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Abstract: Cyclophilin A (CypA), the cellular receptor of the immunosuppressant cyclosporin A
(CsA), is an abundant cytosolic protein and is involved in a variety of diseases. For example, CypA
supports cancer proliferation and mediates viral infections, such as the human immunodeficiency
virus 1 (HIV-1). Here, we present the design of PROTAC (proteolysis targeting chimera) compounds
against CypA to induce its intracellular proteolysis and to investigate their effect on immune cells.
Interestingly, upon connecting to E3 ligase ligands, both peptide-based low-affinity binders and
CsA-based high-affinity binders can degrade CypA at nM concentration in HeLa cells and fibroblast
cells. As the immunosuppressive effect of CsA is not directly associated with the binding of CsA
to CypA but the inhibition of phosphatase calcineurin by the CypA:CsA complex, we investigated
whether a CsA-based PROTAC compound could induce CypA degradation without affecting the
activation of immune cells. P3, the most efficient PROTAC compound discovered from this study,
could deplete CypA in lymphocytes without affecting cell proliferation and cytokine production.
This work demonstrates the feasibility of the PROTAC approach in depleting the abundant cellular
protein CypA at low drug dosage without affecting immune cells, allowing us to investigate the
potential therapeutic effects associated with the endogenous protein in the future.

Keywords: cyclophilin A (CypA); cyclosporin A (CsA); protein degradation; protein–protein interac-
tions; proteolysis targeting chimera (PROTAC)

1. Introduction

The peptidyl-prolyl cis/trans isomerase (PPIase) CypA is an abundant protein that
accounts for 0.1–0.6% of cytoplasmic proteins and is involved in various biological pro-
cesses [1,2], ranging from protein folding [3] and cellular signaling [4] to mediating the
pathology of many different viruses like facilitating the viral life cycle of the human im-
munodeficiency virus 1 (HIV-1) [5,6] and positively regulating the hepatitis C virus (HCV)
replication [7]. It has been identified as the cellular receptor of the immunosuppressive
drug CsA [8], which blocks the nuclear factor of activated T cell (NFAT) signaling through
inhibition of the Ca2+/calmodulin-dependent phosphatase calcineurin (CaN) [9–12] by the
CypA:CsA complex, in turn down-regulating the transcription of cytokine genes such as
interleukin-2 (IL-2) and interferon-γ (IFN-γ) [13]. Since CypA contributes to a wide range
of diseases including cancers [14], inflammation [15] as in the case of atherosclerosis [16],
neurodegenerative diseases [17] like Alzheimer’s disease [17], and viral infections [18–20], it
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represents a valuable drug target [21]. Many non-immunosuppressive CsA derivatives have
been reported, while non-immunosuppression means that a compound can inhibit CypA
without affecting the calcineurin-NFAT pathway and immune signaling [22]. However,
high drug concentrations and doses would be required to inhibit an abundant endogenous
protein and exert a therapeutic effect. This in turn could cause undesired side effects. For
instance, the treatment of HCV patients with a high dosage of non-immunosuppressive
CsA derivative can block virus replication but also leads to developed resistance, the failure
of multi-direct-acting anti-viral treatments [23], and causes serious adverse effects such as
abdominal pain, fever, and vomiting [23,24].

Different from conventional drug molecules, PROTACs (Proteolysis Targeting Chimeras)
have the advantage of being organic compounds with catalytic functions [25]. They hijack
the activity of the cell’s natural protein degradation machinery, allowing for the deactivation
of multiple target molecules with one PROTAC molecule [26] (Figure 1A). PROTACs are
heterobifunctional molecules, consisting of (1) the targeting warhead, which binds the
protein of interest (POI), (2) the PROTAC anchor, which recruits the E3 ubiquitin ligase, and
(3) a linker connecting the two binding moieties [27–29]. The formation of a ternary complex
(TC) POI:PROTAC:E3 ligase is required for the ubiquitination of the POI by E3 ligase
followed by its degradation by the proteasome [26,28,29]. During this process, the PROTAC
itself remains intact, resulting in the degradation of multiple POI copies. As PROTACs
can function sub-stoichiometrically, they can be used at low concentrations [30]. Therefore,
developing PROTAC compounds represents an avenue particularly attractive for inhibiting
targets with high cellular concentrations such as CypA [31–33]. Moreover, PROTAC
represents an “event-driven” pharmacological mechanism rather than an occupation-driven
effect [34]. Therefore, different from conventional small molecule inhibitors, PROTAC can
antagonize targets by binding to either a functional or allosteric site, while high-binding
affinity to POI is also not a prerequisite.
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an E3 ligase ligand. PROTAC brings the E3 ligase and the POI into proximity, leading to the
subsequent degradation of POI by proteasome. In principle, the approach can be realized by using
either a high-affinity binder (e.g., P3) or a low-affinity binder (e.g., P5). (B) Chemical synthesis of
CsA-derivative containing a terminal carboxylic group in the side chain of residue 1 and PROTAC compounds
P1 to P4. (a) DCM, 0.2 eq. Grubbs Hoveyda II catalyst, 9.0 eq. pent-4-enoic acid, rt, and o.n.
9:1 MeOH/H2O, 10% Pd/C, H2, rt for 2 h. (b) DMF, 1.1 eq. PEG-linker:E3 ligase ligand compound,
1.2 eq. HATU, 6.0 eq. DIPEA, rt, and o.n. R corresponds to the VHL ligand or pomalidomide. (c) DMF,
1.1 eq. propargylamine, 1.2 eq. HATU, 6.0 eq. DIPEA, rt, and o.n.. R corresponds to the VHL ligand or
pomalidomide. (d) Azide-conjugated VHL ligand or pomalidomide, 1:1 DMF/DMSO, 2.0 eq sodium
ascorbate, 1.0 eq. CuSO4 · 5 H2O, 0 ◦C → 60 ◦C and o.n.. (C) Chemical synthesis of peptide-PROTACs
containing a CypA binding site P5 to P8. (a) Azide-conjugated VHL ligand or pomalidomide, DMSO,
4.0 eq sodium ascorbate, 2.0 eq. CuSO4 · 5 H2O.

