
surface area to enhance the adsorption of biomolecules, thus improving the sensitivity and
detection limit of the sensors. At the same time, the pore structure of electrospun nanofibers
is also conducive to the diffusion and transfer of biomolecules, enhancing the response
speed and stability of the sensors. In addition, electrospun nanofibers can also be used
as functional components, such as fixed carriers of biomolecules and fixed substrates of
biometric molecules. By immobilizing biomolecules or biometric molecules onto electro-
spun nanofibers, a highly sensitive and selective detection of different biomolecules can
be achieved.

In this review, we outline the principle of electrospinning technology, the regulation of
nanofiber morphology, and the application of electrospun nanofibers in electrochemical
sensors. The challenge and prospect of electrospinning technology are also prospected.

2. The Principle of the Electrospinning Technique

As shown in Figure 1A, a simple electrospinning setup requires four basic components:
a high-voltage power supply, pump, nozzle, and collector. The high-voltage power supply
provides a strong electric field between the nozzle and collector. The solution is controlled
by a pump and aggregates into droplets at the nozzle. Under the influence of the electric
field, the shape of the droplet changes and a jet is formed (Figure 1B) [16]. Then, the jet
volatilizes rapidly and tapers under the perturbation of the electric field (Figure 1C). Finally,
the jet solidifies into fibers and is collected by the collector.
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Figure 1. (A) Schematic diagram of an electrospinning device. (B) The photo shows the process
of water droplet deformation, followed by the ejection of a jet. The time at zero was taken to be
the frame in which the jet first appeared. (C) Image of the jet. The exposure time was 0.25 ms.
(B) Reprinted with permission from [16]. Copyright 2008, Elsevier. (C) Reprinted with permission
from [17]. Copyright 2000, American Institute of Physics.
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Organic polymers are the most often used materials for electrospinning. If organic
polymers do not degrade as they dissolve or melt, they can generally be used directly for
electrospinning. Depending on the functions of organic polymers, they can be divided into
the following categories: (i) As the host of electrospun nanofibers: The polymers themselves
have specific functions. For example, polyvinylidene difluoride (PVDF) nanofibers can be
directly used in piezoelectric sensors [18,19]; (ii) As the scaffold or conducting network
carrying functional materials: For example, polyacrylonitrile (PAN) nanofibers loaded with
Fe3O4 nanoparticles were used for vitamin D3 detection [20]; (iii) As a sacrificial phase:
For example, after the AgNO3/Co(Ac)2/polyvinylpyrrolidone (PVP) precursor nanofibers
were calcined, Au-Ag/Co3O4 nanofibers were prepared, and the PVP was sacrificed in
the process [21]; and (iv) As the precursor of carbon nanofibers (CNFs): Some polymers,
such as PAN and PVP, were carbonized to form CNFs after thermal treatment in an inert
atmosphere [22,23]. In addition, small molecules can also be used for electrospinning
under special conditions, and their highly concentrated solutions or pure melts can form
self-assembled structures to entangle together and behave like polymer chains [24].

In 1964, Taylor mathematically described and modeled the disintegration of drop
in an electric field [25]. As reported, as the strength of the electric field exceeded the
critical value, the droplets gradually changed to cones with a half angle of 49.3◦. Jets were
projected from these cones, which were later named as “Taylor cone”. The formation of
Taylor cones is caused by the joint influence of electric field and surface tension. Liquid
tends to be spherical under the influence of surface tension. The electric field causes the
surface of droplets to accumulate large amounts of homogenous charges. As the electric
field increases, the electrostatic repulsion on the surface of the droplet increases. When the
electrostatic repulsion is stronger than the surface tension, the droplet will deform into a
cone and form jets. After that, Taylor published two articles to preliminarily explore the
behavior of the jet in the electric field in 1966 and 1969 [26,27].

The electrospinning method is the polymer-eruption electrostatic drawing spinning
method. Firstly, the polymer solution or melt is subjected to a high-voltage electrostatic
charge ranging from several thousand to ten thousand volts, and the charged polymer
droplets are accelerated at the Taylor cone pole of the capillary under the effect of an electric
field force. When the electric field force is large enough, the polymer droplets overcome the
surface tension to form an eruptive trickle. The thin stream evaporates or solidifies in the
process of eruption and eventually falls on the receiving device to form a nonwoven-like
fiber felt. The dynamics of an electrically charged jet in an electric field are complex. When
the jet is first formed, it is stretched along the electric field. At this segment, the jet can
keep moving in a straight line. But the jet moves radially outward at a comparable velocity
because of the electrical bending instability (Figure 2A). Around the 2000s, many studies
attempted to build a physical or mathematical model of the jet at this segment [17,18,28–32].
The linear jet will bend under perturbation. The charge carried with the bend segment
moves downward and outward by the repulsion (FDO) above the bend region, and at
the same time, the charge moves upward and outward by the repulsion (FUO) below the
bend region. The result of the two forces FR is radial and increases exponentially with the
increasing degree of jet bending (Figure 2B) [16]. As a result, the jet appears as a spiral with
a cone envelope. When the jet continues to move in the electric field, the jet that has been
bent into a spiral shape will obtain the second bending instability, as indicated at the end of
the jet in Figure 2A. The jet is stretched thinner and thinner in the process.

