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Abstract: A tumor-targeting fluorescent probe has attracted increasing interest in fluorescent imaging
for the noninvasive detection of cancers in recent years. Sulfonamide-containing naphthalimide
derivatives (SN-2NI, SD-NI) were synthesized by the incorporation of N-butyl-4-ethyldiamino-
1,8-naphthalene imide (NI) into sulfonamide (SN) and sulfadiazine (SD) as the tumor-targeting
groups, respectively. These derivatives were further characterized by mass spectrometry (MS), nu-
clear magnetic resonance spectroscopy (1H NMR), Fourier transform infrared spectroscopy (FT-IR),
ultraviolet–visible spectroscopy (UV), and a fluorescence assay. In vitro properties, including cell
cytotoxicity and the cell uptake of tumor cells, were also evaluated. Sulfonamide-containing naph-
thalimide derivatives possessed low cell cytotoxicity to B16F10 melanoma cells. Moreover, SN-2NI
and SD-NI can be taken up highly by B16F10 cells and then achieve good green fluorescent images in
B16F10 cells. Therefore, sulfonamide-containing naphthalimide derivatives can be considered to be
the potential probes used to target fluorescent imaging in tumors.

Keywords: fluorescent imaging; fluorescent probe; naphthalimide; sulfonamide; sulfadiazine

1. Introduction

In recent years, fluorescent imaging has attracted increasing interest in a potential
medical diagnostics modality for noninvasive detection in cancers [1–3]. Although fluores-
cent imaging in thick tissue layers is hampered by low spatial resolution induced by strong
light scattering and the absorption of tissues, the recent advances in instrumentation and
fluorescent probes have led to the application of fluorescent imaging to be extended from
preclinical research to the clinical detection of cancers [4–6].

Some compounds, such as indocyanine green (ICG), 5-aminolevulinic acid (5-ALA),
and 1,8-Naphthalimide, are evaluated as potential fluorescent probes in FI to improve
imaging contrast and sensitivity [7–9]. 1,8-Naphthalimide is a fluorescent compound
generally used as an organic dye, luminophore, and anticancer agent [10]. However,
these widely used fluorescent probes with a low molecular weight are excreted from
the body quickly and usually demonstrate no tumor-targeting biodistribution, which
possess significant restrictions for the imaging of tumors. So, a tumor-targeting fluorescent
probe is an ideal solution to demonstrate a favorable signal-to-background ratio and yield
quantitative and spatially and temporally indexed information on both normal tissue and
tumors [11].

Some fluorescent probes, such as ICG, IRDye800CW, rhodamine B (RhB), and omo-
cyanine, have been covalently linked to a tumor-targeting molecule with a high affinity to
tumors and then produced tumor-targeting fluorescent probes [12–14]. Tumor-targeting
molecules, including folate, porphyrins, arginine–glycine–aspartic acid (RGD) peptide, and

Molecules 2024, 29, 2774. https://doi.org/10.3390/molecules29122774 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules29122774
https://doi.org/10.3390/molecules29122774
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-2649-9108
https://doi.org/10.3390/molecules29122774
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules29122774?type=check_update&version=1


Molecules 2024, 29, 2774 2 of 13

monoclonal antibody targeting epidermal growth factor receptor (EGFR), have been used
to make potential tumor-targeting probes for tumor diagnosis and imaging [15–19].

Sulfonamide (SN) and sulfadiazine (SD) derivatives have been investigated as tumor-
targeting groups due to their potent and highly selective carbonic anhydrase (hCA IX)
inhibitors, which are well-known transmembrane CA isoforms. These CA isoforms are
highly expressed in different tumor types and present a rather limited expression in
most normal cells [20,21]. Therefore, SN and SD derivatives were reported as the active
ingredients in treating cancer and suppressing metastasis. SD derivatives were concentrated
into Walker carcinoma or Yoshida sarcoma with 2–3 times as large as the concentration in
the liver [21–23]. Gadolinium diethylenetriaminepentaacetic acid derivatives containing
SD and SN groups were investigated as the potential tumor-targeting contrast agents
and possessed high uptake by Hepatoma and Ehrlich ascites carcinoma in mice [24].
Polyaspartamide gadolinium complexes containing SD groups also had specific uptake by
Hepatoma and greatly enhanced the contrast of magnetic resonance images of Hepatoma
in mice [25].

In this work, SD and SN were chosen as the tumor-targeting groups and then incorpo-
rated to the N-butyl-4-ethyldiamino-1,8-naphthalimide (NI) [26,27] fluorescent molecule to
synthesize tumor-targeting fluorescent probes (Scheme 1). These fluorescent probes were
further characterized, and their properties in vitro were also evaluated to find a potential
to achieve highly sensitive imaging in tumor cells with high contrast enhancement.
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Scheme 1. Synthetic route to sulfonamide-containing naphthalimides.