In this work, we have designed PROTAC molecules using either high-affinity CypA
binders (CsA derivative) [9] or low-affinity binders (two peptides derived from HIV peptide
Vrp) [35] to investigate whether they can deplete this highly abundant cellular protein.
This approach can provide the opportunity to directly evaluate the contribution of ligand-
binding affinity to the targeted proteolysis. Moreover, since we used an immunosuppressive
compound as a warhead to target pathways not related to immunosuppressive treatments,
immunosuppression would be considered an adverse effect in this context. Therefore, the
CsA-based compounds were further studied regarding their capability to induce cell death
and impair T-cell proliferation and cytokine production.

2. Results

The CsA derivative with a carboxylic group at residue 1 (compound 1) was synthesized
according to previous reports [36] (Figure 1B). Compound 2 was synthesized by coupling
1 to propargylamine. Compounds 1 and 2 were connected to either VHL E3 ligase ligand
(VHL ligand) or CRBN E3 ligase ligand (pomalidomide) using amide bond formation
and Cu(I)-catalyzed click reaction, respectively, resulting in PROTAC compounds P1–P4
(Figure 1B and Table 1). While CsA and its derivatives have low nM affinity to CypA [36],
the two CypA binding peptides derived from the virus-associated multifunctional protein R
of HIV have high µM to low mM affinity to CypA [37]. The peptides containing an alkyne
group at their N-terminals were synthesized using solid phase peptide synthesis and
conjugated to VHL ligand and pomalidomide with click reaction (Figure 1C, Supporting
Information, Figure S1), resulting in the PROTACs P5–P8.

Table 1. Characterization of anti-CypA PROTACs. These differ in their warhead, E3 ligase ligand, and
linker. The dissociation constant (IC50) values between the PROTACs and CypA were determined
with the PPIase activity assay [38].

E3 Ligase Warhead Linker POI Warhead IC50

P1 Pomalidomide –(–CH2–CH2–O)4– CsA 7.73 nM
P2 Pomalidomide Triazole CsA 1.80 nM
P3 VHL-ligand –(–CH2–CH2–O)4– CsA 13.54 nM
P4 VHL-ligand Triazole CsA 3.50 nM

CsA - - - 5.70 nM
P5 Pomalidomide –(–CH2–CH2–O)4– Peptide 1 >3 µM
P6 Pomalidomide Triazole Peptide 2 >3 µM
P7 VHL-ligand –(–CH2–CH2–O)4– Peptide 1 >3 µM
P8 VHL-ligand Triazole Peptide 2 >3 µM

The PPIase activity assay was used to measure the interaction between PROTACs and
CypA (Table 1). As expected, the CsA-based PROTACs exhibited low nM IC50 against
the PPIase activity of CypA, whereas less than 20% inhibition could be measured for the
peptide-based PROTACs at the concentration of 3.3 µM.
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The degradation of endogenous CypA in HeLa cells was investigated with 0.1 µM
and 1.0 µM CsA-based PROTAC compounds P1–P4 (Figure 2A and Supporting Informa-
tion Figure S2A) treatments for different durations before cell lysis and western blotting.
Remarkable decreases in the intensity of the CypA band were observed after an incubation
time of 8 h but not after 4 h. CsA did not affect the amount of CypA in the cell, indicating
that the degradation of CypA in the HeLa cell is mediated through the PROTAC mecha-
nism (Figure 2D, Supporting Information Figure S2A). Increasing the treatment time to
24 h further enhanced the degradation, leading to full depletion of cellular CypA (Dmax).
Interestingly, a trend was observed where a lower PROTAC concentration (0.1 µM) caused
a stronger degradation after 24 h (Figure 2B). This observation can be explained by the
“Hook effect”, which predicts a high probability of forming the ternary complex at low
PROTAC concentrations [39,40], a characteristic feature for many bi-functional molecules.
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Figure 2. PROTAC compounds induce CypA degradation in HeLa cells analyzed by western blot.
(A) Eight-hour treatment, (B) 24 h treatment. (C) Treatment for eight hours with a mixture of P1 and
P3. (D) HDFn were pre-treated for one hour with 1 µM epoxomicin, 3 µM MG-132, 1 µM CsA, and
10 µM VHL ligand 1 and afterward incubated for seven hours with 1 µM P3. (E) HeLa cells treated
for eight hours with peptide-based PROTACs P5 to P8.