There are many factors affecting the preparation of nanofibers by electrospinning,
which can be divided into solution properties (such as viscosity, elasticity, electrical con-
ductivity, and surface tension), control variables (such as the static voltage in the capillary,
the potential of the capillary port, and the distance between the capillary port and the
collector), and environmental parameters (such as solution temperature, air humidity and
temperature in the spinning environment, and airflow speed). The main influencing factors
include: (1) The concentration of polymer solution: The higher the concentration of polymer
solution, the greater the viscosity and the greater the external tension. The droplet cleavage
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can be weakened by increasing the external tension after leaving the nozzle. Generally,
when other conditions remain constant, the fiber diameter increases with the increase in
concentration; (2) Electric field strength: With an increase in electric field strength, the
jet of the polymer electrospinning solution has a larger outer charge density and thus
has a greater electrostatic repulsion. At the same time, the higher electric field strength
makes the jet obtain a greater acceleration degree. Both of these factors can cause the jet
and fiber to have greater tensile stress, resulting in a higher tensile strain rate, which is
conducive to the preparation of finer fibers; (3) The interval between the capillary port
and the collector: After the polymer droplets are ejected through the capillary port, they
volatilize in the air with the solvent, and the polymer is concentrated and solidified into
fibers, which are finally accepted by the receiver. As the distance between the two increases,
the diameter decreases; (4) Activity rate of electrospinning fluid: When the diameter of the
spinneret is fixed, the average jet velocity is obviously proportional to the diameter of the
fiber; (5) The condition of the collector: The condition of the collector is different, and the
condition of the produced nanofibers is also different. When the fixed collector is used, the
nanofibers appear to have random irregular scenes. When using a rotating disk collector,
the nanofibers appear in a parallel pattern. Therefore, the fibromomentum produced by
different equipment conditions is different.
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Figure 2. (A) An electrospinning jet that contained two successive electrical bending instabilities;
(B) affected by the repulsion forces between charges, the perturbation segment of the jet (the dashed
segment) is affected by the repulsion forces FUO and FDO of the lower and upper charges. The
resultant of these forces FR is in the radial direction of the jet, which makes the jet more curved.
(A) Reprinted with permission from [17]. Copyright 2000, American Institute of Physics. (B) Reprinted
with permission from [16]. Copyright 2008, Elsevier.

In addition to spiraling, the jet will also undergo other shape changes, such as branch-
ing and the formation of beads. The undulations increase as the charge density of the
jet increases. When the undulations are large enough to become unstable, the jet will
branch off. The undulations come from the combined effects of the electric Maxwell stresses
and surface tension [31]. Branching occurs more frequently in viscous solutions and at
high electric fields. In contrast, when the charge density of the jet is reduced, surface
tension will dominate in the competitive relationship between the electric field and surface
tension. Capillary instability that results in the transformation of the jet into spherical
droplets occurs.

In recent years, researchers have tried to predict the diameter of electrospun nanofibers
in various ways, including theoretically or experimentally. Gadkari summarized the
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literature on various correlations and analyzed them to obtain the relationship dependency
of the nanofiber diameter on the viscous and surface charge repulsion effects [33]. A design
of the experiments model, analyzing data based on polynomial equations without physical
meaning, was proposed by Ruiter to identify the effects of electrospinning parameters
on scaffold morphologies of poly-D,L-lactic acid [34]. The model shows that solution
concentration plays an important role in the morphology of nanofibers.

3. Regulation of Nanofibers

Diameter, as the most basic parameter of nanofibers, has always been the object of
greatest concern to researchers. A variety of investigations have been reported on the
effect of electrospinning parameters on the diameter of the nanofibers, both theoretically
and experimentally. The diameter of the nanofibers is influenced by the concentration of
polymer in solution, the type of solvent, the conductivity, as well as the feeding rate of the
solution [35,36]. The higher the concentration and viscosity of the solution, the higher the
voltage required to overcome its own surface tension to form the jet; the voltage needs to
be optimized to match with the feeding rate of spinning fluid and the collecting distance
for producing nanofibers with a uniform diameter.

3.1. Diameter of Nanofibers

It has been reported that the larger the voltage, the smaller the diameter of the
nanofibers [37]. However, there was also the observation that the diameter of the nanofibers
increased with an increase in the voltage [38]. The reason is that the type of spinning solu-
tion and the parameters are not the same. This indicates that the influence of the voltage
summarized by simple control variables on the final diameter of the nanofibers is not
rigorous enough. Gu et al. reported that the concentration of the spinning fluid has a
greater effect on the diameter of the nanofibers than the voltage [39]. In fact, the main factor
affecting the diameter of the nanofibers here is the viscosity of the solution, which changes
with the concentration of the solution and the molecular weight of the polymer [39,40].

