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Abstract: Enzyme-linked electrochemical immunosensors have attracted considerable attention for
the sensitive and selective detection of various targets in clinical diagnosis, food quality control,
and environmental analysis. In order to improve the performances of conventional immunoassays,
significant efforts have been made to couple enzyme-linked or nanozyme-based catalysis and redox
cycling for signal amplification. The current review summarizes the recent advances in the develop-
ment of enzyme- or nanozyme-based electrochemical immunosensors with redox cycling for signal
amplification. The special features of redox cycling reactions and their synergistic functions in signal
amplification are discussed. Additionally, the current challenges and future directions of enzyme- or
nanozyme-based electrochemical immunosensors with redox cycling are addressed.
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1. Introduction

Electrochemical immunosensors have attracted widespread interest in clinical diagno-
sis, food quality control, and environmental protection [1–3]. The desirable combination
of specific antibody–antigen recognition with convenient electrochemical methods en-
dows immunosensors with inherent advantages, such as excellent selectivity, operational
simplicity, and inherent miniaturization [4]. Under an electrical transducer, the immune
recognition event of antigen–antibody interaction can be translated into a detectable chem-
ical or physical parameter to produce an electrical output signal. Nonetheless, the low
sensitivity of traditional electrochemical immunoassays cannot meet the need of the ultra-
sensitive determination of trace analytes [5]. In order to fulfill the urgent requirement of
immunosensors with a high sensitivity and low detection limit, various signal amplification
strategies have been integrated with immunoassays in the past decades [6,7], including
enzymatic catalysis [8], DNA-based amplification techniques [9,10], and functional nano-
materials [11–16]. Among them, the perfect integration of the high specificity of enzymatic
catalysis with the high simplicity of electrochemical techniques has become a successful
approach for designing novel immunosensors in disease diagnosis, medicine research, and
environmental monitoring [17–20].

Because of the high turnover frequency, good reaction selectivity, and excellent sub-
strate specificity, enzymes have been popularly used as catalytic labels to provide high,
stable, and reproducible signals, such as horseradish peroxidase (HRP) [21,22], alkaline
phosphatase (ALP) [23,24], and glucose oxidase (GOx) [25,26]. Antigens or antibodies can
be conjugated with reporter enzymes for molecular recognition and signal readout. After
the specific antigen–antibody interaction, the enzymatic products are determined at the
final step of immunoassays. The function of enzyme labeling is to catalytically generate a
multitude of signal units, which can be feasibly determined by different electrochemical
techniques. The change in electrochemical signal exhibits a stoichiometric relationship to
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the target concentration. Therefore, the single reporter enzyme at one recognition event can
generate numerous signal molecules, eventually amplifying the electrochemical signal [27].
For example, a single-enzyme HRP can promote the generation of 107 signal molecules per
minute [28]. Notwithstanding the signal amplification, the low signal intensity of enzymatic
products will result in a low sensitivity of enzyme-linked electrochemical immunoassays.
In this view, enzymatic reactions are always fused with other advanced amplification
strategies to improve the sensitivity, such as nanomaterials [29], multi-enzymes [30], and
redox cycling [31,32]. Among them, the strategy of coupling enzymatic catalysis with redox
cycling has aroused widespread interest since it only requires the introduction of additional
reagents to the electrolyte medium [33]. The redox cycle process involves the repetitive
generation of electroactive substances through electrochemical, enzymatic, or chemical
reactions. Consequently, a small amount of product from the enzymatic reaction can induce
the generation of an enhanced electrochemical signal. For this consideration, electrochemi-
cal immunosensors, DNA sensors, and aptasensors have been widely developed through
enzymatic reaction plus redox cycling [34–37]. The integration of redox cycling and enzy-
matic catalysis can also be introduced into optical bioassays, including fluorescence [38,39],
colorimetry [40–42], and surface-enhanced Raman scattering spectroscopy [43].

Although many reviews have focused on the signal-amplified strategies, few of them
have paid attention to the guiding and systematic summary of the advances in electro-
chemical immunosensors based on enzyme- or nanozyme-based catalysis plus redox cy-
cling [18,25,44–47]. In this review, we systematically summarize the recent developments of
electrochemical immunosensors by the signal amplification of enzyme- or nanozyme-based
catalysis plus redox cycling. After a brief overview of the types of redox cycling reactions,
the applications of enzymatic catalysis plus redox cycling in electrochemical immunosen-
sors are discussed according to the functions of natural enzymes (e.g., oxidoreductases
and hydrolases) and artificial nanozymes. Furthermore, this review addresses the future
perspectives on the development of electrochemical immunosensors with catalytic reaction
plus redox cycling.

2. Types of Redox Cycling Reactions

Enzymatic products (P) can be accumulated in solution for a prolonged time and
then participate in redox cycling for signal amplification. In redox cycling, the repeat-
edly coupled oxidation and reduction of signal reporters can produce highly amplified
electrochemical signals without changing the background. Based on the types of electro-
chemical reactions occurring near or on the electrode surface, the system can be divided
into electro-oxidization and electro-reduction. In the redox cycling of substances produced
by enzymatic catalysis, the oxidized (or reduced) species can be repetitively reduced (or
oxidized) through enzymatic, chemical, or electrochemical methods. Before the summariza-
tion of electrochemical immunosensors based on enzymatic catalysis plus redox cycling,
it is necessary to briefly describe several typical but important redox cycling reactions in
enzyme-linked immunoassays according to the method of redox cycling of electroactive
signaling species.

2.1. Electrochemical–Enzymatic Redox Cycling

Oxidoreductases containing Cu or Fe ions, such as laccase, tyrosinase, and HRP, can
be used as electrocatalysts to catalyze the redox reactions of substrates [48]. In the presence
of extra oxidants, small redox molecules can be used as mediators to transfer electrons
between the active center of the enzyme and the sensing electrode, including ferrocene (Fc)
and its derivatives, 3,3′,5,5′-tetramethylbenzidine (TMB), and hydroquinone (HQ) [49–54].
Most of the hydrophobic mediators can penetrate the modification layers to exchange
electrons with the sensing electrode.
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The EN redox cycling schemes of oxidoreductase-based electrochemical biosensors are
illustrated in Figure 1. In the HRP-based system, the mediator of TMB in the reduced form
(TMBRed) is first enzymatically oxidized into TMBOx (the oxidized form of TMB) by HRP
in the presence of H2O2. When TMBOx is electrochemically reduced back into its reducing
format (TMBRed) at a suitable potential, the resulting TMBRed is immediately oxidized again
through HRP enzymatic catalysis. This process will cause a great increase in the reduction
current. In the GOx-based system, the mediator Os2+ or Fc is first electrochemically oxidized
into Os3+ or ferricinium ion. The oxidized mediator is then enzymatically reduced into its
reduced form by GOx in the presence of glucose, leading to an increase in the oxidation
current. The enzyme catalysis, herein named EN redox cycling of the mediator between
enzymatic oxidization (or reduction) and electrochemical reduction (or oxidization), can
produce an enhancement in the current at the electrode. However, in the presence of trace
amounts of targets, few enzyme labels were immobilized on the electrode to participate
in the enzymatic catalysis. In a limited time, the amount of the re-generated mediators is
relatively low even in the presence of a nonlimiting concentration of enzyme substrates.
Thus, the signal amplification efficiency of the EN redox cycling can be enhanced by
improving the turnover number of enzyme labels or using nanomaterials as nanocarriers
to increase the amount of enzyme labels per immunocomplex.
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Figure 1. Schematic illustration of the EN redox cycling with HRP (a) and GOx (b) as the signal label
of electrochemical biosensor.

Hydrolytic enzymes, such as ALP and β-Galactosidase (β-Gal), can be used as the pri-
mary enzyme reporter (E1) in combination with oxidoreductases to construct two enzymes-
based strategies through the in situ detection of the hydrolytic products, which is named
electrochemical–bienzymatic redox cycling [55,56]. In this method, oxidoreductases, such
as GOx, glucose dehydrogenase (GDH), and diaphorase (DI), are required as the second
enzyme (E2) for the one-step in situ regeneration of electroactive E1 product [57]. According
to the function of enzymatic products, the strategies of the electrochemical–bienzymatic
redox cycling system can be classified into two modes (Figure 2) [58]. In Figure 2a, the
enzymatic product (P) generated from E1 serves as both the substrate of E2 and the electron
mediator and can be recycled via repeated enzymatic reactions. In order to minimize
the interference between the two enzymatic reactions, E1 should show no redox activity.
Meanwhile, the optimal conditions for the two enzymes should be similar to ensure a high
enzymatic efficiency. In Figure 2b, P serving as the co-substrate of E2 is continuously con-
sumed during the enzymatic reactions. The bienzymatic redox cycling system in Figure 2a
exhibits a higher amplification efficiency than that in Figure 2b.
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Figure 2. Schematic illustration of (a,b) two types of electrochemical–bienzymatic redox cycling systems.