2. Results and Discussion
2.1. Synthesis

Experimental data, such as FT-IR, 1H NMR, UV, MS, and a fluorescent assay, provided
evidence for the formation ofsulfonamide-containing naphthalimides (SN-2NI and SD-NI)
(Figures 1–5), which were synthesized by the incorporation of a NI fluorescent molecule to
SN and SD as the tumor-targeting groups (Scheme 1). The MS spectra of SN-2NI displayed
the correct [M+H]+ peak of 875.03 in accordance with the molecular weight of SN-2NI
(MW 874) (Figure 1a). The MS spectra of SD-NI also indicated the correct peak of [M+H]+

(602.39), which was consistent with the molecular weight of SD-NI (MW 601) (Figure 1b).
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Figure 1. MS spectra of SN-2NI (a) and SD-NI (b).
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Figure 4. UV spectra of SN-2NI and SD-NI.
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Figure 5. Fluorescent spectra of SN-2NI (a) and SD-NI (b).

The 1H NMR spectra of SN-2NI and SD-NI indicated the typical peaks of naphthal-
imide ring and methyl and benzyl groups, which appeared at 8.9–8.0 ppm, 1.65–0.8 ppm,
and 7.7–7.4 ppm, respectively (Figure 2a,b), indicating that NI was covalently bound
to SN and SD, respectively. The IR spectra of SN-2NI and SD-NI showed the charac-
teristic absorption peaks of amide bond (CONH)with 1640–1570 cm−1, amino group
(NH) at 3450–3420 cm−1, and benzyl groups varying from 1150 to 660 cm−1, respectively
(Figure 3a,b), which indicated that both SN and SD were covalently bound to NI.

SN-2NI and SD-NI displayed similar UV and fluorescent properties as well as NI. The
UV spectra of SN-2NI and SD-NI showed the characteristic UV absorption peaks of SD, SN,
and NI structures, appearing at 265–267 and 417–435 nm (Figure 4), whist the fluorescent
spectra of SN-2NI and SD-NI showed the same characteristic fluorescent property as NI.
Meanwhile, SN-2NI and SD-NI had a maximum excitation wavelength at 437 nm and
a maximum emission wavelength at 525 nm (Figure 5), respectively. It appears that the
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typical fluorescent emission wavelength was similar to that of NI. Therefore, SN-2NI and
SD-NI are expected to retain the same photophysical properties as their predecessors (NI)
to make good fluorescent imaging. Moreover, they should possess a good tumor-targeting
property to achieve highly sensitive imaging in tumor cells with high contrast enhancement.

2.2. Cell Cytotoxicity

The effect of sulfonamide-containing naphthalimide derivatives (SN-2NI and SD-NI)
to B16F10 cell growth and metabolism is shown in Figure 6. At a concentration (1 µg/mL)
of SN-2NI and SD-NI in growth medium, the viabilities of B16F10 cells incubated with
SN-2NI and SD-NI retained 69.7% and 53.0%, respectively, relative to the control. At
the concentration (100 µg/mL) of sulfonamide-containing naphthalimides in the growth
medium, the viabilities of B16F10 cells incubated with SN-2NI and SD-NI retained 57.3%
and 45.2%, respectively. This illustrated that SN-2NI and SD-NI possessed low cytotoxicity
to B16F10 cells and SN-2NI displayed slightly higher cytotoxicity to B16F10 cells than that
of SD-NI.
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SD and SN are the antibacterial agents and anti-inflammatory drugs used in clinics.
Moreover, SD and SN possess good tumor-targeting properties, and then SN-2NI and
SD-NI can be selectively taken up by the tumor cells. So, SN-2NI and SD-NI selectively
accumulated into B16F10 cells and exhibited obviously high anticancer efficiencies to
B16F10 cells when the incubation concentration increased.

2.3. Fluorescent Imaging

The fluorescent imaging of B16F10 cells cultured with SN-2NI, SD-NI, and pure growth
medium was investigated, respectively, when excited by white light (composite excitation wave-
length: 400–750 nm, visible light) and blue light (excitation wavelength: 450 nm) (Figure 7).The
cells cultured with SN-2NI and SD-NI showed obviously good green fluorescent images when
excited by blue light. However, cells cultured with growth medium indicated no fluorescent
image in the same condition. Therefore, SN-2NI and SD-NI can be taken highly upby B16F10
cells due to the tumor-targeting property of SN and SD groups.
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2.4. Cell Uptake and Fluorescent Imaging

The cell uptake assay and fluorescent imaging of SN-2NI and SD-NI were evaluated
to B16F10 cells excited by white light (composite excitation wavelength: 400–750 nm,
visible light) and blue light (excitation wavelength: 450 nm) (Figures 8 and 9). Good green
fluorescent images can be observed obviously in cells incubated with SN-2NI and SD-NI
excited by blue light (Figures 8B2 and 9B5). However, cells incubated with pure growth
medium displayed no fluorescent imaging in the same condition (Figures 8B1 and 9B4).