Fridrikh et al. reported that there is a limiting diameter for the jet, which arises from a
force balance between surface tension and electrostatic charge repulsion [41]. These two
forces are determined by the viscosity and conductivity of the solution, respectively. In the
case of ignoring the elastic effect and fluid evaporation, the diameter of the nanofibers can
be given by the following equation:

ht =

(
γε

Q2

I2
2

π(2 ln χ − 3)

)1/3

(1)

where γ is surface tension of the solution, ε is the dielectric constant, Q is the flow rate of
the solution, I is the current carried by the jet, and χ is proportional to the ratio of the jet
diameter h and radius of curvature R. It is shown that the nanofiber diameter decreases
with the increase in the charge carried by the jet. However, the electrospinning process
is much more complex than this model, so this model is not accurate or comprehensive
enough. For example, temperature is an easily overlooked parameter. Most solution
electrospinning processes take place at ambient temperature. As the temperature increases,
the viscosity and surface tension of solution decrease, leading to a reduction in nanofiber
diameter. But at the same time, the increase in temperature will also cause the acceleration
of the evaporation of the solvent. In this case, the drawing process, which is also the fining
process of the nanofibers, will end prematurely. A temperature equilibrium that minimizes
the diameter of the nanofibers can be found [42].

3.2. Morphologies and Structures of Electrospun Nanofibers

Electrospinning has become one of the main ways to prepare nanofibers because of
its advantages such as a simple manufacturing device, good adjustable fiber structure,
and strong technical combination. It can be used for directly and continuously spinning
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polyester, polyurethane, polyethylene, and other polymers into ultra-fine and uniform
fibers with diameters ranging from less than 3 nm to more than 1 µm and depositing on
the receiving plate to obtain non-woven fabric. It is also possible to prepare nanofibers
with special shapes by electrospinning in addition to nanofibers with uniform diameters.
Porous nanofibers, hollow nanofibers, and bead-on-string nanofibers are produced to
meet the requirements of various applications. More complex structures tend to yield
better performance, such as a greater specific surface area, rougher surface, or greater
surface energy. Next, we will discuss the strategies for producing nanofibers with different
morphologies and structures.

3.2.1. Bead-on-String Nanofibers

By adjusting the parameters in the process of electrospinning, electrospun nanofibers
with unique morphologies can be simply obtained. Bead-on-string nanofibers are typical.
As we discussed earlier, the jets need to overcome capillary instability to form uniform
nanofibers. Otherwise, the bead structure will be obtained. At first, the bead structure
appears randomly, which is considered an undesirable by-product. It is not until the
production of uniform bead-on-string structures that attention is paid to this structure
(Figure 3A). Zuo et al. reported how and why this structure was formed [43]. As indicated
in Figure 3B, the jet is photographed at different distances from the nozzle. As the jet flows
further and further away from the nozzle, the smooth surface of the jet flow first becomes
wavy, then dumbbell-like, and finally bead-shaped.
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Figure 3. (A) SEM images of the bead-on-string nanofibers with polyvinyl alcohol (PVA): polystyrene
(PS) (1:1) and 9 wt.% PVA for 473 nm PS nanospheres. (B) The bead formation process at different
points along the PHBV nanofibers formed by electrospinning. The photos were taken at different
distances from the needle tip according to their orders: (a) 1 cm; (b) 3 cm; (c) 5 cm; (d) 7 cm; (e) 9 cm;
(f) 12 cm; (g) 15 cm; (h) 30 cm. (C) SEM image of PS nanofibers with a regularly distributed polyethylene
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glycol (PEG) droplet on it. (A) Reprinted with permission from [44]. Copyright 2012, American
Chemical Society. (B) Reprinted with permission from [43]. Copyright 2005, Society of Plastics
Engineers. (C) Reprinted with permission from [45]. Copyright 2011, WILEY-VCH.

The bead-on-string structure can be regulated by controlling viscosity, net charge
density, and surface tension [46]. Charge repulsion and electric field force are the causes of
the drawing and deformation of the jet. Surface tension always makes the liquid the smallest
surface area by turning into a sphere, while viscoelastic force resists rapid changes in shape.
Therefore, the easiest strategy for producing bead-on-string nanofibers is adjusting the
solution concentration and applying voltage. A higher concentration enhances electrostatic
repulsion forces and viscoelasticity but reduces surface tension. A polymer solution with
a lower concentration tends to produce beads with a higher density [47]. The effect of
the viscosity of spinning solution on bead structure can be clearly reflected in an example.
By combining electrospinning and electrospraying, Tian et al. obtained PEG beads on
PS-string hetero-structured nanofibers in a coaxial jetting process (Figure 3C) [45]. During
electrospinning, the outer PEG with a low viscosity is deformed by humidity, while the PS
with a high viscosity keeps the shape of a “string”.

The surface tension and viscoelasticity of the jet can be changed by adjusting the
proportion of solvent. For example, PS-b-poly(ethylene butylene)-b-PS triblock copoly-
mer solutions, which can be dissolved in different proportions of tetrahydrofuran/N,N-
dimethylformamide (THF/DMF), have different rheology data. Accordingly, the viscosity
of the solution will vary considerably [48]. In addition, a corona discharge can be used to
add neutralizing charge to the jet so as to reduce electrostatic repulsion [46].