The cellular uptake of PROTAC compounds was quantified by mass spectrometry after
4, 8, and 24 h of treating HeLa cells with 100 nM or 1 µM of P3 or P4. Four to twelve-fold
higher cellular concentrations were measured with 1 µM of P3 or P4 compared to those
with 100 nM (Supporting Information, Figure S2B), while the differences between the two
concentrations were the largest at 8 h.

Overall, P3 was revealed as the most efficient PROTAC compound from the experi-
ments, and 70 nM of P3 was found as the optimal concentration when measuring the degra-
dation of CypA after 6 h of PROTAC treatment (supporting information, Figure S2C,D).
VHL ligand coupled-PROTACs (P3 and P4) may have greater stability within the cells [41],
and the higher flexibility of the PEG linker (P3) [42] compared to the sterically demanding
triazole (P4) seems to favor the formation of a productive tertiary complex.



Molecules 2024, 29, 2779 5 of 15

As P1 and P3 were designed to recruit two different E3 ligases by linking CsA to
pomalidomide and VHL ligand, respectively, we investigated whether mixing P3 and P1 at
50 nM of each would cause a synergetic effect. As shown in Figure 2C, the combination
is less effective than the treatment, with 100 nM of P3 indicating that the degradation
efficiency cannot be augmented by recruiting two different E3 ligases. The PROTAC
compounds were also tested in HDFn (Supporting Information, Figure S3A–C), showing
P3 and P4 as the best PROTACs in fibroblasts, whereas CsA exhibited little effect on CypA
degradation in the fibroblasts.

The peptide-based PROTAC compounds (P5 to P8) could also induce the degradation
of cellular CypA in HeLa cells and fibroblasts (Figure 2E, Supporting Information Figures
S2 and S3). As the peptide-based compounds could be sensitive to the proteolytic activity
in cells, we tested their effects after 8 h of treatment. Interestingly, the “Hook effect” was
also observed for these compounds. P5 was found to have an optimal concentration of
50 nM (Supporting Information, Figure S2E).

To demonstrate that the effects of the PROTACs are mediated by the proteasome, HeLa
and HDF cells were treated with epoxomicin and MG-132, proteasome inhibitors, before
the treatment with P3 or P5. The degradation of CypA in both HeLa cells and fibroblasts
was suppressed upon proteasome inhibition (Figure 2D and Supporting Information,
Figure S3D,E), confirming the proteasome-mediated degradation mechanism. To further
investigate the mechanism of P3, the cells were pretreated with VHL ligand 1 or CsA. The
resulting recovery of CypA band proves that CypA degradation is indeed induced by P3
and mediated by its interactions with the POI and with the E3 ligase (Figures 2D and S3E).

To assess the immunosuppressive potential of cellular CypA degradation induced by
P3, CD3/CD28-activated primary peripheral blood mononuclear cells (PBMCs) from five
healthy donors were treated with either P3 or CsA. PBMCs are commonly used to evaluate
the immune activity upon immunosuppressive treatments. CypA protein levels were
evaluated by western blot (Figure 3A, donor 1 shown as representative for the five donors,
Figure 3B). As expected, P3 induced the degradation of CypA in the activated PBMCs. CsA
exhibited a similar effect, which was not observed in HeLa cells and fibroblasts. While
CsA inhibits its immunological target CaN by forming the CypA:CsA:CaN complex, it
further acts as molecular glue inducing a new interaction between CypA and an E3 ligase
in the immune cells [43,44]. The resulting CypA:CsA:E3 ligase complex could induce the
degradation of CypA [45]. The E3 ligase involved in this process remains to be investigated.
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Figure 3. P3 induces CypA degradation in PBMCs. (A) Western blot of PBMCs from donor one
treated with P3 or CsA after four days or a daily treatment with DMSO or 1 µM P3 for four days
(marked with *). (B) Overview of the same experiments as in A) with five different PBMC donors.
(C) PPIase activity assay of the cell lysate of PBMCs treated with P3 or CsA for four days, or daily
treatment with DMSO or 1 3M P3 for four days (marked with *). Dashed line marks the mean of the
five donors, and the solid line is the median.
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We then evaluated the effect of daily administration of 1 µM P3 for four days. In-
terestingly, the repeated administration did not cause further degradation of the protein,
likely due to the “Hook” effect. Nevertheless, although the higher drug dosage did not
cause additional protein degradation, a further reduction in cytosolic PPIase activity was
measured (Figure 3C).