2.2. Electrochemical–Chemical Redox Cycling

Redox cycling of enzymatic products can be achieved through simple chemical reac-
tions without the use of additional enzymes or electrodes. For example, the enzymatic
product (P) can be first electrochemically oxidized into its oxidized form (Q). The additional
reducing agent can chemically reduce Q into P. The regeneration of P during electrochem-
ical scanning will induce a significant enhancement in the current, which is defined as
electrochemical–chemical (EC) redox cycling amplification (Figure 3a). In another type of
EC redox cycling system (Figure 3b) [59], the enzymatic product P serves as a chemical
reducing agent to continuously regenerate the redox mediator (R) from its electrochemi-
cally oxidized product (O) near the electrode. In this process, the redox mediator serves
as an electrocatalyst to transfer the electron from enzymatic product P to the electrode.
The amplification efficiency of the second redox cycling is lower than that of the first one,
and it is always used in the determination of enzyme activity rather than enzyme-linked
electrochemical biosensors.
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Chemical–chemical (CC) redox cycling can be achieved between two additional
reagents. In contrast to EC redox cycling, electrochemical–chemical–chemical (ECC) redox
cycling is more effective at amplifying the electrochemical signal (Figure 3c) [60–63]. Gen-
erally, the electroactive mediator (RI) is electrochemically oxidized into OI, which can be
reduced immediately by the enzymatic product (P). The oxidized enzymatic product (Q) is
then rapidly reduced back to P in the presence of excess reducing agent (RII). In this method,
RI serving as the redox mediator can be modified on the electrode surface (Figure 3c) or
dispersed in the solution (Figure 3d). Redox cycling of the enzymatic product P between RI
and RII can cause a significant increase in the anodic current. For the achievement of a low
background signal and increased sensitivity, it is crucial to select an appropriate reducing
agent, enzymatic substrate, redox mediator, and sensing electrode [64]. The reducing agent
RII should be electrochemically inactive in the scanning potential window and the chemical
reaction of RI/P and Q/RII should be very fast.

In addition, the enzymatic product P can promote the formation of electroactive metal
deposition on the electrode surface to produce a detectable electrochemical signal. In
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this method, the enzymatic product P is regenerated from its oxidized form (Q) by the
additional reducing substance RII. One of the most typical examples is enzymatic silver (Ag)
biometallization, in which Ag+ (OI) is reduced by the enzymatic product P into metallic
silver (RI) deposition on the solid substrate [65–67]. The electrochemical oxidation of the
deposited Ag could produce a high electrochemical signal. In addition, such redox cycling
systems have been widely used in optical bioassays, such as chemiluminescence [68–72],
fluorescence [38,39], and SERS assays [43].

2.3. Electrochemical–Electrochemical Redox Cycling

The electrochemical–electrochemical (EE) redox cycling of electroactive species pro-
duced by enzymatic catalysis is another approach for improving the sensitivity of electro-
chemical immunoassays [73–75]. In the EE redox cycling, two electrodes in close proximity
to each other can serve as the generator and collector. The signaling species are elec-
trochemically oxidized or reduced iteratively at the generator electrode, and are then
mass-transported through diffusion onto the collector electrode to be electrochemically
reduced or oxidized. Under the repeated redox reactions between the generator–collector
electrodes, the electrochemical signal could be greatly amplified (Figure 4) [76,77]. The
electrode gap should be as narrow as possible to facilitate the diffusion of the redox couple
and enhance the redox cycling efficiency. To date, various electrode systems have been re-
ported for redox cycling, including interdigitated array (IDA) electrodes [78], twin-electrode
thin-layer cells [79], vertically paired electrodes [80], rotating ring-disc electrodes [81], and
others [82,83].
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3. Oxidoreductases as the Signal Labels of Electrochemical Immunosensors
3.1. HRP

HRP is one of the most commonly used enzyme labels in EN redox cycling for signal
amplification [84]. The enzyme active center can be activated by the substrate (H2O2) to a
ferryloxy form that can be electrochemically reduced back in a catalytic cycle by using a
redox mediator or substrate to shuttle the electron from the electrode to the redox center
of the enzyme [85,86]. The oxidized form of the mediator or substrate can be quantified
by recording the redox current for the determination of the enzyme activity. A variety of
redox molecules have been utilized as the mediators of HRP-based redox cycling, such as
TMB [87,88], HQ [89–92], catechol [93–95], thionine [96,97], o-phenylenediamine (OPD) [98,99],
3-hydroxyl-2-aminopyridine [100], 5-methyl-phenazinium methyl sulfate [101], and o-
aminophenol [102]. As a proof, Doldan et al. reported HRP-based EN redox cycling for
the determination of exosomes with signal-on and signal-off formats [103]. In this work,
CD9 proteins on the surface of exosomes were specifically labeled with HRP-conjugated
α-mouse IgG antibodies. The HRP-based EN redox cycling of TMB in the presence of
H2O2 resulted in a significantly amplified electrochemical signal. In addition, HQ is
another commonly used mediator for designing EN-redox-cycling-based biosensors with
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HRP enzymatic catalysis. Haque et al. developed an electrochemical immunosensor for
the detection of mouse IgG (Figure 5A) [104]. In this study, graphene oxide (GO) was
deposited on the surface of an amine-terminated benzenediazonium-modified indium tin
oxide (ITO) electrode via electrostatic and π-π stacking interactions. The deposited GO
was then converted into electrochemically reduced graphene oxide (ERGO) through an
electrochemical reduction method, followed by the modification of amphiphilic polymers
for the covalent immobilization of antibodies. After the formation of the immunocomplex,
HRP molecules were immobilized on the electrode surface. Under HRP-based EN redox
cycling, the mediator HQ could be repetitively oxidized into p-benzoquinone (BQ) by HRP
enzymatic catalysis. The resulting BQ was regenerated during the electrochemical reduction
progress, thus producing an amplified current. However, in the HQ-mediated redox cycling
system, the electrochemical reduction of H2O2 and the electrochemical oxidation of HQ
may cause a high background and affect the analytical performance. Thus, a redox mediator
with a formal potential lower than that of H2O2 is desirable for addressing this problem.
Typically, Kang et al. used catechol as the mediator to develop an HRP-based EN redox
cycling for the detection of mouse IgG [105]. Yan et al. reported an EN-redox-cycling-based
electrochemical immunosensor for the determination of thyroid-stimulating hormone
(TSH) with acetaminophen as the HRP substrate (Figure 5B) [106]. In this study, ERGO
was used to partially decorate the ITO electrode for maintaining a high electrocatalytic
activity for BQ reduction even at the immunosensing-layer-modified electrode. As an
N-acetylated derivative of p-AP, acetaminophen with better stability against light exhibited
a formal potential of 0.28 V, which is higher than that of HQ (0.03 V). The redox reaction
of acetaminophen is highly reversible at neutral pH. The applied potential was set at
0 V to minimize the electrochemical reduction of H2O2 and avoid the electrochemical
oxidation of acetaminophen. In HRP-based EN redox cycling, both the enzymatic oxidation
of acetaminophen by HRP in the presence of H2O2 and the electrochemical reduction of
the catalytic product were very fast.
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Figure 5. (A) Schematic illustration of the EN-redox-cycling-based electrochemical detection of
mouse IgG using the ERGO-modified electrode [104]. Copyright 2016 American Chemical Society.
(B) Schematic illustration of an EN-redox-cycling-based electrochemical immunoassay for TSH
detection using (a) acetaminophen or (b) HQ as the HRP label substrate [106]. Copyright 2020 Elsevier.

The above redox cycling strategies always show a modest signal amplification effi-
ciency because of the relatively low enzyme/antibody ratio (1:1). To increase the number of
HRP molecules in the signal output step, nanomaterials with a large surface area have been
used as carriers to load enzymes and detection antibodies for a wide detection range and
high sensitivity, such as gold nanomaterials [107,108], magnetic nanoparticles [109], carbon
nanotubes [110], graphene [111,112], silica nanoparticles [113,114], and so forth [115]. Tang
et al. reported a magneto-controlled flow-through multiplexed immunoassay method for
the simultaneous determination of carcinoembryonic antigen (CEA) and alpha-fetoprotein
(AFP) using magnetic graphene nanosheets as capture probes and multifunctional nanogold
hollow microspheres as distinguishable signal labels (Figure 6) [116]. In this work, nanogold
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hollow microspheres were used to load HRP, two electroactive molecules (Fc and thionine),
and CEA/AFP antibodies. Antibody-modified magnetic graphene nanosheets served as
filter-like networks to capture AFP and CEA. Thionine/Fc-mediated HRP-based redox
cycling in the presence of H2O2 endowed the immunoassays with wide working ranges
and low detection limits for the simultaneous detection of AFP and CEA.
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Figure 6. Schematic illustration of the multiplexed electrochemical immunoassay protocol
and the measurement principle of the sandwich immunoassay [116]. Copyright 2011 American
Chemical Society.

