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Abstract: Purpose of the study: the creation of a dextran coating on cerium oxide crystals using
different ratios of cerium and dextran to synthesize nanocomposites, and the selection of the best
nanocomposite to develop a nanodrug that accelerates quality wound healing with a new type of
antimicrobial effect. Materials and methods: Nanocomposites were synthesized using cerium nitrate
and dextran polysaccharide (6000 Da) at four different initial ratios of Ce(NO3)3x6H2O to dextran
(by weight)—1:0.5 (Ce0.5D); 1:1 (Ce1D); 1:2 (Ce2D); and 1:3 (Ce3D). A series of physicochemical
experiments were performed to characterize the created nanocomposites: UV-spectroscopy; X-ray
phase analysis; transmission electron microscopy; dynamic light scattering and IR-spectroscopy. The
biomedical effects of nanocomposites were studied on human fibroblast cell culture with an evaluation
of their effect on the metabolic and proliferative activity of cells using an MTT test and direct cell
counting. Antimicrobial activity was studied by mass spectrometry using gas chromatography–
mass spectrometry against E. coli after 24 h and 48 h of co-incubation. Results: According to the
physicochemical studies, nanocrystals less than 5 nm in size with diffraction peaks characteristic of
cerium dioxide were identified in all synthesized nanocomposites. With increasing polysaccharide
concentration, the particle size of cerium dioxide decreased, and the smallest nanoparticles (<2 nm)
were in Ce2D and Ce3D composites. The results of cell experiments showed a high level of safety
of dextran nanoceria, while the absence of cytotoxicity (100% cell survival rate) was established for
Ce2D and C3D sols. At a nanoceria concentration of 10−2 M, the proliferative activity of fibroblasts
was statistically significantly enhanced only when co-cultured with Ce2D, but decreased with Ce3D.
The metabolic activity of fibroblasts after 72 h of co-cultivation with nano composites increased
with increasing dextran concentration, and the highest level was registered in Ce3D; from the
dextran group, differences were registered in Ce2D and Ce3D sols. As a result of the microbiological
study, the best antimicrobial activity (bacteriostatic effect) was found for Ce0.5D and Ce2D, which
significantly inhibited the multiplication of E. coli after 24 h by an average of 22–27%, and after 48 h, all
nanocomposites suppressed the multiplication of E. coli by 58–77%, which was the most pronounced
for Ce0.5D, Ce1D, and Ce2D. Conclusions: The necessary physical characteristics of nanoceria–
dextran nanocomposites that provide the best wound healing biological effects were determined.
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Ce2D at a concentration of 10−3 M, which stimulates cell proliferation and metabolism up to 2.5 times
and allows a reduction in the rate of microorganism multiplication by three to four times, was selected
for subsequent nanodrug creation.

Keywords: wound healing; nanocomposite; nanoparticles; nanodrug; dextran; nanocerium; cerium
dioxide; polysaccharide; polysaccharide–metal complexes; fibroblasts; gas chromatography; regeneration;
antimicrobial activity

1. Introduction

Public health issues are among the most important issues in the modern world. Among
the many issues requiring medical care, trauma, including wounds, ranks first in terms
of frequency and severity [1–3]. Ubiquitous health advertising and sports, especially
extreme sports, have played a negative role, providing an increase in the number of
somatic and skin wounds in the most physically active part of the human population, those
aged 14–35 years old [4]. A special place is occupied by gunshot wounds, the number of
which continues to increase proportionally both in civil society and in zones of armed
military conflicts [5–7]. The important differences of gunshot wounds are the combination
of the lesion with extensive skin lesions and the obligatory contamination of the wounds
with defeaters, a wide range of aerobic and anaerobic microorganisms. The situation is
greatly aggravated by the decreasing antimicrobial activity of antimicrobial drugs and
increasing antibiotic resistance and has become one of the major problems in modern
medicine and pharmacology. Rapid mutations of microorganisms, outpacing the speed of
development of new antimicrobial drugs, slowly but surely ensure the transition of this
problem from the category of issues requiring resolution to a state close to disaster. The
“epidemic of antibiotic-resistant microorganisms” that has spread everywhere, especially
in intensive care units, where the fight against bacterial complications is one of the top
priorities, cannot be considered otherwise [8–14].

Regeneration in skin injuries is the second most important but the most frequently
addressed problem. Acute skin damage in everyday life is a routine situation, but chronic
ulcers in patients with diabetes mellitus, tissue arterial ischemia, varicose veins, and post-
thrombotic syndrome are a heavy burden on family and state budgets [15–18]. Great
hopes were pinned on mesenchymal stem cells. The biological theories that were being
put forward were impressive due to their coherence and completeness [19–22]. The results
obtained in laboratories and vivariums gave hope of a breakthrough in healthcare and
successful promotion of these technologies in clinical practice. Unfortunately, the break-
through did not happen, and the scientific medical world began to be conquered by a new
idea—the idea of using nanomaterials that exhibit unexpectedly strong biological effects
that could be used to treat some somatic diseases and skin lesions [23,24].

Interest in nanoparticles in medicine, which first emerged in the middle of the last
century, grew rapidly as the results of experiments with metal nanoparticles, especially
those with variable valence, became available. The confirmed mechanisms of drug delivery
directly to tumor cells using nanomaterials, which reduced the toxic load and improved the
treatment outcome of cancer patients, further ensured the interest of the medical community
in nanotechnology [25–31].

One promising metal oxide is cerium dioxide. In the last five years, according to
PubMed data from 2019 to 2024, there were 7066 papers published on nanoceria, almost
double the number of publications in the previous 5 years. Most of the studies investigating
the biological effects of nanoceria have shown its redox activity as well as regenerative
and even antimicrobial and pro-regenerative effects [32–39]. There are many problems
in the synthesis of new groups of nanodrugs that have not been encountered before. For
example, the biological activity of nanoceria depends not only on the chemical purity of
the product. The shape of the nanoceria crystal and its properties vary depending on the
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method of its synthesis, changes in the pH of the medium, etc. [34,39–42]. Similarly, the
same dependencies occur with different nanoparticle coatings [41–43]. Coatings of cerium
nanoparticles with various substances, most often of plant origin, are a necessity because
they prevent the aggregation of nanocrystals, which leads to a significant decrease in the to-
tal area of crystals, which comes into direct contact with the environment. This aggregation
leads to a decrease in or disappearance of biological effects, which are illustrated by many
researchers when using properly prepared nanoceria sols [44–47]. Natural polysaccharides
(agar-agar, alginate, pullunan, chitosan, fucoidan, dextran, and pectin) are often used
as coatings for metal nanoparticles [44,48,49]. Focusing on the world literature, dextran,
which has long been used in medicine for several indications, has performed well in many
biological studies with nanoparticles [50–55]. It is known that dextran polysaccharide is a
branched glucose polymer with an average chain mass ranging from 3 to 20000 kDa, which
is synthesized by acetic acid bacteria from sucrose. In our studies, we also chose dextran
as more accessible and showing high tropism to cerium dioxide nanocrystals in alkaline
medium [56,57].