The effect of P3 on the proliferation of PBMCs was determined by FACS measurements,
using annexin V and 7-AAD as markers for apoptosis and necrosis, respectively. After
treating the cells daily with 1 µM P3 for four days, there was almost no difference in the
resulting percentage of apoptotic and necrotic cells, as compared to the DMSO control
(Figure 4A), demonstrating that P3 does not induce cell death.
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Figure 4. P3 does not induce cell death or cytokine secretion of PBMCs. (A) FACS experiments
to investigate the effect of the PROTAC on PBMC proliferation regarding the necrosis (y-axis) and
apoptosis (x-axis). The markers used to determine the two types of cell death are 7-AAD (necrosis)
and Annexin V (apoptosis). A representative dataset of one donor represents two biological repli-
cates/donors. (A) PBMCs without treatment and treated with P3 or DMSO control. (B) Proliferation
assay with 3H-Thymidine. * Daily treatment with DMSO/1 µM P3 for 4 days. (C) ELISA assay
with primary antibody against IL-2. Experiments were performed with five different donors. The
control defines the IL-2 response of CD3/CD28-stimulated PBMCs. Treatment with DMSO, CsA, and
P3. * Daily treatment with DMSO or 1 µM P3 for 4 days. (D) ELISA assay with primary antibody
against INF-γ. Experiments were performed with five different donors. The control defines the IFN-γ
response of CD3/CD28-stimulated PBMCs. Treatment with DMSO, CsA, and P3. * Daily treatment
with DMSO or 1 µM P3. The dashed line marks the mean of the five donors, and the solid line is
the median.

The anti-proliferative effect of P3 on the activated PBMCs was measured by 3H
thymidine incorporation assay (Figure 4B), with CsA used as a positive control. Neither a
single treatment with 1 µM P3 nor the daily treatment with 1 µM P3 for four days affected
the proliferation of PBMCs, whereas a single treatment with 1 µM CsA led to full inhibition
of PBMC proliferation.



Molecules 2024, 29, 2779 7 of 15

The effect of P3 on important functional properties of the T cells was further evaluated
by determining the secretion of cytokines IFN-γ and IL-2 using ELISA. As expected,
treating the cells with CsA resulted in fully inhibited production of both cytokines. In
contrast, neither a single treatment with 1 µM P3 nor the daily treatment with 1 µM P3
for four days affected the production of IFN-γ and IL-2 in activated PBMCs (Figure 4C,D).
The observations were consistent between PBMC donors. Therefore, P3 can induce the
degradation of cellular CypA without any detectable immunosuppressive effect in vitro.

3. Discussion

Unlike the protein targets of other PROTAC compounds, CypA is a highly abundant
cellular protein. It is a PPIase, a large family of enzymes found in both prokaryotes and
eukaryotes. Intriguingly, despite their abundance and highly conserved sequence through-
out evolution from bacteria and yeast to man, the knockout of all 12 PPIase genes in yeast,
including CypA, exhibit no phenotype [46]. CypA-knockout mice also appeared robust
and suffered no obvious decrease in life span, while only some animals spontaneously de-
veloped allergic diseases [47]. Although CypA is not essential in mammals, it is associated
with many viral infections, including HIV [5,48–51], HCV [7,52–54], and SARS-CoV [55,56].
For example, decreased replication of HIV-1 has been found in CypA-knockout T cells [51]
as well as in CsA treatment [57]. CypA (encoded by the PPIA gene) has also been found
overexpressed in many types of cancers and may function as a protective resistance gene in
malignant cells [58]. Targeting a highly conserved and endogenous factor, such as CypA,
represents a drug discovery approach particularly attractive for antiviral treatment, as it is
less likely affected by mutations. As a consequence, many non-immunosuppressive CypA
inhibitors have been developed, including non-immunosuppressive derivatives of CsA,
derivatives of another immunosuppressive macrocycle, Sanglifehrin, whose structure is not
related to CsA, as well as de novo-designed small molecules [22]. Although many of these
compounds possess very high affinity (pM to low nM) to CypA, this does not necessarily
lead to reduced dosage in the treatment, due to the high cellular concentration of CypA.
For example, in phase II clinical studies, the treatment of HCV patients with a high dosage
of the non-immunosuppressive CsA derivative (Alisporivir, a low nM CypA inhibitor) can
block virus replication, but it also causes serious adverse effects and developed resistance
for the patients [23,24].

PROTAC molecules hijack the activity of the cell’s natural protein degradation ma-
chinery, allowing for the deactivation of multiple target molecules per drug molecule. They
function sub-stoichiometrically and can be used at low concentrations. In this work, we
designed and synthesized PROTAC compounds using peptide-based weak binders and
CsA-based strong binders. Upon conjugating to VHL ligand or pomalidomide, the resulting
PROTAC compounds depleted cellular CypA in HeLa cells, fibroblast cells, and PBMCs. P3
neither induced cell death nor affected cytokine secretion. Such PROTAC compounds can
become powerful pharmacological tools to investigate the elusive pathophysiological func-
tions of this highly abundant and conserved cellular protein and to explore its therapeutic
use against viral infections and cancers.