3.2.2. Porous Nanofibers

In certain cases, the rapid evaporation of the solvent causes the liquidation of water
vapor during the spinning process. Droplets formed by water vapor liquefaction adhere
to the jet surface, leading to the formation of pores on the fiber’s surface (Figure 4A) [49].
This approach, which is essentially vapor-induced phase separation, has to meet two
requirements: humid environment and volatile solvents, such as THF, methylene chloride,
and carbon disulfide. The size and number of pores can be easily controlled by changing
the humidity. The higher the humidity, the larger the pore size and the higher the pore
density [50]. In addition to controlling environmental humidity, there are other methods
of inducing phase separation. McCann et al. electrospun PAN nanofibers into liquid
nitrogen [51]. In this process, pores were introduced into the nanofibers surface by thermally
induced phase separation. Pores could not only be formed on the surface of the nanofibers
but also inside the nanofibers so as to obtain nanofibers with a loose structure. As shown
in Figure 4B, Pai et al. used PS/DMF solution to produce fibers with a smooth surface
and a porous interior [52]. Compared with a highly volatile solvent mentioned earlier, the
evaporation rate of DMF is not fast enough to form small droplets on the jet surface. DMF
absorbed water vapor in the air due to a non-solvent phase separation reaction between
them. As a result, a porous structure was formed inside the fibers. The growth process of
porous structures resulting from phase separation was calculated by Dayal et al. based on
the Cahn–Hilliard time-evolution equation and solvent evaporation rate equation [53]. The
strategy of introducing pores through phase separation has been applied to a variety of
polymers, such as PS [54], poly(L-lactic acid) [55,56], polyvinyl butyral [57], polyethylene
terephthalate [58], and poly(ε-caprolactone) [59,60].
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Figure 4. (A) SEM images of electrospun poly(ε-caprolactone) fibers collected in water as a function
of pH 3. (B) SEM images of as-spun fibers electrospun from a 30 wt.% PS/DMF solution under
43% relative humidity. The illustration is the cross-sectional TEM images of them. (C) TEM images
of the macroporous CNFs obtained by etching SiO2/Sb@CNF composites with an aqueous HF
solution. (D) SEM images of the porous CNFs produced from pure PAN, PAN/PS, and PAN/PMMA,
respectively. (A) Reprinted with permission from [61]. Copyright 2011, Springer. (B) Reprinted with
permission from [52]. Copyright 2009, American Chemical Society. (C) Reprinted with permission
from [62]. Copyright 2018, American Chemical Society. (D) Reprinted with permission from [63].
Copyright 2016, Elsevier.

Porous nanofibers can also be produced through the removal of a sacrificial phase.
Commonly, the sacrificial phases are salt, polymers, and nanoparticles. A sacrificial phase
of salt can be removed by leaching. Gupta et al. used GaCl3 as a template to prepare porous
nylon-6 fibers [64]. Wang et al. prepared SiO2/Sb@CNFs by carbonizing electrospun
precursors, which were etched with HF solution to remove SiO2 and Sb nanoparticles [62].
What was left were porous CNFs (Figure 4C). The porous CNFs could also be prepared by
electrospinning PAN blending with the sacrificial PS or PMMA [63]. PS and PMMA were
easier to pyrolyze than PAN. As a result, PS or PAMM was completely pyrolyzed to form
pores during carbonization. Moreover, PS foam (Figure 4D) and Nafion are also suitable as
a sacrificial phase in PAN solution [65,66].

The introduction of pores has other advantages in addition to greatly increasing
the specific surface area of the nanofibers: the functionalization inside the pores is easy
to realize for obtaining functional surfaces [67]; and porous CNFs have stronger ionic
adsorption and higher specific capacitance [65].

3.2.3. Hollow Nanofibers

Hollow nanofibers are another common structure of electrospun nanofibers. There
are two strategies for preparing hollow nanofibers. One is coaxial electrospinning, which
we will discuss later. The other strategy is to make the components of the solution sponta-
neously move along the radial direction of the jet and be stratified by adjusting the ratio of
a mixed polymer solution. Niu et al. produced hollow PVA nanofibers by mixing PVAs
with different molecular weight [68]. The schematic diagram of the formation of the hollow
structure is displayed in Figure 5A. With the same electrospinning parameters, the higher
the molecular weight, the higher the distribution in the outer layer. The nanofibers were
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then carbonized at high temperatures. In this process, the low-molecular weight PVA in the
inner layer first pyrolyzed and moved to the high-molecular weight PVA. Hollow CNFs
were produced. It is of concern that if inorganic materials were mixed into the solution
and the nanofibers carbonized in the protection of argon, the inorganic materials would
not move with the low-molecular weight PVA. The inorganic materials aggregated into
spheres in the channels of hollow nanofibers, and pea-like nanofibers could be formed.
Hollow nanofibers are commonly prepared by similar methods. For example, the fibers
have been produced by electrospinning with a mixture of polycarbosilane (PCS) and PS,
with PCS in the outer layer and PS in the inner layer. After carbonization, hollow SiC
nanofibers were formed, as PCS turned into SiC and PS was pyrolyzed (Figure 5B) [69].
Hollow nanofibers can also be produced based on vapor-induced phase separation. In
another example, camphene and tetraethoxysilane, as pore-forming agents, could be added
into PS solution. Water entered the surface of the jet in the electrospinning process. At this
point, tetraethoxysilane that diffused to the outer layer evaporated, and camphene that
diffused to the outer layer was removed after freeze-drying. Hollow and porous structures
of electrospun PS fibrers were obtained [70].
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(i–l,o,p) TEM images of LRC nanofibers based on various PAN/PS weight ratio: (a,e,i) 1:0.1, (b,f,j)
1:0.2, (c,g,k,m–p) 1:0.5, (d,h,l) 1:1. Scale bars, 200 nm (e–l,o), 20µm (m), 500 nm (n), 20 nm (p). (D)
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solution at 20 µL min−1 feeding rate. (A) Reprinted with permission from [68]. Copyright 2015,
Macmillan. (B) Reprinted with permission from [69]. Copyright 2018, Elsevier. (C) Reprinted
with permission from [71]. Copyright 2015, WILEY-VCH. (D) Reprinted with permission from [72].
Copyright 2019, WILEY-VCH.