In this regard, the aim of the present work was to synthesize and select the best
nanocomposite based on rare earth metal oxide nanoparticles and polysaccharide (dextran-
stabilized nanocrystalline cerium oxide) for the subsequent creation of a medical and/or
veterinary nanodrug for wound regeneration with a new type of antimicrobial effect.

2. Results
2.1. Results of Evaluation of Physicochemical Properties of the Synthesized
Dextran-CeO2 Nanocomposites

The results of UV-visible spectroscopy for dextran-coated cerium nanoceria sols in-
dicate the formation of cerium dioxide phase (Figure 1); with increasing dextran content,
the absorption band of cerium dioxide shifts to the visible region (up to 400 nm), which
indirectly indicates the change in particle size.
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nanocrystals (3.3 nm on average) was recorded at the lowest addition of dextran (Ce0.5D); 
in the Ce1D (1:1) sample, the size of the nanoparticles was 45% smaller, averaging 2.2 nm. 
The smallest nanoparticle size was in the Ce2D and Ce3D samples (more than two times 
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of values for the Ce2D composite, bounded by the 25%–75% percentiles, was significantly 
lower (1.2–1.7 nm, Me = 1.5 nm) than for the Ce3D sample (0.4–2.0 nm, Me = 1.2 nm). The 
data obtained suggest that the strength of the biological effect is greater in Ce2D and 
Ce3D, which had the smallest nanoparticle core size, of which the Ce2D nanocomposite 

Figure 1. UV-visible spectra of cerium dioxide sols with different cerium: dextran ratios (1:0.5; 1:1;
1:2 and 1:3 by mass).

According to the data of X-ray phase analysis, the synthesized variants of nanocompos-
ites are CeO2 nanoparticles with a size of 0.5–4 nm (Figure 2). Moreover, the more dextran
in the composition of the composite, the less clear the diffraction peaks characteristic of
cerium dioxide. This is due to the fact that with increasing concentration of polysaccharide
in the composite, the thickness of the dextran coating of nanoceria increases.
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Figure 2. X-ray phase analysis data of dextran-coated nanocrystalline cerium dioxide samples, in
different initial product ratios cerium nitrate: dextran (1:0.5; 1:1; 1:2; 1:3 by mass). The crystallite size
was estimated using Scherrer formula.

The data on the size of cerium oxide particles obtained from the analysis of diffraction
maxima are shown in Figure 3, which shows that the size of cerium nanoparticles decreased
as the dextran concentration increased. The largest size of cerium oxide nanocrystals
(3.3 nm on average) was recorded at the lowest addition of dextran (Ce0.5D); in the Ce1D
(1:1) sample, the size of the nanoparticles was 45% smaller, averaging 2.2 nm. The smallest
nanoparticle size was in the Ce2D and Ce3D samples (more than two times smaller than at
the minimum dextran concentration). At the same time, the median range of values for the
Ce2D composite, bounded by the 25–75% percentiles, was significantly lower (1.2–1.7 nm,
Me = 1.5 nm) than for the Ce3D sample (0.4–2.0 nm, Me = 1.2 nm). The data obtained
suggest that the strength of the biological effect is greater in Ce2D and Ce3D, which had the
smallest nanoparticle core size, of which the Ce2D nanocomposite with minimal variation
in nanocrystal size is the most predictable in terms of stability of biological effects.
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Transmission electron microscopy results confirmed that the nanoparticle sizes were
less than 5 nm (Figure 4), while increasing the dextran content led to a decrease in particle
size to 0.5–2.5 nm in Ce2D and Ce3D, which agrees well with the XRD data.
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The results of dynamic light scattering have established that as the content of dextran
in the composition of the colloidal solution of cerium dioxide increases, the hydrodynamic
radius of the particles increases (Figure 5). This is due to the increase in the number of
adsorbed dextran molecules on the surface of cerium dioxide particles; however, it is known
that according to X-ray diffraction analysis and electron microscopy data, the size of cerium
dioxide particles decreases.
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The DLS method allows us to evaluate the aggregative stability of cerium dioxide sols
stabilized by dextran without directly estimating the actual size of nanoparticles. The DLS
results demonstrate that in the synthesis of cerium dioxide sols, increasing the polysaccha-
ride content from 0.5 to 1 (by mass) leads to the formation of particles with hydrodynamic
diameters ranging from 10 to 20 nm and 100 nm; further increasing the dextran concen-
tration to 2 and 3 (by mass) leads to an increase in the diameter of nanocomposites from
110 nm to 200–300 nm.

According to the IR spectroscopy data, all obtained samples are composites of cerium
dioxide + dextran composition. Figure 6 shows that the peaks at 3415, 2925, 1648 cm−1

characteristic for dextran in other samples of the compositions Ce:0.5D, Ce:1D, Ce:2D, and
Ce:3D are absent, which may indicate the formation of a composite of a new composition.
One of the main peaks is a strong band in the 3415 cm−1 region, which corresponds to an
asymmetric O-H vibration that overlaps with hydrogen intramolecular bonding signals.
One peak between 2925 and 2932 cm−1 can be attributed to the symmetric and asymmetric
C-H bonding. The peak at 1648 cm−1 corresponds to the aqueous solvate layer of the
polysaccharide. Similar peaks are characteristic of a large number of complex polysaccha-
rides such as chitosans, galactans, and glucans. The peak at 1156 cm−1 corresponds to
the asymmetric stretching of C-O-C and C-C bonds; the peaks around 915 and 845 cm−1

indicate the presence of glycosidic bonds.
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The above-described peaks on the curves of composites Ce:0.5D, Ce:1D, Ce:2D, and
Ce:3D are changed (present with low intensity or absent). This may additionally indi-
cate the formation of new dextran–nanoceria bonds, which have new properties that
are not characteristic of dextran. And the available wavelength differences among the
nanocomposites indicate different properties of the synthesized nanomaterials differing
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in the cerium to dextran ratio. Consequently, each nanocomposite may exhibit different
biological properties.

2.2. Results of Evaluation of the Effect of Nanocomposites on Cytotoxicity, Metabolic and
Proliferative Activity of Human Fibroblast Cell Culture

Firstly, the study of the effect of nanocomposites on the metabolic activity of human
cells was performed. This is important to study on fibroblast cell cultures in particular,
as these cells can be stimulated either in the form of proliferation with an increase in
cell population or in the form of increased production of the intercellular substance they
produce, which is very important for wound healing in the skin.