4. Materials and Methods

All purified compounds and proteins were analyzed on a reverse-phase Ultra HPLC
(Waters ACQUITY UPLC) system with ACQUITY TQ Detector (Waters Corporation, Mil-
ford, MA, USA) equipped with an analytical C18 column.

The purification of the compounds was performed by the HPLC (Waters e2698 Sepa-
ration Module) system using water (0.1%TFA) and acetonitrile (0.1%) as a solvent system
with a PDA Detector equipped with a preparative C18(2) column.
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4.1. Synthesis of E3 Ligase Ligands

VHL ligand, (S,R,S)-AHPC alias VH032, was synthesized starting from 4-bromo-
bezylamine according to the guidelines of Steinebach et al. [59]. Pomalidomide was
synthesized corresponding to the protocol of Ruchelman et al. [60].

4.2. Synthesis of Linker:E3 Ligase Compounds
4.2.1. Compound 7

To a stirred solution of 2,2-dimethyl-4-oxo-3,8,11,14,17-pentaoxa-5-azaicosan-20-oic
acid (31.89 mg, 0.087 mmol, 1.0 eq.) and compound 6 (52.24 mg, 0.096 mmol, 1.1 eq.) in
0.21 mL DMF, HATU (39.70 mg, 0.104 mmol, 1.2 eq.) and DIPEA (90.93 µL, 0.522 mmol,
6.0 eq.) were added. The mixture was stirred overnight at room temperature and was
afterward quenched by the addition of water. The aqueous layer was three times extracted
with EtOAc. The combined organic layers were washed with 5% (w/v) citric acid as well
as NaHCO3 solution and dried over anhydrous Na2SO4. After evaporation of the solvent
by reduced pressure, the product (67.0 mg, 0.085 mmol, 98%) was purified by HPLC.
Compound 7 was obtained through the deprotection by 20% TFA in DCM.

Yield: 98%, LC-MS: m/z: 678.10 (M–H)+

4.2.2. Compound 11

DMF (0.185 µL) was added at room temperature to a stirred solution of 2,2-dimethyl-
4-oxo-3,8,11,14,17-pentaoxa-5-azaicosan-20-oic acid (Thermo Fisher, Waltham, MA, USA,
30.0 mg, 0.082 mmol, 2.23 eq.) and oxalyl chloride (VWR, Radnor, PA, USA, 6.35 µL,
0.074 mmol, 2.0 eq.) in 50.0 µL diethyl ether (VWR). After 3 h, 4-amino-2-(2,6-dioxopiperidin-
3-yl)isoindoline-1,3-dione 10 (10.0 mg, 0.037 mmol, 1.0 eq.) in THF (VWR, 370.0 µL) was
added to the mixture and heated to reflux (70 ◦C) overnight. To the mixture, water was
added, and the aqueous layer was extracted with DCM (dichloromethane) (VWR). The com-
bined organic layers were dried over anhydrous Na2SO4. After evaporating the solvents by
vacuum, the title compound was observed and purified through HPLC. The deprotection
by 20% TFA in DCM for 30 min at room temperature led to product 11 (44.4 mg, 0.07 mmol).

LC-MS: m/z: 520.92 (M–H)+

4.2.3. Compound 12

DMF (0.17 µL) was added at room temperature to a stirred solution of 5-bromopentanoic
acid (Sigma Aldrich, St. Louis, MO, USA, 8.88 mg, 0.049 mmol, 2.23 eq.) and oxalyl
chloride (3.77 µL, 0.044 mmol, 2.0 eq.) in 30.0 µL diethyl ether. After 3 h, 4-amino-2-
(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione 10 (6.01 mg, 0.022 mmol, 1.0 eq.) in THF
(220.0 µL) was added to the mixture and heated to reflux (80 ◦C) overnight. Water was
added to the mixture, and the aqueous layer was extracted with DCM. The combined
organic layers were dried over anhydrous Na2SO4. The yellow residue 12 (19.5 mg,
0.045 mmol) was utilized for the next step without further purification.

Yield: 85%, LC-MS: m/z: 437.75 (M–H)+

4.2.4. Compound 13

An amount of 5.82 mg NaN3 (Merk, Darmstadt, Germany, 0.089 mmol, 2.0 eq.) was
added to a stirred solution of 4-bromo-N-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-
4-yl)butanamide 12 (19.5 mg, 0.045 mmol, 1.0 eq.) in 89.4 µL dry DMF. The mixture was
heated to 80 ◦C overnight. After cooling down to room temperature, the reaction mixture
was extracted with EtOAc. The organic layers were concentrated by vacuum to obtain
the yellow solid 13 (12.0 mg, 0.03 mmol, 67%). The product was used without further
purification.