In HRP-based immunosensors, the enzymatic products can be electrochemically re-
duced within the applied potential window. However, most of the mediators are electroac-
tive, and H2O2 is easily reduced within the electrochemical potential window, resulting in
high background current. Meanwhile, the electro-reduction of O2 dissolved in the solution
may increase the background current when a highly electrocatalytic electrode is employed
as the working electrode. To resolve this problem, several enzymes that can in situ catalyze
the formation of H2O2 were integrated with the HRP-based immunoassays based on a
bienzymatic cascade strategy. In order to avoid the potential side reactions in this method,
it is critical to select the appropriate HRP substrate and preceding oxidase. GOx has been
widely used as a preceding oxidase to catalyze the oxidation of the corresponding substrate
in the presence of O2, which was accompanied with the production of H2O2 for the next
HRP enzymatic catalysis [117–120]. However, the GOx-catalyzed reduction of the oxidized
peroxidase substrate may hamper the immunosensing performance. Alternatively, Yan
et al. reported an electrochemical immunosensor for the detection of parathyroid hormone
(PTH) based on a choline oxidase (ChOx)-HRP bienzymatic cascade (Figure 7) [117]. In this
work, ChOx catalyzed the oxidation of choline, and the in situ generated H2O2 could sub-
sequently oxidize acetaminophen through the HRP enzymatic catalysis. The performances
between the ChOx-HRP and GOx-HRP systems were compared. It was demonstrated that
the oxidized acetaminophen could not be reduced by ChOx in the presence of choline and
that the signal-to-background ratio for the ChOx-HRP system was higher than that for the
GOx-HRP system using acetaminophen as the HRP substrate.
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Figure 7. Schematic illustration of (a) the reaction in which a preceding enzyme (Ox) catalyzes
the corresponding substrate (S′) to the oxidized product (P′), during which H2O2 is generated and
oxidizes the peroxidase substrate (S) to the electroactive signaling product (P) in the presence of HRP,
(b) the electrochemical reaction of S′ and P′ on an electrode, (c) Ox-catalyzed reduction of P to S in
the presence of S′, and (d) an electrochemical immunoassay for PTH detection using the ChOx-HRP
cascade reaction and acetaminophen as the HRP substrate [117]. Copyright 2020 Elsevier.

3.2. GOx

GOx can catalyze the oxidation of glucose with O2 or other species as the electron
acceptor [121]. The enzyme shows excellent stability and high catalytic activity over a
broad pH range (pH 4~7) and thus has been widely used in immunoassays [122,123]. In
the first-generation glucose monitoring system, GOx enzymatic catalysis was monitored
by determining the level of the co-substrate (O2) or by-product (H2O2). However, other
reductants in biological liquids can also be oxidized on the electrode at a similar potential,
leading to a false positive signal. Meanwhile, differences in the oxygen tension of samples
may bring fluctuations into the electrode response. As the substitute of O2, other redox
mediators, such as Fc, osmium complexes, and Ru(NH3)6

3+, have been used to design GOx-
based electrochemical biosensors by accelerating the electrical communication between the
electrode and the catalytic center of GOx [124–127].

A relatively long incubation time for enzymatic catalysis can favor the generation
of an increasing number of signal species, which is unfavorable in time-saving detection
applications. To address this shortcoming, Singh et al. developed an incubation-period-free
electrochemical immunosensor for the detection of cancer antigen 125 (CA-125) based on
GOx-based EN redox cycling, in which glucose was used as the reducing substrate and
Ru(NH3)6

3+ was used as the redox mediator [128]. As shown in Figure 8A, ITO with a
low and reproducible capacitive background current/charge was utilized as the sensing
electrode. The applied potential was set at 0.05 V for the chronocoulometric measurement,
which is higher than the formal potential of Ru(NH3)6

3+/Ru(NH3)6
2+ (−0.15 V). The

redox couple undergoes a fast outer-sphere electron transfer reaction at the ITO electrode.
The enzymatic reduction of Ru(NH3)6

3+ in air-saturated buffer was faster than that of
the enzymatic reduction of O2. Meanwhile, the direct electro-oxidation of glucose at
the ITO electrode surface and the direct reaction between glucose and Ru(NH3)6

3+ are
slow, achieving a low background signal. After the attachment of GOx-modified IgG
on the electrode, Ru(NH3)6

3+ was reduced to Ru(NH3)6
2+ with the transformation of

glucose into gluconic acid. Then, Ru(NH3)6
2+ was re-oxidized back to Ru(NH3)6

3+ at the
electrode surface. The repeated EN redox cycling produced a high chronocoulometric
charge. Finally, the rapid Ru(NH3)6

2+-mediated electron transfer between the electrode
and the GOx label and the acquisition of chronocoulometric charge at a potential in the
mass transfer-controlled region obviously minimized the incubation period and improved
the signal-to-background ratio.
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In heterogeneous ELISA, multiple washing steps are required to remove the unbound
labels and interfering species. Accordingly, Yang’s group reported a washing-free im-
munosensor for the sensitive and single-step detection of prostate-specific antigen (PSA)
in serum based on the EN redox cycling and proximity-dependent electron mediation
between GOx and ITO electrodes [129]. As shown in Figure 8B, the captured GOx reporter
has a faster electron mediation with the electrode than the unbound GOx because of the
distance-dependent electron mediation of ferrocenemethanol (FcM) between GOx and ITO
electrodes. The L-ascorbate oxidase (AOx)-catalyzed oxidation of L-ascorbic acid (AA)
minimized the influence of AA. This washing-free immunosensor based on the EN redox
cycling could sensitively determine PSA after an incubation period of 10 min.

3.3. Tyrosinase

As a copper-containing redox enzyme, tyrosinase manifests two catalytic properties
(monooxygenase and oxidase activity), and has been widely used to construct enzyme elec-
trodes for the determination of catechol and phenol via a redox cycling process [130–135].
The high and selective catalytic ability led to the application of tyrosinase in the affinity as-
say as a catalytic label or signal amplifier [136]. Tyrosinase can be used to design EN redox
cycling schemes, in which tyrosinase serves simultaneously as the label to enzymatically
generate the electroactive product (catechol) and to regenerate the oxidized form of the
tyrosinase product (ortho-quinone). The regenerated ortho-quinone can be electrochemically
reduced to produce an amplified electrochemical response. For instance, Chumyim devel-
oped an electrochemical immunosensor for the detection of Salmonella Typhimurium cells
based on tyrosinase multilayer-functionalized CNTs as electrochemical labels and EN redox
cycling [137]. Akanda et al. reported integrated electrochemical–chemical–enzymatic (ECN)
redox cycling for protein detection [138]. As illustrated in Figure 9, tyrosinase catalyzed
the oxidation of phenol to o-benzoquinone in the presence of O2. Fc was used as the redox
mediator to catalyze the reduction of o-benzoquinone through electro-reduction-based EC
redox cycling. The combination of non-enzymatic EC redox cycling with the enzymatic CN
redox system significantly amplified the signal and improved the biosensing performance.
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Figure 9. Schematic illustration of (a) the integration of EC and CN redox cycling containing mediator
RI and its oxidized form OI, oxidant Q and its reduced form P, and oxidant of enzyme OII and
its reduced form RII; and (b) example of the integrated ECN redox cycling for electrochemical
enzymatic signal enhancement in the immunosensing of protein [138]. Copyright 2017 American
Chemical Society.

Akanda et al. reported tyrosinase-responsive electrochemical oxidation-based EC
redox cycling for the detection of CEA (Figure 10A) [139]. In this study, phenol and
nicotinamide adenine dinucleotide disodium salt in the reduced format (NADH) were
employed as the enzyme substrate and the reducing agent, respectively. The low electroac-
tivity of phenol and the high oxidation over-potential of NADH on the chitosan-modified
GCE resulted in a negligible background. Tyrosinase with monooxygenase activity could
catalyze the conversion of the poorly electroactive phenol into the highly electroactive
product catechol at neutral pH. The EC redox cycling of catechol by NADH led to a
greatly amplified voltammetric signal and high signal-to-noise ratio. The unfavorable
tyrosinase-catalytic oxidation of catechol can be reduced back to catechol in the presence
of excess NADH. Finally, the developed method was capable of determining CEA in a
linear range of 1.0 pg/mL~0.1 µg/mL with a detection limit of 100 fg/mL. To further
investigate the detailed information of tyrosinase as a catalytic label in immunoassay, Park
et al. compared the applicability of four para-substituted phenolic compounds as tyrosinase
substrates and three reducing agents for EC redox cycling (Figure 10B) [140]. In this work,
4-methoxyphenol and ammonia-borane (H3N−BH3, AB) were selected as the tyrosinase
substrate and the reducing agent. The rapid EC redox cycling of the tyrosinase product
led to a high electrochemical signal level. Meanwhile, the slow oxidation of AB on the low
electrocatalytic ITO electrode at a low applied potential resulted in a low background. As a
result, PTH was determined in a linear range of 2 pg/mL–1 µg/mL with a detection limit
of 2 pg/mL.
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Figure 10. (A) Schematic illustration of the preparation of the electrochemical immunosensor and
immunoassay procedure with the tyrosinase label and EC redox cycling [139]. Copyright 2016
American Chemical Society. (B) Schematic illustration of an electrochemical immunosensor using Tyr
(tyrosinase) as a catalytic label and 4-methoxyphenol as a reducing agent. Reprinted with permission
from reference [140]. Copyright 2016 American Chemical Society.