In the course of analyzing the results of the MTT test, it was found that the metabolic
activity of fibroblasts at 72 h of co-cultivation increased with increasing dextran content in
the nano-composites studied at a concentration of 10−2 M. The highest level, significantly
different from both the control group and the comparison group of dextran, was recorded
in the Ce3D sols. Moreover, the Ce2D and Ce3D groups did not differ from each other,
and in most cases, fibroblast metabolism was higher than in the control (Figure 7). No
statistically significant differences were found between Ce0.5D and Ce1D groups. These
groups also did not differ from the control and dextran groups, although they were slightly
superior to dextran in terms of effect.
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Figure 7. Effect of different concentrations of polysaccharide in cerium oxide nanocomposite + dextran
on metabolic activity of human fibroblasts in MTT test, percent of control (ANOVA OD:F = 15,162; df 5,
p < 0.001; *—different from control at p < 0.001; Dunnett t-tests; # dextran-different from dextran comparison
group (without nanoceria) at p < 0.01, post hoc Bonferroni test).

The data obtained suggest that the stimulation of fibroblast metabolism probably de-
pends on the concentration of polysaccharide and the size of nanoparticles in the nanocom-
posite; the smaller the size of nanoparticles of the inorganic core of the nanocomposite
(cerium dioxide) and the larger the hydrodynamic polysaccharide radius, the higher the
degree of stimulation of metabolic activity of fibroblasts with their production of interstitial
wound-filling substance.

Cell counting after 72 h of co-culture determined inter-group differences, indicating
the effect of nanocomposites at a concentration of 10−2 M on human fibroblast proliferation.
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A clear advantage of the Ce2D nanocomposite was demonstrated, where a 107–291%
stimulation of cell division was recorded, with an average of 172.1% ± 46.8% relative to
control (p < 0.001). In the groups of dextran, Ce0.5D, and Ce1D, no statistically significant
differences in cell number were registered relative to the control, while in the Ce0.5D
group, an unreliable tendency to inhibition of fibroblast proliferation by an average of
23% relative to the control was determined. Ce3D nanocomposite at a concentration of
10−3 M was found to significantly inhibit fibroblast proliferation by an average of 75%
relative to control (34.6 ± 27.4%, p < 0.001). According to ANOVA Bonferroni post hoc test,
statistically significant differences were recorded between the performance of Ce2D and
Ce3D nanocomposites from all other studied groups. Ce2D was the best in this parameter,
while Ce3D was the worst (Figure 8).
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Figure 8. Effect of nanocomposites based on polysaccharide dextran and cerium oxide nanoparticles
at concentrations of 10−2 M on the proliferative activity of fibroblasts (BJTERT cell line) by direct cell
counting using an automated cell counter. Mean percentages from control are presented (ANOVA
OD:F = 20.781; df 5, p < 0.001; difference from control at *—p < 0.001 Bonferroni and Dunnett t-tests).
Green *—stimulation, red—suppression of proliferation.

The obtained results prompted us to perform cell counting at different concentrations
of all studied nanocomposites. For this purpose, sols at concentrations of 10−3 M, 10−4 M,
10−5 M, and 10−6 M were prepared using water for injection.

From the results of direct cell counting, it was determined that fibroblast proliferation
was enhanced to the greatest extent and over the widest range of concentrations when
co-cultured with the Ce2D nanocomposite (172% on average at a concentration of 10−2 M,
245% at 10−3 M concentration, 193% at 10−4 M concentration, and by 145% relative to
control at 10−5 M concentration, p < 0.05), with the best effect, significantly superior
to all other subgroups, registered when exposed to Ce2D at 10−3 M concentration. On
average, the number of fibroblasts after 72 h of co-cultivation in the Ce2D sample at
10−3 M concentration was 245 ± 63% relative to the control. The Ce0.5D nanocomposite
had no effect on cell numbers at all concentrations. The Ce1D nanocomposite enhanced
proliferation of human fibroblasts at concentrations of 10−3 to 10−5 M by an average of
164–187% relative to control (p < 0.05). Ce3D significantly enhanced fibroblast proliferation
only at concentrations of 10−3 M by an average of 196% (Figure 9).
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Figure 9. Effect of nanocomposites based on cerium oxide polysaccharide dextran polysaccharide in
a wide concentration range of 10−2 M–10−6 M on the proliferative activity of human fibroblasts by
direct cell counting. Mean percentages from control are presented (ANOVA OD:F = 19.703; df 20,
p < 0.001; *—difference significant from control at *—p < 0.05 Dunnett t-tests).

It is interesting to note the fact that the maximum efficiency of all nanocomposites was
registered at the concentration of 10−3 M with a clear advantage of Ce2D composite, at
which the number of fibroblasts after 72 h was 2.5 times higher than in the control (at the
concentration of 10−3 M Ce0.5D—1.4 times, Ce1D—1.5 times, Ce3D—2.0 times relative to
the control, p < 0.01).

To determine the cytotoxicity and safety of the synthesized nanocomposites, cells were
visualized by light microscopy (Figure 10) and the percentage of dead cells was evaluated.
At a high concentration (10−2 M of cerium dioxide), 100% cell survival in all 12 samples was
recorded in the control, Ce2D, and Ce3D groups. The latter situation (absence of cell death
along with their normal visualization) against the background of cell division inhibition
proves the safety of the samples, with living cells spending energy not for proliferation but
for collagen and elastin synthesis, which is confirmed by MTT-test data.

The most frequent dead cells were determined in the Ce0.5D group (16.7% of cases
registered 2–29% dead cells). Single cases of dead cells were reported in the dextran and
Ce1D groups (dextran: 25% of cases (3 out of 12 cells) reported 2% to 5% dead cells; Ce1D:
16.7% of cases (2 out of 12 cells) reported 5% dead cells). Although this is not an indication
of cytotoxicity (acceptable values), it is reasonable to select Ce2D and Ce3D for future
drug development.

At other concentrations, more dilute sols also showed advantages of Ce2D and Ce3D
nanocomposites, with 100% survival (no dead cells) for both nanocomposites with excess
dextran recorded at concentrations of 10−2 M, 10−3 M and 10−6 M (otherwise up to 2–5%
dead cells in 1–2 out of 12 samples). In the samples with Ce1D nanocomposite, insignificant
amounts (up to 5%) of dead cells in 1–2 out of 12 wells were recorded at all concentrations.
In samples with the Ce0.5D nanocomposite, there were no dead cells only at the lowest
concentrations (10−5–10−6 M).
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Figure 10. Photographs of fibroblasts after 72 h of co-cultivation with nanocomposites (×10 magnification).