B16F10 cells indicated a significantly lower intensity of green fluorescent images
than that of the original cell uptake assaywhen they were incubated previously by SN
or SD solution for 1 h, respectively, and by SN-2NI or SD-NI solutions (0.25 µmol/L)
later. It is likely that SN or SD covered up earlysome receptor-binding affinity ofSN-2NI
and SD-NI in tumor cells. After that, SN-2NI or SD-NI cannot be taken up more or be
effectively internalized again by cells. Therefore, SN-2NI and SD-NI possessed good
tumor-targeting and characteristic green fluorescent imaging in B16F10 cells via the tumor-
targeting property of the SN and SD groups.
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Figure 8. In vitro fluorescent imaging of SN-2NI to B16F10 cells. (A1 and B1: control B16F10 cells
excited by white light and blue light, respectively; A2 and B2: B16F10 cells incubated with SN-2NI
excited by white light and blue light, respectively; A3 and B3: B16F10 cells were previously incubated
by SN (25 µmol/L) for 1 h and subsequently incubated with SN-2NI (0.25 µmol/L) and later excited
by white light and blue light, respectively).
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Figure 9. In vitro fluorescent imaging of SD-NI to B16F10 cells.(A4 and B4: control B16F10 cells
excited by white light and blue light, respectively; A5 and B5: B16F10 cells incubated with SD-NI
excited by white light and blue light, respectively; A6 and B6: B16F10 cells were previously incubated
by SD (25 µmol/L) for 1 h and subsequently incubated with SD-NI (0.25 µmol/L) and later excited
by white light and blue light, respectively.).
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3. Materials and Methods
3.1. Materials

N-Butyl-4-bromoacetyl ethyldiamino-1,8-naphthalimide (NI) [27], sodium sulfadi-
azine (SDNa), and sodium sulfonamide (SNNa2) [25] were synthesized by the methods
cited in the literature. B16F10 mouse melanoma cells were provided by the China Center for
Type Culture Collection of Wuhan University, China, and raised according to the method
described in the literature [28].

3.2. Synthesis of Sulfonamide-Containing Naphthalimide Derivatives (SN-2NI, SD-NI)

A solution of sodium sulfonamide (SNNa, 0.108 g, 0.5 mmol) in N,N-dimethylformamide
(DMF, 3 mL) was added slowly to a solution of N-butyl-4-bromoacetyl ethyldiamino-1,8-
naphthalene imide (NI, 0.432 g, 1 mmol) in DMF (5 mL) and was stirred at room temperature.
Tetrabutyl ammonium hydroxide (40% aqueous solution, 0.3 mL) was also added. The reaction
solution continued to be stirred for 24 h at room temperature. Most of the solvent was removed
under vacuum, and then the resultant mixture was precipitated with ethanol. The solid residue
was filtered and purified by a silica column (an eluent: methanol/dichloromethane:1/3) as to
afford brown 4′-bis(N-butyl-4-acetyl ethyldiamino-1,8-naphthaleneimide)-imino-sulfonamide
(SN-2NI, 0.27 g, 61.8%) (Scheme 1).1H NMR (400 MHz, DMSO-d6, δ ppm): 8.92, 8.52, 8.33,
8.09 (d, 4H), 7.61, 7.46, 7.15 (s, 8H), 6.10 (s, 2H), 4.50 (s, 2H), 4.08 (m, 2H), 3.73–3.16 (s, 12H), 1.52,
1.27, 0.89 (m, 18H); MS found [M+H]+ 875.03 for C46N8O8H50S, calc. 874; IR (KBr, νmax, cm−1):
3421 (NH), 2958 (C-H), 1638, 1581(CONH), 1557, 1429 (C-H), 1384 (C-N), 1148, 760, 669 (phenyl);
UV (H2O, λmax, nm): 265, 435.

A solution of sodium sulfadiazine (SDNa, 0.544 g, 2 mmol) in acetonitrile (10 mL) was
added slowly to a solution of NI (0.864 g, 2 mmol) in acetonitrile (5 mL) and then stirred at
room temperature. Tetrabutyl ammonium hydroxide (40% aqueous solution, 0.5 mL) was
also added. The reaction solution continued stirring for 24 h at room temperature. Most of
the solvent was removed under vacuum and precipitated with ethanol. The solid residue
was filtered and purified by a silica column using chloroform as an eluent to make brown
5-(4′-bis(N-butyl-4-acetyl ethyldiamino-1,8-naphthalene imide)-imino-sulfadiazine (SD-NI,
0.8 g, 66.6%) (Scheme 1).1H NMR (400 MHz, DMSO-d6, δ ppm): 8.71–8.37(d, 4H), 7.88, 7.76,
7.56 (s, 3H), 6.96, 6.87, 6.57 (s, 3H), 5.71 (s, 1H), 4.77 (s, 1H), 4.50 (s, 1H), 4.08 (m, 1H), 1.65,
1.29, 0.98 (m, 9H); MS found [M+H]+ 602.39 for C30N7O5H31S, calc. 601; IR (KBr, νmax, cm−1):
3448 (NH), 2923 (C-H), 1637 (CONH), 1572 (C-H), 1384 (C-N), 1121, 668 (phenyl); UV (H2O,
λmax, nm): 267, 417.