3.4. GDH

The above oxidoreductases, including HRP, GOx, and tyrosinase, exhibit the highest
activity when they are expressed and folded into the proper three-dimensional structure.
In addition, many inactive enzymes (apoenzymes) require the covalent or non-covalent
coupling of non-diffusional cofactors to trigger their catalytic activity. The possibility to
reversibly modulate the activity of enzymes has been proven to be a valuable strategy for
optical and electrochemical biosensors [141–143]. Typically, GDH is one of the prominent
examples of apoenzymes. According to the redox cofactors, GDH can be subdivided
into flavin adenine dinucleotide (FAD)-dependent GDH (FAD-GDH), pyrroloquinoline
quinone (PQQ)-dependent GDH (PQQ-GDH), and nicotine adenine dinucleotide (NAD)
or nicotine adenine dinucleotide phosphate (NADP)-dependent GDH [144]. In contrast
to GOx, GDH is insensitive to O2 and exhibits a higher redox potential and catalytic
activity [145]. Moreover, the reduced form of GDH cannot be oxidized by the dissolved
O2. Thus, GDH has been widely used to replace GOx for the design of electrochemical
immunosensors [146]. The catalytic activity of PQQ-GDH can be activated through its
reconstitution [147]. After the activation of apo-GDH by PQQ and Ca2+ ions, PQQ-GDH can
catalyze the oxidation of glucose with a particularly high catalytic efficiency and turnover
number. It can be regenerated into its oxidized form by a series of electron acceptors or
mediators. The detailed mechanism and application of PQQ-GDH in redox-mediated
electrochemical reactions have been reported by Limoges’s group [148,149].

Compared with other GDHs, the catalysis of FAD-GDH does not require external
cofactors. Haque et al. developed an electrochemical immunosensor for the detection
of PTH with FAD-GDH-based EN redox cycling (Figure 11A) [150]. In this study, 1,10-
phenanthroline-5,6-dione (PD), a heterocyclic electroactive quinone, was used as the elec-
tron mediator and ITO with a low electrocatalytic activity was employed as the working
electrode to decrease the background current from the reduction of O2. In the presence
of glucose, FAD-GDH catalyzed the rapid reduction of PD to 1,10-phenanthroline-5,6-
diol (PDol). In this process, PD was not reduced by glucose. Compared with other
quinone-based electron mediators, PD-based EN redox cycling showed the highest signal-
to-background ratio. In addition, Park et al. reported the interference-free duplex detection
of total and active enzymes at a working electrode based on two different EN redox cycling
reactions [151]. As illustrated in Figure 11B, the GDH label on the immunocomplex could
initiate the EN redox cycling reaction in the presence of glucose and FcM, providing a high
electrochemical signal without an incubation period at a higher applied potential (0.1 V
vs. Ag/AgCl). Then, free PSA with proteolytic activity promoted the hydrolysis of the
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electro-inactive peptide substrates, resulting in the release of electroactive segments over
an incubation period of 30 min. Under the EN redox cycling reaction in the presence of
GDH, glucose, and 4-amino-1-naphthol (4-NH2-1-N), a strong electrochemical signal was
obtained at a low applied potential (0.0 V).
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3.5. FAD-Dependent Glycerol-3-Phosphate Dehydrogenase (GPDH)

The proximity-dependent electron mediation of FcM between the electrode and the
enzyme label can facilitate the differentiation between the bound and unbound labels
without washing steps. Based on this concept, Dutta et al. developed a washing-free
heterogeneous immunosensor for the detection of PSA [129]. However, the high concen-
tration of the enzyme substrate (glucose) was used to avoid the influence of pre-existing
glucose in real physiological samples on the mediated oxidation of glucose by GOx. In
addition, O2 dissolved in solution could competitively participate in the GOx-catalyzed
oxidation of glucose, leading to a low sensitivity and poor reproducibility. Moreover, the
applied potential of 0.13 V may cause the electro-oxidation of other interfering species. It
has been reported that the reaction between FAD-GPDH and dissolved O2 is slow and
the level of glycerol-3-phosphate (GP) in blood is low [152]. To avoid the interference
of dissolved O2 and metabolites, Dutta et al. developed a low-interference washing-free
electrochemical immunosensor for the detection of cardiac troponin I using FAD-GPDH,
GP, and Ru(NH3)6

3+ as the signal label, an enzyme substrate, and an electron mediator
(Figure 12) [153]. Under the catalysis of FAD-GPDH in the presence of GP, Ru(NH3)6

3+

was converted into Ru(NH3)6
3+, whose concentration near the electrode was higher than

that in solution. The EN redox cycling of Ru(NH3)6
3+ allowed for continuous electron

mediation. Therefore, the mediation between the ITO electrode and the bound GPDH was
fast and that for the unbound antibody was slow. This method avoided the oxidation of
uric acid and acetaminophen by using an applied potential near 0 V. In addition, AOx
was added to oxidize AA and eliminate its interference. Under the optimized conditions,
cardiac troponin I was determined in a linear range of 0.01–100 ng/mL.
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3.6. DT-Diaphorase (DT-D)

DT-D is a flavin-containing oxidoreductase that can catalyze the reduction of redox
mediators (e.g., metal complexes, quinones, and nitro(so) compounds) in the presence of
NADH or NADPH [154]. Because of its unique properties, DT-D has been used in EN
redox cycling for electrochemical immunosensors. For instance, Ichzan et al. designed
an EN redox cycling system involving ITO electrodes, 1,4-naphthoquinone, DT-D, and
NADH [155]. Nandhakumar et al. developed an electrochemical immunosensor with
di(thioether sulfonate)-substituted quinoline-1,4-dione (QLS) as the electron mediator for
DT-D-involving EN redox cycling [156]. As shown in Figure 13A, the naphthoquinone core
was substituted with a thioether sulfonate group for the achievement of high hydrophilicity,
rapid dissolubility, high stability, moderate formal potential, and high electron mediation
ability. Then, QLS was used as the electron mediator for constructing GDH-based elec-
trochemical glucose biosensors and DT-D-based electrochemical immunosensors. Under
EN redox cycling in the presence of DT-D and NADH, the repetitive generation of the
reduced form of QLS resulted in an amplified oxidation current. This method was capable
of determining PTH with a detection limit of 2 pg/mL, which was lower than the normal
PTH concentration in humans. The bimolecular rate constants between DT-D and some
metal complexes as the electron acceptors are high (up to 109 M−1s−1), which is favor-
able in electrochemical immunosensors based on EC redox cycling. In addition, Bhatia
et al. reported an electrochemical immunosensor for interleukin-8 (IL-8) detection using
a DT-D-based polyenzyme label and EN redox cycling (Figure 13B) [157]. In this work,
biotinylated DT-D and neutravidin were used to produce the polyenzyme labels. After
the electrochemical oxidation of Os(bpy)2Cl2, the EN redox cycling of Os(bpy)2Cl2 in the
presence of DT-D and NADH led to signal amplification. Under the optimized conditions,
IL-8 was sensitively detected in a wide linear range from 1 pg/mL to 1 µg/mL with a
detection limit of 1 pg/mL.
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using a polyenzyme label based on diaphorase and neutravidin [157]. Copyright 2021 Elsevier.