Thus, the most preferred and safe nanocomposite for the future development of a drug
to accelerate wound healing is Ce2D, characterized by a balance of simultaneous stimulation
of both cell proliferation and metabolism with the most predictable dose-dependent effect.

2.3. Antimicrobial Activity of Nanocomposites

The study by gas chromatography with mass spectrometry revealed that cerium oxide-
based nanocomposites coated with dextran in different ratios affect E. coli abundance with
a significant bacteriostatic effect at all cerium to dextran ratios after 48 h of incubation,
but after 24 h of incubation, this only occurred with two types of composites (Ce0.5D
and Ce2D).
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Thus, after 24 h of incubation in the control groups, where there was only nutrient
medium and E. coli, the average number of microbial bodies was on average 1.36 times
higher than in samples with the addition of 10 vol% Ce0.5D at a dose of 10−2 M, where
the number of microbial bodies averaged 250 ± 5.5 × 105 cells/g medium (p < 0.01)
and 1.28 times higher than in samples with the addition of Ce2D at the same dose of
10−2 M (p < 0.01), where the number of E. coli averaged 265.7 ± 4.1 × 105 cells/g medium.
Accordingly, the percentage of significant suppression of E. coli growth when co-cultured
with nanocomposites after 24 h was 26.7% when incubated with Ce0.5D and 22.1% when
incubated with Ce2D (p < 0.01). There was no statistically significant difference in this
index between the Ce0.5D and Ce2D groups (p = 0.071 with Bonferroni correction for
multiple comparisons). At the same time, both groups Ce0.5D and Ce2D were significantly
different from groups Ce1D and Ce3D, in which the number of microbial bodies after
24 h was 25–34% higher and averaged 332.4 ± 7.2 and 335.2 ± 8.1 × 105 cells/g medium,
respectively; this did not differ from the control groups (p > 0.05) (Figure 11).
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Figure 11. Number of E. coli microbial bodies (×105/g) in control groups and when co-cultured
with sols of dextran-coated nanoceria in different cerium–dextran ratios, after 24 h of incubation
(*—significant difference from control (culture media and E. coli) at p < 0.01; ANOVA test including
posterior Dunnet tests).

An ANOVA test determined that multiple differences were significant after 24 h
(F = 2805.9; p < 0.001). However, after 48 h, all types of nanocomposites at a concentration
of 10−2 M ceria showed significant antimicrobial (bacteriostatic) activity compared to the
control groups.

Thus, after 48 h of incubation in the thermostat, the values of the number of microbial
cells (×105/g) were as follows: in the Ce0.5D group—609.4 ± 9.7; Ce1D—796.8 ± 9.9;
Ce2D—653.8 ± 6.9; Ce3D—1098.2 ± 18.9 cells per gram of medium. These results were
statistically significantly different from those of the control groups. In the control tubes,
the average number of microorganisms was 4.3 times higher than in the Ce0.5D group
(p < 0.01), 3.3 times higher than in the Ce1D group (p < 0.01), 4.0 times higher than in the
Ce2D group (p < 0.01), and 2.4 times higher than in the Ce3D group (p < 0.01). Consequently,
the application of cerium–dextran nanocomposites at a concentration of 10−2 M, can inhibit
the growth and multiplication of E. coli by an average of 77% with Ce0.5D, 70% with Ce1D,
75% with Ce2D and 58% with Ce3D.

After 48 h, according to GC-MS data, the number of E. coli in the control groups signif-
icantly increased on average by 7.7 times, while during incubation with nanocomposites,
this increased by 2.4–3.3 times. Namely, this increased by 2.44 times with Ce0.5D, 2.40 times
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with Ce1D, 2.46 times with Ce2D, and 3.29 times with Ce3D. Thus, at a ratio of 0.5–2 of
dextran in the synthesis of nano-ceria oxide, the number of E. coli increased equally on
average by 2.4 times, which is significantly less than in the control groups, i.e., at these ratios
of cerium/dextran (Ce0.5D, Ce1D and Ce2D), the multiplication of E. coli was inhibited
equally on average by 3.2 times compared to the control groups (p < 0.01). Less pronounced
bacteriostatic activity was possessed by Ce3D, in which the number of microorganisms for
the second day of the study increased by 3.29 times, although a significant antimicrobial
effect was established in the form of inhibition of E. coli colony growth relative to the control
by 2.3 times (p < 0.01) (Figure 12). The ANOVA test established the significance of multiple
differences after 48 h of co-culture of dextran nano-composites (F = 448.7; p < 0.001).
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Figure 12. Number of E. coli microbial cells (×105/g) in control groups and when co-cultured with
10 vol.% sols of nanocomposites with different dextran concentration, after 24 h and 48 h (*—significant
difference from control (culture media and E. coli) at p < 0.01; ANOVA including Dunnett’s posterior tests).

Thus, the best antimicrobial activity in the form of bacteriostatic effect against Gram-
negative bacterium E. coli was found in Ce0.5D and Ce2D nanocomposites.

Since the Ce2D nanocomposite was selected according to previous studies, the next
stage of microbiological study was to determine the antimicrobial activity of this nanocom-
posite, but at different concentrations (10−2–10−5 M).

In the results of gas chromatography with mass spectrometry after 24 h of incubation
of Ce2D with nutrient medium containing E. coli, only at a concentration of 10−2 M
was a significant antimicrobial effect established, confirming the results of the previous
experiment in the form of a reduction in the number of microbial bodies (1.3 times more
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microbes in the control; p < 0.01). At other concentrations of Ce2D, no bacteriostatic effect
was detected after 24 h, and the results were comparable with the control groups.

After 48 h, a bacteriostatic effect against E. coli was established for all concentra-
tions of Ce2D. The values of microbial cell counts (×105/g) in Ce2D groups averaged
1417 ± 13.8 ×105 at 10−5 M concentration; 791 ± 12.9 at 10−4M concentration; 661.5 ± 12.9
at 10−3 M concentration; and 526.9 ± 10.7 ×105 cells per gram of medium at 10−2 M
concentration. These statistically significantly differed from the control groups by an av-
erage of 1.8 times, 3.3 times, 4.0 times, and 5.0 times, respectively (p < 0.01) (Figure 13).
Consequently, the application of Ce2D is able to inhibit E. coli multiplication by 47–80% (at
a concentration of 10−5 M by 47% on average, 10−4 M by 70%, 10−3 M by 75%, and 10−2 M
by up to 80%). ANOVA analysis established the significance of multiple differences after
24 h (F = 2276.3; p < 0.001) and after 48 h (F = 638.8; p < 0.001).
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Figure 13. Number of E. coli microbial cells (×105/g medium) in control groups and when co-
cultured with 10 vol.% Ce2D nanocomposite sols at different concentrations after 24 h and 48 h
(*—significant difference from control (culture media and E. coli) at p < 0.01; ANOVA including
Dunnett’s posterior tests).