Some hollow fibers with more interesting structures have been reported by electro-
spinning. For example, hollow fibers with multiple channels produced with a mixture
of PAN and PS have been reported. PS as the sacrificial phase will form more than one
channel inside PAN. The number and distribution of channels will vary with the ratio of
PAN to PS in the solution (Figure 5C) [71]. In addition, it is possible to obtain ribbon fibers
in the production of hollow fibers, and unique polymer skin can form on the surface of the
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jet. After that, the evaporation of solvent will result in the vacuum inside, leading to the
collapse of skin (Figure 5D) [72–74].

4. Application of Electrospun Nanofibers in Electrochemical Biosensors

Electrochemical biosensors have attracted more and more attention due to their speed,
simple operation, and low cost. Electrospun nanofibers have been extensively applied
in electrochemical biosensors for the determination of various molecules such as glucose,
hydrogen peroxide (H2O2), uric acid (UA), dopamine (DA), ascorbic acid (AA), protein,
and amino acids.

4.1. Glucose Sensors

As a source of energy in the body, glucose is widely found in every corner of our life.
People who want to lose weight need to know the amount of glucose in their diet in order
to control their diet properly. Diabetics need to regularly measure their blood sugar levels
to keep themselves healthy.

Glucose oxidase (GOx) is one of the main choices for real-time glucose monitoring
owing to its high glucose selectivity. Nanofibers, due to their high specific surface area
and porous structure, are excellent platforms for enzyme immobilization. The activity
of the immobilized enzyme greatly affects the performance of the sensor. As implied in
Figure 6A, the activity of GOx immobilized on the surface of PVA/malonic acid nanofibers
with different plasma processing was quite different [75]. In addition, the reusability and
storage stability of the plasma-treated fibers was significantly improved (Figure 6B,C).
When designing the glucose sensor based on GOx, the nanofibers as the substrate have
great influence on the performance of the sensor. Guo et al. produced CNFs with uniformly
embedded TiC nanoparticles (Figure 6D,E) [76]. The robust adhesion of the composite
nanofibers provides more abundant active sites for enzyme immobilization (Figure 6F).
The GOx-TiC-CNFs biosensor could selectively detect glucose with a wide linear range
(0.013–10.5 mM) and low detection limit (3.7 µM).

Enzymes are unstable at certain temperatures and pH values. Therefore, non-enzyme
sensors have been developed in which enzymes are generally replaced by metals or metal
oxides. Non-enzyme sensors are more economical than enzymatic sensors and are less
affected by the environment. Glucose is the most popular analyte. A variety of transition
metals are used in non-enzyme electrochemical sensors for glucose. The mechanism dia-
gram of the transition metal electrocatalytic detection of glucose is illustrated in Figure 7A.
For example, Lu et al. reported a glassy carbon electrode (GCE) modified with CuO/Cu2O
composite nanofibers for a glucose sensor [77]. CuO/Cu2O composite nanofibers had good
electrocatalytic activity for glucose. The possible electrocatalytic processes of glucose can
be explained as follows: The electrons produced by the oxidation of Cu2+ to Cu3+ form an
oxidation peak in the cyclic voltammograms. After that, Cu oxidizes glucose to gluconolac-
tone, which further increases the oxidation current [78–80]. In a specific range of glucose
concentration, the oxidation peak increases linearly with the increase in glucose concentra-
tion. This property enables the determination of glucose concentration by the magnitude
of the oxidation current (Figure 7B) [81]. Increased conductivity can accelerate electron
transfer and improve the performance of the sensors. CNFs have excellent mechanical and
electrical properties and can be simply obtained using carbonized electrospun polymer
nanofibers, making them suitable as carriers for metal oxide nanoparticles. In addition,
the synergistic effect of multiple components can also greatly enhance the electrocatalytic
performance. The reason may be that the defects caused by the lattice mismatch of the
two metal atoms lead to electron accumulation at the interface and the upward shift of
the D band. Shi et al. prepared electrospun CuO nanofibers, CuO/CNFs, and CuO/NiO
nanofibers as a glucose sensor, as shown in Figure 7C [82]. The electrocatalytic effect
can be observed through the magnitude of the catalytic current and the position of the
oxidation peak potential. Obviously, CuO/NiO nanofibers can produce higher current at
lower potential.
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Figure 7. (A) Schematic diagram of the transition metal electrocatalysis detection of glucose. (B) CVs
for Ni2P nanofibers in 0.1 M NaOH (pH 13) with the presence of varying glucose concentrations
ranging from 0 to 8 mM. (C) CVs of (a) CuO-NFs, (b) CuO/CNFs, and (c) CuO/NiO-NFs film
electrodes in 0.1 mol L−1 NaOH containing 0.6 mmol L−1 glucose at 50 mV s−1. (A) Reprinted with
permission from [80]. Copyright 2016, American Chemical Society. (B) Reprinted with permission
from [81]. Copyright 2016, American Chemical Society. (C) Reprinted with permission from [82].
Copyright 2013, WILEY-VCH.