DT-D serving as a redox enzyme can catalyze the conversion of an electrochemically in-
active substrate with a nitro group into an electroactive product with an amine group [158].
Kang et al. developed an electrochemical immunosensor for the detection of PTH using
DT-D as the bifunctional enzyme label for enzymatic amplification and redox cycling [159].
As displayed in Figure 14A, to minimize the direct reaction between nitro(so) compounds
with NAD(P)H, six compounds containing a nitro or nitroso group were tested in terms of
signal-to-background ratio. As a result, 4-nitroso-1-naphthol (4-NO-1-N) was selected as
the enzyme substrate used to develop a DT-D-based sandwich-type immunosensor. DT-D
catalyzed the reduction of 4-NO-1-N to 4-NH2-1-N by NADH (reaction i). The generated
4-NH2-1-N was electrochemically oxidized at the avidin-modified ITO electrode (reaction
ii). The oxidized form of 4-NH2-1-N could be directly reduced back to 4-NH2-1-N by
NADH and electrochemically oxidized again (reaction iii), which corresponded to EC redox
cycling. Meanwhile, the oxidized species could be regenerated by NADH with the aid of
DT-D (reaction iv), corresponding to EN redox cycling. Consequently, the combination
of enzymatic catalysis and EC as well as EN redox cycling produced a highly amplified
electrochemical signal. The electrochemical immunosensor achieved a wide linear range
and a low detection limit (2 pg/mL). However, the DT-D-catalyzed soluble signaling
species may diffuse away from the electrode surface during the incubation period, leading
to a decreased electrochemical signal. To address this problem, Bhatia et al. reported an
ultrasensitive method for the detection of PTH by combining the DT-D-catalyzed nitroso
reduction and redox cycling with fast silver deposition (Figure 14B) [160]. In this work,
the DT-D-based enzymatic generation of reductive 4-NH2-1-N catalyzed the reduction of
Ag+ to insoluble Ag deposition on the ITO electrode. The oxidized form of 4-NH2-1-N
was reduced back into 4-NH2-1-N by NADH through the CC (ii + iii) and CN (ii + iv)
redox cycling process. Under the triple signal amplification (enzymatic amplification and
CC and CN redox cycling), the generated silver deposition on the ITO electrode surface
was electrochemically oxidized to produce a strong signal. By virtue of EE redox cycling,
this electrochemical immunosensor showed a wide range from 100 fg/mL to 100 ng/mL
and a detection limit of ~100 pg/mL, which was lower than that of the immunosensor
using 4-NH2-1-N as the soluble signal species (2 pg/mL) [159]. However, this method
required a washing step after Ag deposition because the DT-D substrate can be oxidized
during the electrochemical oxidation of Ag deposition. To simplify the electrochemical
assays and avoid the oxidation of the DT-D product, Bhatia et al. proposed a simple and
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fast method for Ag deposition using DT-D as the enzyme label and CN redox cycling of
1,4-naphthoquinone (NQ) by NADH [161].
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Ichzan et al. found that DT-D could catalyze the reductive dephosphorylation of a
phosphate-containing substrate using NADH or NADPH as the reductant [162]. Then,
they developed a sandwich-type electrochemical immunosensor for the detection of Gram-
negative bacterial outer membrane vesicles (OMVs). As illustrated in Figure 14C, 1-amino-
2-naphthyl phosphate (ANP) exhibited the highest electrochemical signal-to-background
ratio compared with 4-aminophenyl phosphate and AAP. The EC and EN redox cycling of
dephosphorylated product 1-amino-2-naphthol (AN) by NADH at low electrocatalytic ITO
electrodes could generate a highly amplified electrochemical signal. Meanwhile, Nand-
hakumar et al. demonstrated that DT-D from Bacillus stearothermophilus possessed high
carboxyl esterase-like activity in the presence of NADH and developed an electrochemical
immunosensor for TSH detection using DT-D as the enzyme label [163]. The detailed
working principle is shown in Figure 14D. The products generated from DT-D enzymatic
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catalysis participated in the fast EC and EE redox cycling by NADH, realizing the triple
amplification and sensitive detection of TSH.

In addition, DT-D can participate in EN redox cycling with other enzymes, such as
ALP [164], β-galactosidase [57], lactate dehydrogenase [165], and nicotinamide adenine
dinucleotide (NAD)-dependent NAD-GDH [166]. Campàs et al. constructed a competi-
tive electrochemical immunosensor for the detection of okadaic acid (OA) using ALP as
the enzyme label and EN redox cycling of p-AP by DT-D and NADH [167]. Park et al.
reported a wash-free amperometric detection of E. coli based on DT-D EN redox cycling
(Figure 15) [168]. In this study, E. coli was captured by the anti-E. coli IgG-modified ITO
electrode. The cell membrane endopeptidase of E. coli, OmpT could cleave the peptide
bond in the substrate containing the segment of alanine–arginine–arginine–leucine–AP
(A-R-R-L-AP). The generated R-L-AP was further hydrolyzed by leucine aminopeptidase
(LAP), releasing an electroactive species AP that could trigger the EN and EC redox cycling
in the presence of DT-D and NADH. Based on the two-sequential enzymatic cleavage and
EN redox cycling, E. coli in tap water was determined with a detection limit of 103 CFU/mL.
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3.7. Nanocatalysts or Artificial Enzymes

Despite the wide applications of natural enzymes, they still have several drawbacks,
including poor environmental stability, high cost, difficulty in storage, and strict working con-
ditions. To address these limitations, artificial enzymes have been exploited to mimic natural
enzymes more effectively, including organic molecules, organic complexes, DNAzymes, and
nanomaterials with enzyme-like characteristics (i.e., nanozymes) [169–171]. These artificial
enzymes have been widely used to construct electrochemical biosensors for the quantitative
detection of disease biomarkers [172–174]. For instance, ferritin containing a ferric nanocore
in the hollow protein cage can endow it with HRP-mimic activity [175]. It has been used
to develop sandwich immunoassays due to its catalytic activity toward the oxidization
of substrates in the presence of H2O2 [176,177]. Akanda reported an electrochemical im-
munosensor for the detection of Enteropathogenic coli (E. coli) antigens using ferritin as a
label to trigger electrochemical nanocatalyst redox cycling [178]. As displayed in Figure 16,
in the presence of H2O2, ferritin was oxidized into the oxidized form, which could oxidize
Ru(NH3)6

2+. The re-generated reduced form of ferritin could catalyze the decomposition
of H2O2 again and the produced Ru(NH3)6

3+ was then electrochemically reduced back into
Ru(NH3)6

2+. Ferritin-based redox cycling resulted in a high signal amplification efficiency
and a low background signal.
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Guanine-rich nucleic acid sequences can form G-quadruplex structures in the presence
of cations (e.g., K+, Pb2+, and NH4+) and further bind with hemin to form hemin/G-
quadruplex HRP-mimicking DNAzymes. Such artificial enzymes can be used for sens-
ing events by catalyzing H2O2-mediated oxidation [179–181]. Although hemin in the
DNAzyme can be directly measured by voltammetric techniques [182–184], EC redox cy-
cling between hemin and additional oxidants can amplify the cathodic current [185,186].
Therefore, hemin/G-quadruplex-based DNAzymes have been widely used as electrocat-
alysts and biolabels for electrochemical immunoassays. For example, Tang et al. devel-
oped a sandwich-type electrochemical immunosensor for human IgG1 detection based on
DNAzyme-containing DNA concatemers, which were formed by the self-assembly of short
DNA fragments via a hybridization chain reaction (HCR). The dendritic DNA strands with
rich G bases could bind with hemin to form hemin/G-quadruplexes, termed as DNAzyme
concatemers [187]. In addition, electron mediators can enhance the efficiency of the electron
transfer between the hemin and electrode and avoid the influence of dissolved oxygen,
improving the detection sensitivity [188]. Zhang et al. reported the photoelectrochemical
immunoassay of PSA by coupling DNAzyme concatemers with enzymatic biocatalytic
precipitation [189]. As illustrated in Figure 17A, CdS:Mn/g-C3N4 nanohybrids were em-
ployed as photoactive materials and modified with capture antibodies. AuNPs was used
to load the initiator strand and detection antibody. After the immune-reaction and HCR
reaction, many DNAzymes formed between DNA concatemers and hemin effectively cat-
alyzed the precipitation reaction toward 4-chloro-1-naphthol, thus leading to a decrease
in the photocurrent. In addition, hemin/G-quadruplex DNAzymes can also be used as
biocatalysts for driving other biocatalytic transformations under aerobic conditions, in-
cluding the NADH oxidase-like oxidation of NADH to NAD+ and the oxidation of thiols
to disulfides [190,191]. In this view, Li et al. reported the electrochemical immunoassay
of prion proteins by integrating HCR with hemin/G-quadruplex DNAzymes for signal
amplification (Figure 17B) [192]. In this study, the formed hemin/G-quadruplex DNAzyme
could catalyze the aerobic oxidation of L-cysteine to L-cystine, accompanied by the gen-
eration of H2O2. The hemin/G-quadruplex was oxidized by H2O2 and then immediately
electrochemically reduced back into the reduced formation at the electrode surface. The
redox cycling of hemin in the presence of L-cysteine and dissolved oxygen resulted in an
increase in the reduction current.
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Nanoparticles with catalytic or enzyme-mimic ability (nanozymes) have received wide
attention as catalytic labels for the signal-amplified detection of biorecognition events [193,194].
The nanocatalytic reactions can be integrated with redox cycling systems [195–199]. For
example, Das et al. reported an electrochemical immunosensor for PSA detection based
on gold nanoparticles (AuNPs) as nitrosoreductase-like nanocatalysts and ECC redox
cycling amplification [200]. As displayed in Figure 18, a partially ferrocenyl-tethered
dendrimer (Fc-D) deposited on an ITO electrode was sequentially modified with biotin,
streptavidin, and biotin-labeled IgG. After the formation of a sandwich immune-complex,
AuNPs catalyzed the reduction of p-nitrophenol (NP) into p-aminophenol (AP) in the
presence of NaBH4. AP was immediately electrochemically oxidized into p-quinone imine
(QI) with Fc as the electron mediator, and QI was reduced back to AP by the additional
reducing reagent of NaBH4 and then re-oxidized at the electrode. The ECC redox cycling
of AP could greatly increase the oxidation current of AP and significantly amplify the
detection signal. Meanwhile, the slow electron transfer kinetics of NaBH4 on the ITO
electrode resulted in a low background signal and the electronic mediation of Fc lowered
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the oxidation potential of AP. Furthermore, Yang’s group introduced magnetic beads into
the immunoassays for mouse IgG detection [201]. Tang et al. reported the detection of α-
fetoprotein using carbon-nanotube-enriched AuNPs as the nanolabels/nanocatalysts [202].
However, enzyme-like catalytic reactions always suffer from the problems of a low reaction
rate and side reaction in O2-dissolved electrolyte solution. In addition, NaBH4 may undergo
self-hydrolysis to generate many bubbles. To overcome these shortcomings, Nandhakumar
et al. reported a redox-cycling-based immunosensor for the detection of PTH using 4-NO-
1-N, Pd NPs, and H3N−BH3 [203]. As presented in Figure 19A, Pd NPs catalyzed the
reduction of 4-NO-1-N into 4-NH2-1-N with H3N−BH3 as the reducing agent. 4-NH2-1-N
was electrochemically oxidized at the ITO electrode and then regenerated through the
reduction of H3N−BH3. Nandhakumar et al. reported a lateral flow immunosensor based
on electrochemical nanocatalyst redox cycling using ferro/ferricyanide ([Fe(CN)6]3−/4−,
Fe3+/2+), ammonia−borane (H3N−BH3, AB), and AuNP as the mediator, a reducing agent,
and a catalytic label (Figure 19B), respectively [204]. In this work, Fe3+ was nanocatalytically
reduced to Fe2+ in the presence of AuNP and AB, which produced a high current for
electrochemical detection. Compared with the standard HRP-based enzymatic redox
cycling, the detection platform with Fe3+/AuNP/AB-based electrochemical-nanocatalyst
redox cycling enables better sensitivity, allowing for the detection of insulin with a detection
limit down to 12 pM.
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Thanks to the remarkable achievements in nanotechnology and nanoscience, more
and more nanozymes have been introduced as the labels to replace natural enzymes for
the development of redox-cycling-based biosensors [205,206]. Compared with natural en-
zymes, these nanozymes exhibit the merits of high stability, low cost, easy production, and
tunable catalytic activity. Among them, Fe3O4 nanoparticles with enzyme-mimetic activity
have been widely applied in the development of electrochemical biosensors [207,208]. For
instance, Yang et al. developed a pseudo-bienzyme electrochemical immunosensor for the
detection of AFP using hollow platinum-modified Fe3O4 nanoparticles (HPtNPs-Fe3O4) as
the peroxidase mimetic and GOx (Figure 20A) [209]. In this study, both HPtNPs and Fe3O4
nanoparticles show peroxidase-like catalytic ability to catalyze the oxidation of thionine
by H2O2 that was produced through the GOx-catalyzed oxidation of glucose. Under the
HPtNPs-Fe3O4-based ENc redox cycling of thionine, the reduction current was greatly
improved. In addition, Ma et al. employed cubic Cu2O nanoframes as the HRP-mimicking
labels to design electrochemical immunosensors [210]. As presented in Figure 20B, AuNPs-
decorated 3-aminopropyltriethoxysilane-functionalized graphene sheets (Au@APTES-GS)
were used to immobilize Ab1. Cu2O nanoframes were utilized to carry Ab2 and the redox
mediator (ferrocenecarboxylic acid, Fc-COOH). Cu2O nanoframes with HRP-like activity
could catalyze the oxidation of Fc-COOH by H2O2. The oxidized Fc-COOH was electro-
chemically reduced back into Fc-COOH immediately for the subsequent H2O2-mediated
oxidation. Finally, the ENc redox cycling of Fc-COOH dramatically amplified the elec-
trochemical signal. In addition, carbon-based nanostructures have been demonstrated to
possess peroxidase-like catalytic activity, including graphene oxide and graphene quan-
tum dots. Luo et al. used the nanocomposite of single-wall carbon nanotubes and a
graphene quantum dots composite to catalyze the reaction between H2O2 and thionine for
the detection of CEA [211].
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4. Hydrolytic Enzymes as Signal Labels
4.1. ALP-Based Redox Cycling
4.1.1. ALP-Based EC Redox Cycling