A significant dose-dependent effect of dextran nanoceria on E. coli multiplication
was established. In the group with the lowest concentration of nano-ceria (10−5 M), the
number of microbial bodies was significantly higher than in all other groups (on average
1.8 times higher than at 10−4 M (p < 0.01), 2.1 times higher than at 10−3 M (p < 0.01), and
2.7 times higher than at 10−2 M (p < 0.01). The number of microbial bodies was significantly
lower in the group with the highest concentration of nano-ceria than in the groups with
concentrations of 10−4 M and 10−5 M (p < 0.01). The group with 10−3 M concentration of
Ce2D was not statistically different from the group with 10−2 M concentration (p > 0.05);
that is, the antimicrobial activity of 10−2–10−3 M after 48 h is comparable.

If in control groups, the number of microorganisms for a day (from 24h to 48h)
increased on average by 7.8 times, then during incubation with Ce2D at concentrations of
10−2 M and 10−3 M, the number of E. coli increased only by 2.0 times, at a concentration
of 10−4 M—on average by 2.4 times, and at a concentration of 10−4 M—on average by
4.2 times. Consequently, with the application of Ce2D composite at concentration of 10−2
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to 10−3 M, it was possible to reduce the reproduction of microorganisms within 2 days by
3.9 times, at a concentration of 10−4 M—3.2 times, and at a concentration of 10−5 M—1.8 times.

Thus, it was proved that after 24 h, nanocomposite Ce2D in the maximum concentra-
tion of 10−2 M can significantly inhibit the multiplication of E. coli on average by 22%. After
48h, all concentrations of Ce2D showed bacteriostatic activity, inhibiting E. coli multiplica-
tion by 47–80%, and a dose-dependent effect was established. The higher the concentration
of nano-Ce2D, the greater the antimicrobial (bacteriostatic) activity. After 48 h, the number
of microbial bodies at a dose of 10−3 M Ce2D is comparable to the concentration of 10−2 M.
The application of Ce2D nanocomposite at a dose of 10−2–10−3 M allows a reduction in the
rate of microorganism multiplication in the period from 24h to 48h by 3.9 times (at the dose
of 10−4 M—3.2 times, at 10−5 M—1.8 times).

All this makes the Ce2D nanocomposite at a concentration of 10−2–10−3 M attractive
for the further development of a medical drug with a new type of antimicrobial activity.

3. Materials and Methods
3.1. Synthesis of Nanocomposites Using Dextran and Cerium Nitrate in Different Ratios

We used a modified methodology published in our earlier papers [35,39]. Cerium ox-
ide nanoparticles coated with the polysaccharide dextran were synthesized by the following
methods. First, a 50 mL mixed solution (distilled water) was prepared consisting of Cerium
(III) nitrate hexohydrate (Ce(NO3)3x6H2O) (99.99%, LANHIT, Russia, Moscow), molecular
weight 434.23 (326.13 anhydrous) and Dextran Mr = 6000 Da (ABCR GmbH, Karlsruhe,
Germany) in four different Ce(NO3)3x6H2O: dextran ratios (by weight): (1) 1:0.5 (Ce0.5D);
(2) 1:1 (Ce1D); (3) 1:2 (Ce2D); (4) 1:3 (Ce3D). That is, 1.0 g of cerium(III) nitrate and 0.5 g of
dextran were used for the 1st variant; 2nd variant—1.0 g of cerium(III) nitrate and 1.0 g of
dextran; 3rd variant—1.0 g of cerium(III) nitrate and 2.0 g of dextran; 4th variant—1.0 g of
cerium(III) nitrate and 3.0 g of dextran. In all compositions, the concentration of the initial
active substance cerium nitrate was the same everywhere during each synthesis; only the
amount of dextran changed.

The solution was continuously stirred on a magnetic stirrer, to which 3 M aqueous
ammonia solution (special purity, Himmed, Moscow, Russia) was added dropwise for 3 h,
maintaining pH at 7.5–8.0. The pH solutions were measured using a Crison GLP 22 pH-
meter (Crison Instruments, SA, Barcelona, Spain) equipped with a Crison 5201 combination
electrode and providing an accuracy of ±0.003 pH in the range from 0 ◦C to 100 ◦C.

When the pH became constant, the mixture was additionally stirred for 2 h. Then,
aqueous ammonia solution was added up to pH = 12 followed by additional stirring for
at least 8 h. The end of formation of cerium dioxide particles during the experiment was
monitored by UV-visible absorption spectra. The experiment was considered complete
when the peak characteristic of Ce3+ disappeared in the spectra. The complete oxidation
was ensured by differential UV-vis spectroscopy by disappearance of local minimum on
differential spectra at 280–290 nm.

For cerium dioxide samples with different dextran contents, the time to complete the
synthesis was different. The longest synthesis was required for the nanocomposite with the
highest dextran content (48 h).

Then, excess isopropanol (350 mL) was added to the obtained solution until a yellow
precipitate was formed. The precipitate was further washed several times with isopropanol
(Chimmed, Moscow, Russia), centrifuged at ~18,000 RCF (relative centrifugal force) and
dried at 50 ◦C. Dextran-stabilized cerium sol was obtained by dispersing the powder in
distilled water.

Then, thermogravimetry was performed, based on the results of which the concentra-
tion was calculated and solutions with different concentrations were prepared for biological
studies. We used alund crucibles, brought them to constant mass, weighed them, placed
aliquots of the sol inside, dried and annealed them at 900 ◦C, and weighed again. The
weight form was considered to be CeO2. From the mass difference, the mass of cerium
oxide was determined and converted to the concentration of the sol.
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To determine the stability of the hydrosols, the hydrosols were observed for at least
3 months after their synthesis, keeping the samples under normal conditions at room
temperature. The obtained nanoceria sols stabilized with dextran did not require additional
stabilization, and after 1, 2 and 3 months, they had a stable pH value (from 6.8 to 7.4),
were easily diluted with solutions and did not lose their aggregative stability (transparent
solution of yellowish color did not change, no precipitate). After stability evaluation, the
nanocomposite sols were investigated in biological (cellular and microbiological) experiments.

3.2. Studied Samples and Comparison Groups

Depending on the initial ratio of cerium nitrate to dextran, in this work, we evaluated
4 types of nanoceria sols at a concentration of 10−2 M: Ce0.5D (at a ratio of 1:0.5), Ce1D (at
a ratio of 1:1), Ce2D (at a ratio of 1:2) and Ce3D (at a ratio of 1:3). Also, in biomedical exper-
iments, sterile water for injection was used to study the effects of different concentrations
of the obtained sols, and concentrations of 10−2 M, 10−3 M, 10−4 M, 10−5 M and 10−6 M
were obtained.