Yield: 67%, LC-MS: m/z: 399.02 (M–H)+
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4.2.5. Compound 15

HATU (7.3 g, 0.019 mmol, 1.2 eq.) and DIPEA 16.7 µL, 0.087 mmol, 6.0 eq.) were
added to a solution of compound 14 (2.29 mg, 0.014 mmol, 1.0 eq.) and compound 6
(8.7 mg, 0.016 mmol, 1.1 eq.) in 100.0 µL DMF. The mixture was stirred overnight at room
temperature and was afterward quenched by the addition of water. The aqueous layer was
three times extracted with EtOAc. The combined organic layers were dried over anhydrous
Na2SO4. After evaporation of the solvent by reduced pressure, the product 15 (6.66 mg,
0.012 mmol, 86%) was obtained.

Yield: 86%, LC-MS: m/z: 555.98 (M–H)+

4.3. Synthesis of CsA-Based PROTACs

CsA (LC Laboratories, Woburn, MA, USA, 50.0 mg, 0.042 mmol, 1.0 eq.) was activated
in 0.5 mL DCM with 5.26 mg Grubbs Hoveyda II catalyst (Sigma Aldrich, 0.008 mmol,
0.2 eq.) for 30 min at room temperature. After adding pent-4-eonic acid (Alfa Aesar,
Haverhill, MA, USA, 38.21 µL, 0.374 mmol, 9.0 eq.), the mixture was heated to 45 ◦C
overnight. The solution was filtered over silica in 9:1 EtOAc/MeOH to obtain 72.0 mg
(0.057 mmol) of the product.

LC-MS: m/z = 1260.82
The compound (72.0 mg, 0.057 mmol, 1.0 eq.) was stirred in 1.5 mL 9:1 MeOH/H2O

with a spade point of Pd/C (10%) for 2 h under H2 atmosphere. Afterward, the mixture
was filtered over celite (VWR), and the red solid 1 (82.03 mg, 0.065 mmol) was utilized
without further purification.

LC-MS: m/z: 1262.55
The general procedure followed for amide bond formation with compound 1 (CsA–

COOH) was:
HATU (1.2 eq.) was added to a solution of compound 1 (1.0 eq.) in DMF and stirred for

30 min at room temperature. Then, the mixture was completed with the amine compound
(1.1 eq.) and DIPEA (6.0 eq.) and stirred overnight at room temperature. The reaction was
quenched by the addition of water, and the aqueous layer was three times extracted with
EtOAc. The combined organic layers were dried over Na2SO4. The solvent was evaporated
through a rotary evaporator to obtain the product.

4.3.1. Compound 2

Propargylamine was used as an amine compound to lead to product 2.
Yield: 60%, LC-MS: m/z: 1299.31 (M–H)+

4.3.2. Compound P1

Yield: 90%, LC-MS: m/z: 1765.05

4.3.3. Compound P3

Yield: 16%, LC-MS: m/z: 1922.31

4.4. General Procedure for the Click Reaction with Compound 4

An aqueous solution of CuSO4·5 H2O (Merck, 1.0 eq.) and sodium ascorbate (Alfa
Aesar, 2.0 eq.) prepared on ice was quickly added to a stirred solution of compound 4
(1.0 eq.) and the corresponding azide (1.0 eq.) in 1:1 DMF/DMSO (Dimethyl sulfoxide,
VWR). The mixture was heated to 60 ◦C and stirred overnight. Then, the reaction was
quenched by the addition of water. The aqueous layer was three times extracted with
EtOAc. After the solvent was evaporated, the title compound was yielded and purified
through HPLC.
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4.4.1. Compound P2

Yield: 34%, LC-MS: m/z: 1697.88

4.4.2. Compound P4

Yield: 36%, LC-MS: m/z: 1855.06

4.5. Synthesis of Peptide-Based PROTACs

The following peptides AVRHFPRIWLHGGCG and HFPRIGGCG (50 µmol) were syn-
thesized at the Liberty Blue of CEM with 1.0 eq. of DIC (N,N-Diisopropylcarbodiimide, Iris
Biotech, Marktredwitz, Germany) and 0.5 eq. of OximaPure (Ethyl cyano(hydroxyimino),
Iris Biotech). The amino acids used were purchased from Iris Biotech.

AVRHFPRIWLHGGCG: LC-MS: m/z: 1705.03
HFPRIGGCG: LC-MS: m/z: 942.31
For further modification, the resin was soaked in DMF and the acid component 6-

(Fmoc-amino) hexanoic acid (Iris Biotech, 53.0 mg, 0.15 mmol, 3.0 eq.) was activated with
HATU (57.0 mg, 0.15 mmol, 3.0 eq) in 1.5 mL DMF for 45 min. After the addition of
DIPEA (78.39 µL, 0.45 mmol, 9.0 eq.), the reaction mixture was added to the resin and
constantly shaken overnight. Afterward, the reaction mixture was discarded, and the resin
was washed three times each with DMF and DCM.

AHX-AVRHFPRIWLHGGCG: LC-MS: m/z: 1020.79 (M–2H)2+

AHX-HFPRIGGCG: LC-MS: m/z: 1277.54
Additionally, the resin was soaked in DMF and the acid 4-pentyoinic acid (Sigma

Aldrich, 14.72 mg, 0.15 mmol, 3.0 eq.) was activated with HATU (57.0 mg, 0.15 mmol,
3.0 eq) in 1.5 mL DMF for 45 min. After the addition of DIPEA (78.39 µL, 0.45 mmol, 9.0 eq.)
the reaction mixture was added to the resin and constantly shaken overnight. Afterward,
the reaction mixture was discarded, and the resin was washed three times each with DMF
and DCM.