There have been many reports on the application of electrospinning to non-enzyme
electrocatalysts for the detection of glucose. Saravanan et al. prepared Co-Fe/PVdF-HFP by
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electrospinning and chemical reduction techniques for electrochemical glucose detection,
in which the diffusion and adsorption of glucose in the expanded cavities and pores of the
polymer nanofibers were accelerated to maximize the utilization efficiency of glucose [83].
Luo et al. fabricated a Pt-Au/polyurethane sensing patch through electrospinning, mag-
netron sputtering, and electrodeposition techniques for the determination of glucose in a
neutral condition (pH 7.4) [84]. Li et al. synthesized hollow CuO/NiO nanoparticles with
adjustable sizes by coaxial electrospinning and subsequent calcination [85]. The unique
morphology and high specific surface area as well as the hetero-structural interface be-
tween CuO and NiO are conducive to improving the electrocatalytic performance, showing
excellent electrocatalytic performance for glucose oxidation. They also prepared nano-
Mn3O4/NiO-decorated CNFs by electrospinning and calcination [86]. The conductive
network constructed by CNFs not only promotes the transfer of electrons but also provides
a landing site for nanoparticles, thereby reducing the aggregation of nanoparticles and
exposing more active sites. Kim et al. embedded MnO nanostructures with CNFs to
significantly improve the detection performance of non-enzymatic amperometric glucose
sensors [87]. Additionally, other nanofibers are also used in glucose biosensors, such as
Ni2P/CNFs [88], PAN/PANI/CuO [89], CuSn/CNFs [90], and CuCo-P350 [91]. Table 1
summarizes several examples of non-enzyme electrochemical glucose sensors, including
the detection limit, sensitivity, linear range, and oxidation potential.

Table 1. Electrospun nanofibers for non-enzyme glucose electrochemical biosensors.

Catalyst LOD
(µM)

Sensitivity
(µA mM−1 cm−2)

Linear Range
(µM)

Potential
(V) Ref.

Co-Fe/PVdF-HFP 0.65 375.01 1–8000 0.53 [83]

TiO2/Cu2O/CuO CNFs 0.25 2074.7 0–2000 0.55 [80]

Pt-Au/polyurethane 14.77 203.13 0.1–50 N/R [84]

CuO/NiO NFs 14.77 1324.17 1–1000 0.6 [85]

Mn3O4/NiO/CNFs 0.73 386.84 5–3000 0.5 [86]

MnOx-CNFs 0.3 4080.6 0–9100 0.55 [87]

Ni2P/CNFs 0.25 1050 5–208 0.5 [88]

PAN/PANI/CuO 1.2 N/R 3–500 0.4 [89]

CuSn/CNFs 0.08 N/R 0.1–9000 0.55 [90]

CuCo-P350 2.92 2272 5–825 0.55 [91]

4.2. H2O2 Sensors

In organisms, H2O2 is a signaling molecule that controls cell metabolism. In addition, it
is also associated with some human diseases, such as cardiovascular diseases, Alzheimer’s
Disease, and cancers [92]. Therefore, the detection of H2O2 is of great significance in
medical applications.

Noble metal (such as Au [93], Ag [94], Pd [95], and Pt [96]) nanoparticles have excellent
electrocatalytic activity with H2O2. For example, Huang et al. electrospun Pd nanoparticle-
loaded CNFs to modify a carbon paste electrode (CPE) [97]. The modified CPE shows a
wide linear range (0.2 µM to 20 mM) for H2O2 (Figure 8A). As shown in Figure 8B, Zhang
et al. compared the cyclic voltammetry of H2O2 on PVDF, a multi-walled carbon nanotube
(MWCNT), and Pt [98]. It was not difficult to see that the electrocatalytic performance of
H2O2 mainly came from Pt. Without Pt, PVDF or MWCNT alone showed almost no current
response to H2O2.
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High cost limits the development of H2O2 sensors based on noble metals, so various
transition metals/metal oxides are introduced to functionalize noble metals. As shown
in Figure 8C, compared with Pt/CNFs and Ni/CNFs, the electrocatalytic performance
of PtNi/CNFs for H2O2 is much better [99]. The PtNi/CNFs-modified GCE has a wide
detection range from 0.05 µM to 8 mM with a low detection limit of 0.0375 µM for H2O2.
Mohammadi et al. synthesized a Se/P@N-doped carbon nanobox (N-CNB)/CNFs for the
electrochemical determination of H2O2 [21]. Due to the mesoporous structure, the open
efficient diffusion channel for H2O2, the rapid mass/electron transfer, and the synergies
between P, Se, and CNBs/CNFs, the synthesized Se/P@(N-CNB)/CNFs exhibited excellent
electrocatalytic activity toward H2O2 oxidation. Hsueh et al. prepared IrO2@Ir NFs for
the selective determination of H2O2 [86]. Qu et al. synthesized LaSrNiO NFs with a dual-
phase structure and unique porous tubular nanofiber structure using electrospinning and
high-temperature calcination techniques, significantly improving their redox performance
for the electrochemical sensing of H2O2 [101]. Bi et al. modified the conductive polymer
PEDOT:PSSLiTFSI-CoPc (PPLC) on nanofibers (PPLC/PU/PDMS) to develop a stretch-
able electrochemical sensor [102]. The electrode displayed good electrochemical sensing
performance and stability under mechanical deformation. In addition, Ag@CuO [103],
VCoO/C-750 [104], and Co-NC/CNF [105] are also used for H2O2 detection. Table 2 lists
several examples of H2O2 sensors using electrospun metals/metal oxides nanofibers.
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Table 2. Electrospun nanofibers for H2O2 analysis.