Nanoparticle concentrations are expressed as M (mol/L). This is the molarity per
formula unit of CeO2, i.e., actually a mole of cerium dioxide per liter of colloidal solution.

The control was the water with which the dilution was performed, used in the same
volume as the sols. In addition, the results obtained were compared with a group of dextran
(Mr = 6000, ABCR GmbH, Karlsruhe, Germany) used to prepare the sols. Therefore, the
comparison group was dextran without cerium (0.3 g of dextran was dissolved in 50 mL of
distilled water).

Microbiological experiments were also controlled by groups with antibiotic (ceftriaxone).

3.3. Methods of Evaluation of Physicochemical Properties of Nanocomposites

The obtained samples of nanomaterials were characterized by UV-visible spectroscopy,
transmission electron microscopy, X-ray phase analysis, dynamic light scattering (DLS),
and infrared spectroscopy.

Ultraviolet–visible spectroscopy was performed on a spectrophotometer SF-2000
(OKB Spektr, Saint Petersburg, Russia), working on a single-beam scheme. Imaging was
performed in the wavelength range from 190 to 800 nm with a step of 0.1 nm, and the
optical slit width was 0.2 nm. Imaging in the range from 190 to 394.9 nm was performed
using a deuterium lamp, and from 395 to 800 nm using a halogen lamp. The exposure time
was 50 msec. Each spectrum was imaged 10 times with subsequent averaging of the results.

Transmission electron microscopy (TEM) of the synthesized nanocomposites was
carried out on a JEM 2100 JEOL electron microscope (JEOL Ltd., Tokyo, Japan) with an
accelerating voltage of 200 kV.

X-ray phase analysis of samples was carried out on a Rigaku D/MAX 2500 diffractome-
ter (CuK-radiation) at a goniometer rotation speed of 1–2 ◦2θ/min (Rigaku Corporation,
Tokyo, Japan). The identification of diffraction maxima was carried out using the Inter-
national Center for Diffraction Data (Joint Committee on Powder Diffraction Standards
(JCPDS) data bank, PA, USA).

The sols were studied by dynamic light scattering and zeta potential measurements
at 20 ◦C using a Photocor Compact-Z analyzer (Photocor LLC, Moscow, Russia). The
correlation function for each sample was obtained by averaging 10 curves (the accumulation
time of one curve was 20 s). The hydrodynamic diameter of particles was determined using
the regularization method (DynalS software, available online: http://www.softscientific.
com/science/WhitePapers/dynals1/dynals100.htm, accessed on 17 May 2024).

Dynamic light scattering (DLS) studies were performed using a Zetasizer Nano ZS
laser analyzer with a 633 nm laser (Malvern Instruments Ltd., Malvern, Worcestershire, UK).

Infrared spectroscopy analysis of nanoceria–dextran composites was performed on a
Perkin Elmer Spectrum 65 FTIR spectrometer (PerkinElmer, Waltham, MA, USA).

http://www.softscientific.com/science/WhitePapers/dynals1/dynals100.htm
http://www.softscientific.com/science/WhitePapers/dynals1/dynals100.htm
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3.4. Methods of Evaluation of the Effect of Cerium–Dextran Sols on Cytotoxicity, Metabolic and
Proliferative Activity of Human Fibroblast Cell Culture

The study was performed on human fibroblast culture (BJTERT line) derived from
neonatal foreskin. The origin of the line is the ATCC collection of typed cultures (Manassas,
VA, USA).

3.4.1. Cell Culturing

Human immortalized fibroblasts of BJ TERT line were cultured in DMEM (Dulbecco’s
Modified Eagle’s Medium) (Paneco, Moscow, Russia) supplemented with 10% fetal calf
serum (Global Kang Biotechnology, Qinhuangdao, China), 1% penicillin/streptomycin,
and 0.32 mg/mL glutamine (Paneco, Russia). Cell passaging was performed every 7 days
according to a standard protocol, and the medium was changed every 3 days between
passages. Cells were cultured in a CO2 incubator (Binder, Tuttlingen, Germany), and
incubation temperature was 37 ◦C in a humid atmosphere with 5% carbon dioxide in
the air. For the experiment, human immortalized fibroblasts of BJ TERT line were seeded
in 24-well plates (NEST, Wuxi, China) at a cell concentration of 5 × 104 cells/mL in
suspension. After 24 h, the test substances were added at concentrations according to the
experiment design in a volume of 100 µL. Incubation was then continued under standard
controlled CO2 incubator conditions for 72 h. Equivalent volumes of 0.9% sodium chloride
solution were added as a control. At the end of the incubation time, proliferative activity
evaluation tests were performed.

3.4.2. MTT Test

An MTT assay was used to determine metabolic activity and to assess changes in
proliferative activity.

The MTT assay was performed according to a standard protocol, according to which
MTT salt (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Neofroxx, Ger-
many) was dissolved in PBS (stock solution; 5 mg/mL). Next, a working solution of MTT
(0.5 mg/mL) was prepared by dissolving the stock solution in the culture medium. Then,
the medium containing nano-ceria oxide compounds was removed from the culture plates,
and the MTT working solution was added to each well for 30 min at 37 ◦C. After the MTT
solution was removed, DMSO (PanReac AppliChem, Darmstadt, Germany) was added
for 5 min at room temperature on an Elmi-S4 oscillating shaker (ELMI Ltd., Riga, Latvia).
Finally, the solution was transferred to a 96-well plate, and the absorbance was recorded on
a spectrophotometer (Multiscan, Labsystems, Vantaa, Finland) set at λ = 540 nm. The final
measurement result was expressed in relative optical density (OD) units.

3.4.3. Determination of Fibroblast Proliferative Activity and Assessment of Cytotoxicity by
Cell Counting and Assessment of Plasma Membrane Integrity by Trypan Blue Staining

The cultivation of immortalized human fibroblasts was performed according to the
protocol described above. At the end of incubation with nanocomposites, cells were
detached and counted automatically using Countess II Automated Cell Counter (Thermo
Scientific, Waltham, USA) in special plastic disposable slides (RWD, Shenzhen, China)
following the manufacturer’s protocol. The procedure allowed, in addition to counting
the total number of cells, the determination of cell viability by penetration through the cell
membrane and staining of non-viable cells with trypan blue solution [58]. Briefly, after the
detachment of cells by trypsinization (trypsin: Versen solution (Paneco, Moscow, Russia) at
a ratio of 1:4), 0.4% trypan blue solution (Paneco, Moscow, Russia) was added to the cell
suspension. The solution was mixed by pipetting. Then, the stained cell suspension was
introduced into a slide, which was placed in a counter for automatic counting. The total
number of cells per unit volume (×105 cells/mL) and the percentage of live and dead cells
were counted as the result.