ALP can catalyze the hydrolysis of orthophosphoric monoesters into alcohols or phe-
nols. In view of its high turnover frequency and excellent stability, ALP has been widely
used as the enzyme label in immunoassays for signal amplification [212,213]. The enzyme
can catalyze the hydrolysis of electrochemically inactive substrates such as p-aminophenyl
phosphate (p-APP) and L-ascorbic acid 2-phosphate (AAP) into an electroactive product
of p-AP and AA, which can be electrochemically oxidized into p-quinone imine (QI) and
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dehydroascorbic acid (DHA), respectively [214–216]. To improve the detection sensitivity,
reducing agents can be added to regenerate the enzymatic electroactive species after their
electrochemical oxidation. In addition, reducing agents can also prevent the oxidation
of enzymatic products by O2. To minimize the background current, electrochemical im-
munosensors require the use of ITO electrodes with low electrocatalytic activities for the
additional reducing agents. However, ITO electrodes with low electroactivity show a low
electrochemical oxidation rate for ALP enzymatic products, leading to a weak signal. There-
fore, it is important to select the appropriate ALP enzymatic product, reducing agent, and
sensing electrode. In p-AP redox cycling, several reducing agents have been used to regener-
ate p-AP, including NaBH4, hydrazine, and tris(2-carboxyethyl)phosphine (TCEP) [217,218].
The electro-oxidation of the ALP enzymatic product (p-AP) is slow at the ITO electrode and
it is necessary to modify the electrode with electron-mediating species. Aiming to achieve
a high signal-to-background ratio, ALP substrates should be electrochemically inactive
and the corresponding ALP enzymatic products should be electrochemically oxidized at
a low formal potential and high reaction rate [219]. Akanda et al. developed an ALP-
and AAP-based EC redox-cycling-based immunosensor for the detection of troponin I
(Figure 21A) [220]. In this work, the performances of AAP are compared with that of other
ALP substrates (e.g., 1-naphthyl phosphate (NPP) and 4-amino-1-naphthyl phosphate
(ANP)). The results indicate that AAP and AA are a better substrate and product than
others in terms of the formal potential and electro-oxidation rate. Avidin-modified ITO
electrodes without the immobilization of an electron mediator exhibited good voltametric
behavior regarding the fast electro-oxidation of AA. TCEP showed a fast recycling reaction
with low anodic current at the ITO electrode. The EC redox-cycling-based method exhibited
a detection limit of 10 fg/mL for the detection of troponin I. In addition, the redox cycling
of AA by TCEP could also be used to develop electrochemical immunosensors for the
detection of Salmonella [221].
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Figure 21. (A) Schematic illustration of an electrochemical immunosensor using the generation of AA
by ALP and the EC redox cycling of AA by TCEP [220]. Copyright 2011 American Chemical Society.
(B) Schematic illustration of an electrochemical immunosensor using (i) enzymatic amplification and
(ii) + (iii) EC redox cycling [222]. Copyright 2017 American Chemical Society.

Aromatic dihydroxy and aminohydroxy compounds, including monoaromatic and
diaromatic compounds, have been widely used as electroactive species for signal output in
electrochemical biosensors due to their fast and two-electron redox reactions. Generally,
the electrochemical oxidation of diaromatic compounds is faster than that of monoaro-
matic compounds. However, diaromatic compounds can be rapidly oxidized by dissolved
O2 and the electrochemical reduction of the oxidized diaromatic compounds may suf-
fer from the interference from O2. Although ortho-substituted aromatic dihydroxy and
aminohydroxy compounds undergo faster electrochemical and catalytic reactions than the
para-substituted compounds, they are susceptible to oxidation polymerization by dissolved
O2 and subsequent nucleophilic addition. To exploit more ALP substrates and reductants
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for redox cycling, Seo et al. evaluated the performances of four strong reductants and nine
aromatic dihydroxy and aminohydroxy compounds for the construction of effective EC
redox cycling systems (Figure 21B) [222]. The results demonstrated that the combination of
1-amino-2-naphthol (1A2N) and H3N-BH3 led to a high signal-to-background ratio. The
presence of excess H3N-BH3 could significantly prevent the oxidation and polymerization
of 1A2N by dissolved O2. As a proof-of-concept, creatine kinase-MB (CK-MB) was detected
in a wide linear range with a low detection limit of 80 fg/mL.