3.3. Fluorescent Spectroscopy

Sulfonamide-containing naphthalimide derivatives (SN-2NI, SD-NI) were first dis-
solved in a minimum volume of CHCl3 and then diluted with methanol to the desired
concentration. Fluorescent spectra were recorded on a Varian Cary Eclipse fluorescence
spectrophotometer (Varian, Palo Alto, CA, USA).

3.4. In Vitro Cell Cytotoxicity Assay

The RPMI-1640 media (10% fetal bovine serum (Gibco.Co., Billings, MT, USA), 100units/mL
penicillium and 100µg/mL streptomycin)were used to culture B16F10 cells (2× 105/mL)in vitro
using a cell cytotoxicity assay. The cells (2 × 104) were plated in each well of 96-well plates
and incubated for 24 h in an incubator (37 ◦C, 5% CO2). The growth medium was replaced
with SN-2NI or SD-NI solutions (100 µL) in growth medium. After a 48 h incubation, cells were
added to MTT (thiazolyl blue (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide,
5.0 mg/mL, 20 µL) solution in phosphate-buffered saline solution (PBS) and continued to be
incubated for 4 h. Dimethyl sulfoxide (DMSO, 100 µL) was then replaced and shaken for 30 min
at room temperature. The absorbance (optical density: OD492) was evaluated at 492 nm by a
DG-3022A ELISA-Reader (Hercules, CA, USA), and cell viability was calculated.
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3.5. Fluorescent Imaging Assay

The DMEM media (100 µg/mL streptomycin, 10% fetal bovine serum and 100 units/mL
penicillium) were used to culture B16F10 cells (1 × 105/mL) in vitro using a fluorescent imaging
assay. The cells were plated in each well of 6-well plates and incubated for 48 h in an incu-
bator (37 ◦C, 5% CO2). The growth medium was replaced with SN-2NI or SD-NI solutions
(1 mL, 100 µg/mL) in a growth medium or pure growth medium, respectively. After 2 h of
incubation, the growth medium was removed and the cells were rinsed with PBS three times.
And then the cells were fixed with paraformaldehyde (0.5 mL, 4%) for 10 min and stained
with 4′,6-diamidino-2-phenylindole (DAPI, 5 µg/mL) for another 10 min. The cell morphology
and density were observed in the Leica confocal laser scanning microscope (CLSM) (TCS SP8,
Heidelberg, Germany).

3.6. Cell Uptake Assay

B16F10 melanoma cells (1 × 105/mL) were seeded in 24-wellplates in the DMEM
media (10% fetal bovine serum (Gibco. Co., Chagrin Falls, OH, USA), 100 units/mL penicil-
lium and 100 µg/mL streptomycin), respectively. These cells were incubated for 24 h in an
incubator (37 ◦C, 5% CO2), and the growth medium was then replaced with SN-2NI, SD-NI
solutions in growth medium or pure growth medium (200 µL), respectively. Cells were
incubated for 2 h, washed using PBS three times, and then fixed with paraformaldehyde
(0.5 mL, 4%) for 10 min. The cell morphology and density were observed in an IX-70
inverted fluorescence microscope (Olympus Co., Ltd., Tokyo, Japan).

An inhibited cell uptake assay was carried out as the above cell uptake assay. Before
the addition of SN-2NI, SD-NI solutions, or pure growth medium (200 µL), cells were
previously incubated with SN or SD solutions in growth medium (25 µmol/L, 200 µL),
respectively, for 1 h.

4. Conclusions

Sulfonamide-containing naphthalimides SN-2NI and SD-NI were synthesized and
evaluated as potential fluorescent imaging probes. SN-2NI and SD-NI displayed similar
UV and fluorescent properties, as well as NI. Moreover, these sulfonamide-containing
naphthalimides possessed low cell cytotoxicity to B16F10 cells. SN-2NI and SD-NI can be
taken up highly by B16F10 cells and then achieve good green fluorescent images in B16F10
cells. Therefore, sulfonamide-containing naphthalimides can be considered to be potential
probes for fluorescent imaging in tumors.
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