Pent-AHX-AVRHFPRIWLHGGCG: LC-MS: m/z: 1060.54 (M–2H)2+

Pent-AHX-HFPRIGGCG: LC-MS: m/z: 1357.64
An aqueous solution of CuSO4·5 H2O (Merck, Darmstadt, Germany, 1.0 eq.) and

sodium ascorbate (Alfa Aesar, 2.0 eq.) prepared on ice was quickly added to a stirred
solution of ether modified peptide (1.0 eq.) and the corresponding azide (1.0 eq.) in
1:1 DMF/DMSO (Dimethyl sulfoxide, VWR). The mixture was heated to 60 ◦C and stirred
overnight. Then the reaction was quenched by the addition of water. The aqueous layer was
three times extracted with EtOAc. After the solvent was evaporated, the title compound
was yielded and purified through HPLC.

4.5.1. Compound P5

Pent-AHX-AVRHFPRIWLHGGCG
Yield: 23%, LC-MS: m/z: 1148.32 (M–2H)2+

4.5.2. Compound P6

Pent-AHX-HFPRIGGCG
Yield: 10%, LC-MS: m/z: 1533.64

4.5.3. Compound P7

Pent-AHX-AVRHFPRIWLHGGCG
Yield: 19%, LC-MS: m/z: 1227.45 (M–2H)2+

4.5.4. Compound P8

Pent-AHX-HFPRIGGCG
Yield: 6%, LC-MS: m/z: 1690.32
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4.6. Cell Culture

HeLa cells and primary human dermal fibroblasts isolated from neonatal foreskin
(HDFn) were adherent cells and were cultured in commercially available, ready-to-use
DMEM (Dulbecco’s minimal essential medium, Gibco, Waltham, MA, USA) supplemented
with 10% (v/v) FBS (Fetal Bovine Serum, Sigma-Aldrich) and antibiotics (Streptomycin/
Penicillin, 1:1000 dilution) in polystyrene culture flasks. Growth conditions for all cell lines
were maintained in a humidified chamber at 37 ◦C and 5% CO2. For subculturing or prior
counting, the cells were treated with trypsin-EDTA (Life Technologies GmbH, Carlsbad,
CA, USA) to detach them from the surface.

A total of 5 × 105 HeLa cells or HDFn was plated in 6-well plates the day before
treatment. In the case of epoxomicin (Sigma-Aldrich), MG-132 (Sigma-Aldrich), CsA, (LC
Laboratories), or VHL ligand (Broad Pharm, San Diego, CA, USA) treatment, they were
dosed with 1 µM epoxomicin, 3 µM MG-132, 1 µM CsA or 10 µM VHL ligand in DMSO
(100 µL) for 1 h. An amount of 200 µL PROTAC dilutions (0.1 µM and 1.0 µM) in DMSO
(final concentration 0.1% (v/v)) were added to the culture medium and incubated at 37.0 ◦C
and 5.0% CO2 for the desired time. As a blank, the cells were incubated with 200 µL
DMSO under the same conditions. After the appropriate incubation time, the medium was
aspirated, and the cells were washed twice with 1× PBS.

4.7. PBMC Isolation

Blood was obtained from healthy volunteers after obtaining written consent (Ethical
approval No. EK206082008). PBMCs were isolated by density gradient centrifugation using
Pancoll (PAN-Biotech, Aidenbach, Germany), washed twice with Dulbecco’s Phosphate
Buffered Saline (Gibco, USA), and finally resuspended in Roswell Park Memorial Institute
1640 (Gibco, USA) supplemented with 10% fetal bovine serum (Sigma-Aldrich, USA).

4.8. Western Blotting

Cells were lysed in ice-cold 1× Laemmli buffer (100 mM DTT) after two washes with
1× PBS. After denaturation (95 ◦C for 5 min) and shearing of the DNA by sonication, the
samples were loaded on Tricine-SDS-PAGE, electrophoresed, and blotted onto a PVDF
membrane. After staining with S-Ponceau staining solution and blocking, the membranes
were incubated overnight at 4 ◦C in primary rabbit anti-CypA antibody (Cell Signaling
Technology #2175S, Danvers, MA, USA) and for 1 h at room temperature with secondary
antibody (IRDye® 800 CW Goat anti-Rabbit IgG Secondary Antibody, LI-COR). All mem-
branes were then reprobed with rabbit anti-beta actin (Cell Signaling Technology #4967)
to ensure equal protein loading. The intensities of the bands on western blot films were
quantified using the LI-COR Odyssey Imaging System and the software Image Studio Lite
(version 3.1). The CypA values were normalized to β-actin, and DMSO was arbitrarily
assigned a value of 100% for comparison purposes.