Catalyst LOD
(µM)

Sensitivity
(µA mM−1 cm−2)

Linear Range
(µM)

Potential
(V) Ref.

Se/P@CNBs/CNFs 58 171.1 200–1800 NR [21]

IrO2@Ir NFs 0.16 289 0.1–1000 −0.4 [86]

PtNi/CNFs 0.0375 248.5 0.05–8000 −0.1 [99]

LaSrNiO NFs 0.018 1667.9 1–7000 0.2 [101]

PPLC/PU/PDMS 0.2 0.0406 0.5–50 +0.55 [102]

Ag@CuO 0.01 1982.14 0.05–100 +0.6 [103]

VCoO/C-750 0.44 N/R 0–8000 N/R [104]

Co-NC/CNF 10 300 1–6000 −0.5 [105]

Interestingly, hemoglobin microbelts have been successfully electrospun for H2O2
sensing by Ding et al. (Figure 8D) [100]. In their work, hemoglobin is dissolved in 2,2,2-
trifluoroethanol as the spinning solution for electrospinning hemoglobin microbelts, al-
lowing for the sensitive detection of H2O2 at physiological pH (0.1 M pH 7.0 phosphate
buffer). As shown in Figure 8E, this H2O2 sensor has a low detection limit (0.61 µM) and
high stability due to its good biocompatibility and direct electron transfer capability.

4.3. Detection of Other Biomolecules

A variety of electrospun nanofibers have been developed for the detection of biomolecules,
such as UA, DA, AA, protein, and amino acids. The level of these biomolecules in the body
can reflect the health of the body and help doctors determine whether the body is suffering
from certain diseases. For example, the concentration level of UA is one essential indicator
for the diagnosis and the prognosis of some multifunctional disorders like gout, hyper-
tension, and cardiovascular diseases [106]. DA is an important neurotransmitter, having
strong influence on the central nervous, renal, cardiovascular, and hormonal systems [107].

CNFs have been widely used in electroanalysis due to their good dispersibility, wetta-
bility, conductivity, and biocompatibility. In some cases, the electrochemical performance
of CNFs may be even better than that of CNTs (Figure 9A) [107,108]. CNFs can be easily
obtained by carbonizing electrospun polymer nanofibers at high temperature. Tang et al.
prepared electrospun CNFs-modified CPE to detect trace amounts of L-tryptophan (Trp),
L-tyrosine (Tyr), and L-cysteine (Cys) [109]. The modified electrode showed a satisfactory
linear range (0.1–118.5 µM for Trp, 0.2–109 µM for Tyr, and 0.15–63.8 µM for Cys). As
implied in Figure 9B, in addition to the obvious current response to Trp, Tyr, and Cys, the
CNFs-modified electrode also showed a response to UA and AA. The results show that
CNFs can detect multiple biomolecules simultaneously by DPV. Recently, effort has been
devoted to improving the electrocatalytic performance of CNFs, including the combination
with MWCNTs and precious metals (such as Pd and Ag) [106,110,111].

An interesting example is the dopamine biosensor based on the electrospun PANi/carbon
quantum dots (CQDs) composite nanofibers [112]. On one hand, CQDs have electrocat-
alytic activity with dopamine. On the other hand, the addition of dopamine can cause
the fluorescence quenching of CQDs. Therefore, the electrospun PANi/CQDs composite
nanofibers are capable of both electrochemical and fluorescent sensors for DA (Figure 9C).
In another work, Samie et al. combined a novel RuO2-CeO2-AuNFs hybrid structure with
graphite oxide and functionalized multiwalled carbon nanotubes for the simultaneous de-
termination of serotonin, DA, and AA [113]. The proposed electrochemical sensor reduces
overpotential and solves the problem of overlapping the oxidation peak potential. Yin et al.
decorated nitrogen-doped electrospun CNFs with tightly packed Co3O4 nanoparticles with
a high electroactive surface area and promoted electron transfer between the electrode
surface and the target molecule by rapid electrodeposition [114]. The electrosensing plat-
form showed excellent sensitivity and selectivity for DA. Veeralingam et al. demonstrated
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a high-performance field-effect transistor biosensor based on Al-functionalized β-Bi2O3
nanofibers for the highly selective and rapid detection of serotonin [115]. The biotransistor
has good sensitivity, stability, and repeatability and a fast response time of 0.8 s.
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Enzymes and antibodies could be immobilized on electrospun nanofibers for the
specific identification and detection of biomolecules. For example, Mondal et al. co-
valently immobilized cholesterol esterase and cholesterol oxidase on electrospun TiO2
nanofibers with a high orientation for the detection of esterified cholesterol [116]. Atilgan
et al. prepared dendrimer-modified montmorillonite-decorated poly-σ-caprolactone and
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chitosan-based nanofibers, which were conjugated with glutamate oxidase for the elec-
trochemical determination of monosodium glutamate [117]. Proteins can be detected by
immobilizing antibodies on electrospun nanofibers through the specific binding between
antigens and antibodies. For example, Macwan et al. immobilized anti-C-reactive protein
on electrospun PVA/CNT nanofibers for the detection of inflammatory marker C-reactive
protein [118].