In EC redox-cycling-involved electrochemical bioassays, enzymatic products as the
signaling species are electrochemically reduced or oxidized at the electrode and then
immediately regenerated by additional reducing agents. Similarly, the photogenerated
holes at the photoelectrode can also oxidize or reduce enzymatic products to trigger the
redox cycling process for signal amplification [223–226]. In 2018, Cao et al. first combined
photogenerated-hole-induced chemical redox cycling with a split-type PEC immunoassay
for myoglobin detection [227]. As displayed in Figure 22, ALP catalyzed the generation
of AA as an electron donor, which was then oxidized by the photogenerated holes of a
Bi2S3/Bi2Sn2O7 heterojunction photoelectrode. In the redox cycling process, the generated
DHA was reduced by the reducing agent TCEP for repeated oxidation at the photoelectrode.
The efficient regeneration of the electron donor AA resulted in the enhancement of the
photocurrent response. Based on this principle, the developed PEC immunoassay allowed
for the detection of myoglobin in a linear range from 4.0 × 10−13 to 1.0 × 10−7 g/mL.
Besides the regeneration of enzymatic product AA by the additional reducing agents, the
redox mediators that were oxidized by the photogenerated holes can also be regenerated
by the enzymatic products, significantly amplifying the PEC signal [228,229].
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Highly electrocatalytic gold electrodes are not suitable for redox cycling by general
reducing agents because the redox reaction of them with a low oxidation potential at the
gold surface will result in a high background signal. Therefore, there remains a great
potential to exploit effective reducing agents for p-AP redox cycling with a low background
current. Our group systematically evaluated the performances of biosensors in the presence
of different reducing agents, including NaBH4, hydrazine, TCEP, NADH, NaSO3, and
cysteamine, on the alkanethiol-covered gold electrodes [230]. The results suggest that
the electrocatalytic ability of good electrodes was depressed by the insulating alkanethiol
self-assembled monolayers (SAMs) [231–233] and that the performances in the case of
TCEP and cysteamine were better than those of others. Then, our group developed a
competitive electrochemical immunosensor for the detection of β-amyloid(1–42) (Aβ(1–42))
and total β-amyloid peptides based on p-AP redox cycling [234]. As shown in Figure 23,
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the conjugates of Aβ(22–42)-biotin-SA-ALP and Aβ(1–16)-biotin-SA-ALP were employed
to competitively bind with monoclonal antibodies attached on the electrode surface. In the
presence of TCEP, the enzymatic product (p-AP) was recycled through EC redox cycling,
greatly amplifying the electrochemical signal.
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4.1.2. ALP-Based ECC Redox Cycling

In the ECC redox cycling system, electroactive species are usually used as the electron
mediators to accelerate the electrochemical oxidation of enzymatic products on the electrode.
Meanwhile, the electron mediators can shift the oxidation potential of enzymatic products,
avoiding the possible oxidation of the reductants and reducing the background current.
In 2006, NaBH4 was firstly used as the reducing agent to develop the nanocatalyst-driven
ECC redox cycling of p-AP [200]. However, the poor stability of NaBH4 at neutral or acidic
solutions may limit the performance of the NaBH4-involved ECC redox cycling system.
Thus, it is urgent to choose more stable reducing agents for ECC redox cycling. In 2007,
Das et al. presented an electrochemical immunosensor for the detection of mouse IgG
based on p-AP redox cycling using electrochemically inactive hydrazine as the reducing
agent (Figure 24A) [235]. To obtain a low background current, an ITO electrode was used
because of its low electrocatalytic activity and weak capacitive current. Meanwhile, Fc-D
was immobilized on the ITO electrode to enhance the electron transfer kinetics of p-AP in
the presence of hydrazine. After the formation of sandwich immune complexes, p-APP
was converted into p-AP, which could be electro-oxidized into p-QI at the Fc-D-modified
ITO electrode. In the process, p-QI was immediately reduced back into p-AP by hydrazine,
leading to signal amplification. The ECC redox cycling caused an increase in the current
and thus improved the sensitivity.

NADH is a good reducing agent that can be utilized in EN redox cycling under the
catalysis of diaphorase [236–238]. Moreover, a high over-potential is required for the
electrochemical oxidation of NADH at noble metal electrodes [239]. In this view, Kwon
et al. reported an electrochemical immunosensor for the determination of mouse IgG
based on ECC-based p-AP redox cycling by NADH [240]. In this study, the gold electrode
was modified with an SAM of long thiol molecules to reduce the background current and
further modified with Fc-D to facilitate the oxidation of p-AP. NADH showing a slow
electrochemical oxidation rate at the gold electrode exhibited a fast chemical reaction with
p-AP for redox cycling.

As a commonly used reducing agent, TCEP can reduce electroactive species such
as DHA and quinone (QI) at a fast rate [241,242]. More importantly, TCEP is resistant to
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oxidation by O2 and is very stable in a wide range of pH values. These characteristics are
beneficial to the EC and ECC redox cycling systems. Akanda et al. reported an ECC redox
cycling system for the ultrasensitive immunoassay of cardiac troponin I (Figure 24B) [243].
In this work, Ru(NH3)6

3+, a QI/AP couple, and TCEP were chosen to design an ECC redox
cycling system as the oxidant, enzyme substrate/product, and reductant, respectively. The
QI/AP couple facilitated a fast redox reaction with both Ru(NH3)6

3+ and TCEP. Under the
high signal amplification of ECC redox cycling, this method achieved a detection limit of
10 fg/mL for the detection of cardiac troponin I.
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Figure 24. (A) Schematic illustration of the preparation of an immunosensing layer (a) and the
electrochemical detection for mouse IgG based on ECC redox cycling (b) [235]. Copyright 2007
American Chemical Society. (B) Schematic illustration of ECC redox cycling for ultrasensitive
immunosensors [243]. Copyright 2012 American Chemical Society. (C) Schematic illustration of (a) E.
coli O157:H7 detection based on the ECC redox cycling that involves HQ (P), which is enzymatically
generated from HQDP (S), (b) three-step electron transfer (purple lines) and unwanted electron
transfer (green and sky-blue lines) in ideal ECC redox cycling [244]. Copyright 2013 American
Chemical Society. (D) Schematic illustration of Aβ detection by ALP-based signal amplification
combined with AA-triggered ECC redox cycling on an SAM-covered gold electrode [245]. Copyright
2014 Elsevier.

APP is prone to autohydrolysis and is unstable during long-term storage, which may
cause unwanted redox cycling and a high background [246]. In addition, p-AP is light-
sensitive and easily oxidized under air, which is unfavorable during the linear accumulation
of p-AP for the relatively long-time incubation. Therefore, more ALP substrate/product
couples should be explored for the combination of enzymatic amplification and redox
cycling [247,248]. Akanda et al. evaluated the performances of five ALP substrate/product
couples in terms of signal-to-background ratio and then developed an immunosensor for
E. coli O157:H7 detection based on hydroquinone diphosphate (HQDP)/HQ-based redox



Molecules 2024, 29, 2796 25 of 41

cycling [244]. As displayed in Figure 24C, ALP catalyzed the hydrolysis of HQDP into
HQ, which could trigger ECC redox cycling with Ru(NH3)6

3+ and TCEP as the oxidant
and reductant, respectively. HQ exhibited a lower formal potential than p-AP and HQDP
exhibited a higher formal potential than APP, leading to faster ECC redox cycling. The
immunosensor based on an HQDP/HQ couple had a wide detection range from 103 to
108 CFU/mL. The AAP/AA couple is another suitable ALP substrate/product pair for
developing redox cycling because of the easy dissolution of AAP and AA in aqueous
solutions, the high formal potential of AAP, and the low formal potential of AA [249]. Our
group investigated AA-triggered ECC redox cycling with FcA as the redox mediator at
an SAM-covered gold electrode [245]. As displayed in Figure 24D, the ALP-conjugated
mAb(1–16) was used to recognize the Aβ peptide. After the competitive immune interaction
and the addition of AAP, the production of AA could trigger the ECC redox cycling and
generate a strong amperometric signal. As a result, the currents decreased with an increase
in Aβ concentration in the range from 1 pM to 0.2 nM with a detection limit of 0.2 pM.

In redox-cycling-involved electrochemical bioassays, electroactive species are elec-
trochemically reduced or oxidized and then regenerated by other species. In addition,
the photogenerated holes at the photoelectrode can also oxidize electroactive species to
trigger redox cycling for signal amplification [250–252]. Liu’s group developed several
photoelectrochemical (PEC) immunosensors by combining redox cycling with enzymatic
amplification [253–255]. For example, they reported the split-type PEC immunoassay of
myoglobin based on photoelectrochemical–chemical–chemical (PECCC) redox cycling [256].
As shown in Figure 25, ALP labels in sandwich immune complexes catalyzed the con-
version of AAP into AA, which was then transferred into a detection cell containing FcA
and TCEP. The redox mediator of FcA was oxidized by the holes in the Bi2S3/Bi2WO6
photoelectrode, initiating the PEC redox cycling process. The resulting oxidized product
FcA+ was reduced back into FcA by AA and the generated DHA was reduced by TCEP for
the next regeneration of FcA.
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4.1.3. ALP-Based Ag Biometallization

Silver (Ag) enhancement on metal nanoparticles in the presence of a mild reducing
agent is a promising signal amplification strategy for bioassays [257–262]. However, the
slow reduction of silver ions in the absence of nanoparticle labels will result in a high
background signal and poor reproducibility. Enzymatically generated reducing products
can reduce silver ions in solution, leading to Ag deposition on the electrode, which is termed
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as biometallization [263,264]. Electrochemical stripping oxidation of the deposited Ag could
provide a high electrochemical signal. The large differences in both formal potential and
reaction rates with silver ions between the substrates and the products minimized Ag
deposition and significantly decreased the background signal [265]. Aiming to achieve
high signal amplification, Haque et al. proposed a CC redox-cycling-based enzymatic Ag
biometallization strategy for the sensitive detection of creatine kinase-MB [266]. In this
study, the enzyme product AP could reduce Ag+ into metallic Ag near the immunosensing
surface. NADH was chosen as the strong reducing agent to rapidly reduce the oxidized
form of AP (QI). To avoid electroless Ag deposition, an avidin- and BSA-modified ITO
electrode was used for Ag deposition. The large Ag nanoparticles (AgNPs) deposited on
the electrode provided a high electrochemical stripping signal.