When performing cell experiments, each sample was tested at 12 repetitions in both
the counter and MTT test to ensure reliable results and valid conclusions.
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3.5. Determination of Antimicrobial Activity of Cerium–Dextran Nanocomposites by Mass
Spectrometry of Microbial Markers Using Gas Chromatograph with Mass-Selective Detector

In the course of our previous studies, we proved that the antimicrobial effect of
nanocrystalline cerium oxide sols using classical methods (diffusion into agar, serial dilution
method) is not reasonable to study, since nano-cerium does not diffuse into agar and its
mechanism of action does not comply with the standard rules of pharmacopoeia [35], which
is actually associated with contradictory results of different researchers (there are works
claiming that metals nanoparticles have a pronounced antimicrobial effect [33,59–63]; at the
same time, there are many works in which the authors did not obtain such an effect [64–66]).

This study was performed on a gas chromatograph with mass-selective detector
(GC-MS) “Maestro-aMS” (Interlab, Moscow, Russia). The method is based on the high-
precision determination of the presence of molecular features of microorganism-specific
markers (higher fatty acids, aldehydes, alcohols and sterols in the sample under study), i.e.,
the fatty acid status of the microorganism, which is specific and genetically determined.
The microbiological analyzer Maestro allows the accurate quantification of the content
of microorganisms in any biological sample. Although the automatic algorithm of the
device allows the determination of 50 microorganisms simultaneously, in the present study,
we investigated the effect of nanoceria on the growth inhibition of one Gram-negative
bacterium, Escherichia coli (E. coli ATCC 8739), using a test strain from the collection of the
A.A. Tarasevich Research Institute for Standardization and Control of Medical Biological
Preparations (Moscow). The method is characterized by high sensitivity (able to detect
103 cells in the sample). The final calculation of the exact number of microorganisms was
expressed as number × 105 microbial cells per gram of tested material.

Two stages of experiments were performed. In the 1st series, a total of 8 groups were
studied (Table 1). The studied 4 groups of nanocomposite sols (Ce0.5D, Ce1D, Ce2D, Ce3D)
were of one concentration, 10−2 M. Control groups: Culture media (CM) represented meat-
peptone broth (MPB), CM + E. coli, CM + E. coli + H2O (sterile water for injection in the
same volume as the nanocomposite was used). Ceftriaxone III-generation cephalosporin
antibiotic (ZAO Rafarma, Russia, 1g powder pack) was chosen as a reference comparison
to evaluate the antimicrobial activity, to prove the antibacterial effect against strains of
microorganisms. In the experiment, we used a concentration of 100 mg/mL, dissolving
ceftriaxone powder (contents of the vial, 1 g) with sterile water for injection in a volume
of 9.6 mL.

Table 1. Study groups for microbiologic examination and sample preparation.

Groups Culture Media Microorganisms Test Substance Total Volume

Study groups

Ce0.5De 4.0 mL 0.5 mL of E. coli
suspension

0.5 mL of Ce0.5D
(10−2 M) sol 5.0 mL

Ce1D 4.0 mL 0.5 mL of E. coli
suspension

0.5 mL of Ce1D
(10−2 M) sol 5.0 mL

Ce2D 4.0 mL 0.5 mL of E. coli
suspension

0.5 mL of Ce2D
(10−2 M) sol 5.0 mL

Ce3D 4.0 mL 0.5 mL of E. coli
suspension

0.5 mL of Ce3D
(10−2 M) sol 5.0 mL

Control groups
CM + E. coli 4.5 mL 0.5 mL of E. coli

suspension – 5.0 mL

CM + E. coli + H2O 4.0 mL 0.5 mL of E. coli
suspension 0.5 mL H2O 5.0 mL

Comparison
groups

CM 5.0 mL – – 5.0 mL

Ceftriaxone 4.0 mL 0.5 mL of E. coli
suspension 0.5 mL solution 5.0 mL



Molecules 2024, 29, 2853 18 of 23

In each tube of all groups, the initial quantitative content in 0.5 mL of E. coli suspension
was 5 × 105 cells.

The tubes with the contents were placed in a thermostat at 37 ◦C for 24 h; then, an
aliquot was taken and analyzed by gas chromatography-mass spectrometer (GC-MS), and
the remaining tubes were placed in the thermostat for another 24 h to repeat the GC-MS
study after 48 h of co-cultivation.

In the 2nd series of experiments, the antimicrobial activity of different concentrations
of the selected nanocomposite was investigated using a similar methodology. Eight groups
were also studied. The control and comparison groups did not change; only the studied
groups changed, of which there were 4, each with different concentrations of the selected
nanocomposite (10−2 M, 10−3 M, 10−4 M and 10−5 M).

Despite the high accuracy of the device, each sample of all series of experiments was
tested at least five times (five repetitions).

3.6. Statistical Analysis

For the creation of the graphs and to analyze the data of the nanoceria physicochemical
characterization, OriginPro 2018 from OriginLab software SR1 (Northampton, MA, USA)
was used.

Statistical processing of the results of biomedical research was carried out using the
statistical program SPSS 25.0 (IBM Company, New York, NY, USA). First of all, the normality
of the distributions of indicators was assessed using the Kolmogorov–Smirnov and Shapiro–
Wilk criteria. All samples and their groups obeyed the law of normal distribution. After
that, we performed descriptive statistics of continuous quantitative indicators, which
obeyed the law of normal distribution, in the form of mean, std. deviation, std. error, 95%
confidence interval for mean (95CI), minimum, and maximum. In the cell experiments, the
mean value was determined in the control group, which had only cell medium containing
fibroblasts and 100 µL of diluent (the solution with which the nanoceria was diluted to
create the specified concentrations). Relative to the mean value in each experiment, the
percentages in the studied groups were calculated, obtaining the final figure, the percentage
of the control. One-factor ANOVA analysis of variance was performed for comparative
analysis of different subgroups of the test. Posterior multiple comparisons were performed
using Dunnett’s test (for comparison with controls) and Bonferroni’s test. Differences were
considered statistically significant at p-value < 0.05.

4. Discussion

Currently, there is an active search for optimal ways to create new wound-healing
drugs with a better balance of regenerative and antimicrobial effect of a new type that does
not cause antibiotic resistance. Great hopes are placed on nanocomposites based on cerium
oxide nanoparticles [32–39], which is a rare earth metal with variable valence, coated with
a polymer shell, dextran [50–54], which is widely used in medicine [67–69]. This complex
seems to be an excellent combination for the development of a medical drug that effectively
accelerates wound healing.