4.9. PPIase Activity Assay

The assay was performed in HEPES buffer (35 mM HEPES, 150 mM NaCl, 1 mM DTT,
pH 7.8). Suc-AFPFpNA (Sigma-Aldrich) was dissolved in DMSO to a final concentration of
20 mg mL−1 and further diluted in HEPES buffer to a final concentration of 600 µg mL−1

(10× the substrate stock). α-Chymotrypsin was prepared in 1 mM HCl with a final concen-
tration of 60 mg mL−1. After the termination of proteolysis by 200 µL of 30% acetic acid,
the samples were injected into UPLC. Chromatographic separation was performed using a
gradient at a flow rate of 0.5 mL/min with mobile phase A consisting of water (0.1% FA)
and mobile phase B consisting of acetonitrile (0.1% FA) for 4 min while monitoring a range
from 300 to 400 nm. The linear gradient was applied from 5% to 95% of mobile phase B
from 0.5 to 3.5 min.

The concentration of the substrate and product (pNA) was calculated by calibration
curves. The peak areas of Suc-AFPFpNA (l= 318 nm at 2.44 min) and 4-nitroaniline
(pNA, l = 383 nm at 1.60 min) were determined using MassLynx 4.2 (Waters Corporation,
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Milford, MA, USA) to evaluate PPIase activity by calculation in Origin 2019 64 bit software
(OriginLab Corporation, Northampton, MA, USA).

4.10. IC50 Determination

A 4 nM concentrated CypA was incubated with 0.5 µL of the inhibitor (different
concentrations) and the substrate in the buffer for 30 min. Then, 5 µL of chymotrypsin was
added to the sample series and stirred rapidly for 30 s. After 120 s, 200 µL of 30% acetic acid
was added to the series and pipetted up and down 15 times. The half-maximal inhibitory
concentration (IC50) was determined by dose–response fitting.

4.11. Evaluation of the PPIase Activity of Cellular CypA

A total of 5 × 105 cells was lysed in HEPES buffer by freeze and thaw cycles and 4.75 µL
of that cell lysate was added to a mixture of HEPES buffer supplemented with 100 nM SLF
to inhibit FKBP, 10× pNA in HEPES/SLF buffer and 0.5 µL DMSO and incubated on ice for
30 min. Then, 5 µL of chymotrypsin was added to the sample series using a multichannel
pipette and stirred rapidly for 30 s. After 120 s, 200 µL of 30% acetic acid was added to the
series and pipetted up and down 15 times. The samples were injected into the UPLC. In
this case, the blank consisted of 79.75 µL HEPES, 4.75 µL lysis buffer, and 10 µL 10 × pNA
in HEPES/SLF buffer.

4.12. PBMC Toxicity Assessment

A total of 1 × 105 PBMCs was stimulated with anti-CD3/CD28 Dynabeads (Gibco,
USA) and cultured in Roswell Park Memorial Institute 1640 (Gibco, USA) supplemented
with 10% fetal bovine serum (Sigma-Aldrich, USA) [1 µM DMSO, P3 or CsA and daily
treatment with 1 µM DMSO/P3]. After 4 days of incubation at 37 ◦C/5%CO2, cells were
collected and assessed for apoptosis by flow cytometry (LSR II, BD, Franklin Lakes, NJ,
USA) using the commercial PE-Annexin V Apoptosis Detection Kit (BD, USA).

4.13. PBMC Proliferation Assay and Cytokine Assessment

A total of 1 × 105 PBMCs was stimulated with anti-CD3/CD28 Dynabeads (Gibco,
USA) and cultured in Roswell Park Memorial Institute 1640 (Gibco, USA) supplemented
with 10% fetal bovine serum (Sigma-Aldrich, USA) [1 µM DMSO, P3 or CsA and daily
treatment with 1 µM DMSO/P3]. After 3 days of incubation at 37 ◦C/5%CO2, 1 µCi
3H-thymidine (Hartmann Analytic, Braunschweig, Germany) was added to the cultures
and further incubated for an additional 18 h. Cells were harvested and proliferation was
assessed as a measurement of 3H-thymidine incorporation as determined with the 1450 Mi-
croBeta TriLux (PerkinElmer, Waltham, MA, USA), converting degrees of radioactivity into
counts per minute (cpm). IFNγ and IL-2 assessment of supernatants was performed by
commercial enzyme-linked immunosorbent assay kits (BD, USA).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29122779/s1, Figure S1: Synthesis of the Vrp-derived
peptide-PROTACs; Figure S2: Testing PROTAC compounds in Hela cells; Figure S3: Western blots
of HDFn treated with PROTACs and CsA. Synthesis of Vrp-peptide derived PROTACs and further
characterization of CsA-based and peptide-based PROTACs in two cell lines are shown, as well as a
proof of the mechanism of degradation by the proteasome. Further we quantify the cellular uptake of
PROTAC P3 and P4.
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P.L., M.B., M.S. and Y.Z.; project administration, P.L.; funding acquisition, Y.Z. All authors have read and
agreed to the published version of the manuscript.
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