4.1.4. ALP-Based EN Redox Cycling

To amplify the electrochemical signal, it is attractive to couple ALP catalysis with
other enzymatic reactions for the regeneration of ALP products to trigger EN redox cy-
cling [267,268]. For example, in ALP/tyrosinase bienzymatic systems, ALP catalyzed the
dephosphorylation of phenyl phosphate to produce phenol. The ALP product diphenol
was catalytically oxidized by tyrosinase to produce quinine, which could be subsequently
reduced at the electrode. The regenerated diphenol was then immediately oxidized into
quinone by tyrosinase enzymatic catalysis, realizing signal amplification through phenol
recycling [269]. Based on this principle, Piao et al. developed an ALP-labeled electrochemi-
cal immunosensor using tyrosinase-modified CNTs [270]. In this work, phenol generated
from the ALP-catalyzed hydrolysis of phenyl phosphate was enzymatically converted into
electrochemically measurable quinone. The produced catechol was repeatedly oxidized by
tyrosinase for the next electrochemical reduction. In a scheme of catechol recycling, human
IgG was determined with a detection limit of 0.19 ng/mL.

4.2. Protease

Protease can cleave a peptide bond between two specific amino acid residues. The en-
zyme plays a vital role in activating or deactivating biological functions in living organisms.
To achieve the goal of fast, ultrasensitive, and washing-free detection, Park et al. reported
a protease immunosensor based on selective affinity binding, selective proteolytic reac-
tion, and proximity-dependent electrochemical reaction [271]. As illustrated in Figure 26,
trypsin was captured by antitrypsin IgG on the electrode surface. The selective proteolytic
hydrolysis of an electrochemically inactive p-AP-conjugated substrate by trypsin led to the
generation of redox-active p-AP near the electrode rather than in the bulk solution. The
electrochemical oxidation of the released redox-active species near the electrode provided a
“signal-on” electrochemical signal, which was amplified by the EC redox cycling reaction.
This method exhibited a high signal-to-background ratio and a low detection limit without a
washing procedure. Recently, Shin et al. developed an immunosensor for trypsin detection
using electrochemical-reduction-based redox cycling [272]. The proteolytically generated
p-AP was enzymatically or chemically oxidized and then reduced at the electrode. The
EC or EN redox cycling of the signaling species by TCEP induced an enhancement in the
electrochemical signal.

The turnover number of proteases is generally lower than that of HRP and ALP,
thus limiting their application in immunoassays without additional signal amplification.
Two types of proteases can be used to design a propagating cascade reaction with higher
signal amplification efficiency than that of a single-proteolytic reaction [273]. Generally, the
first enzyme can continually activate the second pro-enzyme and each generated enzyme
can produce many signal species. To further lower the detection limit and shorten the
incubation period, propagating cascade reactions have been combined with redox cycling.
For example, Park et al. reported the electrochemical detection of TSH by coupling the
propagating cascade reaction with EC redox cycling (Figure 27A) [274]. In this work, ecarin
was employed as the enzyme label to proteolytically transform inactive prothrombin into
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active thrombin, which could, in turn, cleave the p-AP-conjugated peptide substrate. The
released electroactive p-AP was regenerated through an EC redox cycling reaction in the
presence of NADH on the surface of an rGO-modified ITO electrode, leading to a significant
increase in the electrochemical signal. In contrast to the propagating cascade reaction
using different types of enzymes, the self-propagating autocatalytic reaction can produce
signaling species more rapidly. However, the self-activation of the pro-enzyme will result in
a high background signal. Recently, Park et al. developed an electrochemical immunosensor
for the detection of PSA based on the autocatalytic activation of the trypsinogen mutant
by trypsin [275]. As shown in Figure 27B, trypsin was used as the enzyme label for
immunoassays and a trypsinogen mutant was selected as the inactive pro-enzyme to
minimize the self-activation of trypsinogen. Trypsin generated in a short period of time
could catalyze the conversion of the trypsinogen mutant into trypsin, resulting in the release
of electroactive p-AP from the peptide substrate (GPR-AP). Then, the electrochemical
oxidation of AP into QI triggered the EC redox cycling reaction to further enhance the
electrochemical signal.
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Figure 26. Schematic illustration of three electrochemical trypsin detection methods: (a) new trypsin
detection using affinity binding, washing process, and proteolytic reaction, (b) conventional washing-
free trypsin detection using proteolytic reaction, and (c) new washing-free trypsin detection using
both affinity binding and proteolytic reaction [271]. Copyright 2016 American Chemical Society.
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and EC redox cycling [275]. Copyright 2022 American Chemical Society.
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Peptides with a specific sequence can bind with metal ions, and the peptide–metal
interaction can be modulated by the proteolytic cleavage of the peptide substrate [170].
For example, amino terminal Cu(II)- and Ni(II)-binding (ATCUN) peptides can bind with
Cu(II) in a square planar configuration. Such Cu(II)–peptide complexes have been reported
to exhibit good electrocatalytic ability toward water oxidation [276,277]. After that, Liu’s
group developed an electrochemical immunosensor using trypsin as the signal label for
the production of ACTUN-Cu(II) complexes as the electrocatalysts toward water oxida-
tion [278]. As shown in Figure 28, trypsin immobilized on the surface of MWCNTs could
cleave the peptide substrates to liberate ATCUN peptides for Cu(II) binding. The Cu(II) cen-
ter in the formed ACTUN-Cu(II) complex was electrochemically oxidized into Cu(III) and
then regenerated by water through an intramolecular coupling mechanism or nucleophilic
attack of H2O on the high-oxidation-state CuIV=O intermediate. The redox cycling between
ACTUN-Cu(II) and H2O greatly amplified the electrochemical signal. PSA was determined
to be in the linear range of 10 pg/mL–2 ng/mL with a detection limit of 10 pg/mL.
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4.3. Others

β-Galactosidase (β-Gal) can catalyze the hydrolysis of a p-aminophenyl galactopyra-
noside substrate into electroactive p-AP that can be readily determined by EN, EC, and
ECC redox cycling [279–281]. Therefore, β-Gal has become one of the most commonly
used labeling enzymes in bioassays [282–285]. For example, Yang’s group proposed electro-
reduction-type EN redox cycling in a two-enzyme scheme for the detection of mouse IgG
and CA 15-3 using β-Gal and tyrosinase (Figure 29) [286]. Although the ITO electrode
showed low electrocatalytic activity toward the electro-reduction of the dissolved O2, it
exhibited low electrocatalytic activity toward the electro-reduction of o-benzoquinone,
which was unfavorable in EN redox cycling. Aiming to improve the electrocatalytic
activity of the sensing electrode, graphene oxide (GO) was utilized to modify the ITO
electrode with a high signal-to-background ratio. β-Gal catalyzed the hydrolysis of phenyl
β-D-galactopyranoside (P-GP) into phenol, which was then oxidized into catechol and
o-benzoquinone by tyrosinase catalysis. The formed o-benzoquinone was electrochem-
ically reduced back into catechol, triggering EN redox cycling at a low potential. The
results indicated that the two-enzyme scheme using the GO/ITO electrode showed better
performances in terms of signal-to-background ratio, signal intensity, and detection limit.
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Figure 29. Schematic illustration of (a) an electrochemical immunosensor using electro-reduction-
based EN redox cycling combined with simultaneous enzymatic amplification (one-enzyme scheme)
and (b) an electrochemical immunosensor using electro-reduction-based EN redox cycling combined
with preceding enzymatic amplification (two-enzyme scheme) [286]. Copyright 2014 American
Chemical Society.

5. Conclusions

In conclusion, we have summarized the recent remarkable progress in the develop-
ment and application of electrochemical immunosensors by the signal amplification of
enzyme- or nanozyme-based catalysis plus redox cycling. Despite the delightful achieve-
ments, several challenges in this topic remain to be addressed. First, it is promising to
improve the properties of the enzyme label turnover number and substrate affinity (Km)
and to screen a new immune recognition element with a high binding affinity for the bind-
ing target. Second, the environmental factors, including temperature, pH, and activators
or inhibitors, may influence the rate of catalytic and redox cycling reactions. More efforts
should be devoted to exploring optimized experimental conditions and nanomaterials for
the modification of electrodes for effective redox cycling systems. Third, different nanocar-
riers have been employed to effectively load enzymes for improved sensitivity, but most of
the immobilization techniques show the defects of enzyme leaching, denaturation, and lim-
ited transfer efficiency. Fourth, despite the advantages of a low cost and high stability, the
catalytic activity and efficiency of nanozymes are still lower than those of natural enzymes.
Synthesis from different batches and the bioconjugation of nanozymes may result in poor
reproducibility. It is a promising approach to expand the types of nanozymes with effective
catalytic activity and high specificity for the design of nanocatalyst-based redox cycling.
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