5. Challenges and Opportunities Facing Practical Application

Although electrospinning technology has been deeply developed and its application
has been extensively explored in many fields, there are still many issues left in both basic
theory and practical application:

(i) Improvement of the theoretical model about jet: Although many models of jet move-
ment in the electrostatic field have been established, these models are incomplete and
are mostly half-empirical and half-theoretical [39,119,120]. In short, the theoretical
model is still in its infancy.

(ii) Precise control of environmental factors: It has been widely reported that temperature and
humidity have great influence on the morphology of electrospun nanofibers [42,121]. In
the laboratory, the environmental factors of electrospinning are relatively easy to main-
tain. However, in order to realize the commercialization of electrospun nanofibers,
large-scale production is inevitable. Under such circumstances, it is still a challenge to
keep the environment stable.

(iii) Safety issues caused by solvent volatilization: A large amount of solvent volatilizes
during the solidification of the jet. In large-scale production, the amount of solvent
volatilization will become larger. Solvents widely used in electrospinning include
DMF, DMSO, and sometimes acetone, which are toxic and may cause explosions.

(iv) Safety of nanofibers: Some research has suggested that nanofibers are likely to cause an
inhalation hazard. For example, inhalation of a sufficient dose of asbestos nanofibers
may cause mesothelioma [122]. At present, there are few studies on the inhalation
safety of nanofibers. An in-depth study of this aspect is of great significance. Although
electrospinning technology can protect our health, it can be more harmful if we ignore
its own safety.

(v) Miniaturization of biosensors: With the advent of the 5G era, online medical treatment
is available. People can enjoy medical services at home without the tedious procedures
of offline medical treatment. Traditional testing methods usually require expensive
testing equipment and complicated operations. Microscale biosensors would make
online diagnosis easier. Several test papers and miniaturized instruments have been
reported, but these fall far short of the need for online diagnoses [123,124]. The design
of miniaturized biosensors may be a hotspot in the future.

(vi) The bionic device: Electrospun nanofiber mats mostly have excellent flexibility, which
makes electrospinning technology promising in biomimetics. For example, PVDF,
a piezoelectric material usually used for electrospinning, has been reported for the
design of electronic skin (Figure 10A) [125–127]. There have also been a number
of reports about electronic tongues, although they were only in the initial stage
(Figure 10B) [128–130]. With the development of technology, it will be possible to
integrate electronic tongues into real tongue sizes in the future. In addition, we
can imagine that the PVDF nanofibers with piezoelectric properties could be used
as not only electronic skin, but also electronic ears, an electronic throat, and even
an electronic heart. On the software side, AI is developing rapidly. In this sense,
bionic humans, the stuff of science fiction, may become a reality in the distant or even
near future.
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6. Conclusions

Electrospinning is a simple and efficient method for producing nanofibers. Electrospun
nanofibers have large specific surface area, high porosity, and diversified structure. In
addition, it is easy to functionalize the surface of electrospun nanofibers. These advantages
make electrospinning technology have great potential in electrochemical sensors. In the past
decades, a large number of studies have laid the foundation for the control of the structure
and morphology of electrospun nanofibers, and many interesting composite nanofibers
structures have been witnessed in practical applications of electrochemical sensing.

In this review, an overview was provided on the morphological and structural regula-
tion of nanofibers by electrospinning technology as well as its application in electrochemical
sensors. The factors affecting the morphology of the nanofibers and the strategies for pro-
ducing nanofibers with special morphology were discussed. Generally, the performance of
nanofibers can be improved and their application can be expanded through the following
strategies: (i) nanofiber diameter; (ii) special morphology (hollow, core-sheath, porous and
bead-like); (iii) functionalization of surfaces; (iv) metallization of nanofibers; and (v) car-
bonization to form CNFs. The working principles and advantages of various nanofibers
obtained by these strategies in the detection of different substances were also discussed in
this review.

In summary, many achievements have been made in both the theory and application of
electrospinning technology in recent decades. Electrospinning has been involved in many
fields, such as energy storage, tissue engineering, environmental protection, smart textiles,
electronic devices, and physical and chemical sensors. In particular, the current research on
electrospinning has a tendency of miniaturization, simplification, and economization, mak-
ing it possible for the technique to play an important role in intelligent medical treatment.
However, there are still many issues. For example, process and safety problems still exist
in the large-scale production of electrospinning. In addition, it is necessary to establish a
complete evaluation system for the safety of electrospun nanofibers.
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