In order to achieve our aim, we had to solve both chemical–physical and biological
problems in the process of experimentation on the preparation of nanocomposite con-
struction from cerium oxide as the core of the particle and dextran as the outer coating
of the particle. First, the size dependence of the created composites on the concentration
of dextran in the nanoceria sols was confirmed using physicochemical methods. Direct
illustrations of the created composites obtained by transmission electron microscopy con-
firm this dependence while maintaining the relative dimensional structure and size of
the cerium nanocrystal particle itself in the required sizes up to 5 nm. However, the size
structure of the synthesized nanocomposites turned out to be different. The change in
the nanocomposite size, directly proportional to the dextran concentration in the sol, was
logically explained by the higher degree of deposition of dextran molecules on the cerium
dioxide crystal compared to other groups. An initially lower concentration of cerium nitrate
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in the system with high concentration of dextran correlates with an increase in the thickness
of dextran coatings, which reduced the diffraction peaks characteristic of cerium dioxide
and, therefore, changed the degree of contacts, and thus the activity of the nanocomposite
itself with respect to biological objects. The higher concentration of dextran in the nanosol
led to relatively faster blocking of aggregation (slugging) of nanoceria particles. This
statement is confirmed by the analysis of diffraction maxima, which showed an inversely
proportional dependence of the nanocomposite core size on the dextran concentration in
the nanosol. This means that it is possible, by changing only the dextran concentration or
synthesis time, to model nanoparticles of the required size of both the core size and the
thickness of the polymer coat.

Infrared spectroscopy demonstrated that the nanocomposite particles obtained in
the process of synthesis are indeed composite and consist of cerium dioxide and dextran,
and the differences in wavelengths of the synthesized nanocomposites differing in the
cerium/dextran ratio may indicate different intensities of effects on biological objects. It
remained to determine the nature of the effect of synthesized nanoparticles on biological
objects depending on their physical characteristics and to select the best compounds for
further study on animal models.

Several parameters of changes in the physiology and structure of human fibroblasts,
the main cells of the skin that provide synthesis of interstitial substance—collagen, which
is necessary for wound healing—were taken for such evaluation. Cytotoxicity was deter-
mined with a nanocomposite with a maximum concentration of cerium (10−2 M). Although
all samples showed low toxicity, the best results in terms of safety characteristic were shown
by samples with Ce2D and Ce3D ratios, i.e., samples with the minimum, and therefore
the most effective, cerium core size. The Ce2D group showed significantly better results
both in the parameter of stimulation of fibroblast proliferation in cell culture and in the
parameter of their metabolic activity. Thus, the optimal sizes and ratios of cerium core and
dextran coating thickness of the synthesized nanocomposite, providing the best conditions
for effective cell viability, were determined.

An attempt to obtain a compound that has both a stimulating effect on body cells and
antimicrobial activity, which are almost always present in wound contents, may seem like
biological nonsense. However, the authors hoped for the antioxidant activity described
by some researchers, which is provided by the change in the valence of cerium dioxide
depending on the pH of the medium. The use of gas chromatography with spectrometry
showed that the best antimicrobial nanocomposites at the time of 24 h of incubation
are composites of Ce0.5D and Ce2D; that is, compounds with greater accessibility to
microbial bodies and maximally expressed biological activity of nanoceria. Increasing the
contamination time to 72 h extinguished this difference between groups and equalized
the reported antimicrobial effect. Unfortunately, it was possible to obtain a pronounced
but only bacteriostatic effect and not a bactericidal effect. However, it is very likely that
with an increase in antimicrobial effects, we would have obtained an increase in toxicity,
which would reduce the regenerative functions of the cell culture. At the same time, we
have proven the presence of a new type of antimicrobial effect. This is an antimicrobial
effect due to redox activity and a change in valence when the pH of the environment in
the wound changes (in particular, acidification of the medium in the wound with E. coli
contamination). This mechanism is fundamentally different from the mechanism of action
of antibacterial drugs; therefore, it gives hope that nano-drugs based on cerium dioxide
nanoparticles can help in the fight against antibiotic resistance.

5. Conclusions

The main conclusions of our work are as follows:

1. The synthesis of sols of nanocomposites—nanocrystalline cerium dioxide less than
5nm in size, coated with polysaccharide dextran, differing in the initial ratio (by mass)
of cerium nitrate to dextran, which is reflected in the physicochemical characteristics
and final biological properties—was carried out.
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2. As the content of dextran in the nanocomposite increases, the particle size of cerium
dioxide decreases and the hydrodynamic radius increases.

3. A high level of safety of nanocomposites was proved, while the absence of cytotoxicity
(100% cell survival at the maximum tested concentration) was established for Ce2D
and Ce3D.

4. Metabolic and proliferative activity of fibroblasts increases as the dextran content
increases (and as the size of cerium oxide crystals, the core of nanocomposites, de-
creases). The lowest level of fibroblast activity was recorded for Ce0.5D and the
highest for Ce2D. In all types of nanocomposites, the most effective stimulation of
human fibroblasts proliferation was registered at the concentration of 10−3 M, with
a clear advantage of Ce2D composite, with which the number of fibroblasts was
2.5 times higher than in the control (at 10−3 M Ce0.5D—1.4 times, Ce1D—1.5 times,
Ce3D—2.0 times relative to the control).

5. The best antimicrobial activity of nanocomposites at a concentration of 10−2 M (bac-
teriostatic action) was found in Ce0.5D and Ce2D, inhibiting the growth and mul-
tiplication of E. coli after 24 h by an average of 22–27%, and after 48 h, all variants
of nanocomposites significantly inhibit the growth and multiplication of E. coli by
58–77%, which is most (and equally) expressed in Ce0.5D, Ce1D, and Ce2D, at which
E. coli multiplication was inhibited equally by an average of three-fold compared to
the control groups. After 48 h, all concentrations of Se2D composite showed bacte-
riostatic activity, inhibiting E. coli multiplication by 47–80%, and a dose-dependent
effect was determined: the higher the concentration of nano-ceria, the higher the
antimicrobial activity.

6. The complex of interdisciplinary studies allowed us to select for further development
the Ce2D composite at a concentration of 10−3 M, characterized by the balance of
simultaneous stimulation of cells with the most predictable dose-dependent effect,
including stimulating cell proliferation and metabolism up to 2.5 times and allowing
a reduction in the rate of microorganism multiplication by 4 times.

In conclusion, it should be noted that the method of nanocomposite synthesis devel-
oped by the authors allows us to talk about the prerequisites for the development of a
technique for obtaining for obtaining compounds with predetermined physical, chemical
and biological properties. The optimal sizes of the cerium core of the nanocomposite and
the thickness of its dextran coating were found. The necessary physical characteristics
of the nanocomposite, which provides the best conditions for wound healing biological
effects, were determined. The results obtained during the experiment allow us to speak
about composites with nanocerium–dextran structure as promising compounds for their
usage in medical and veterinary practice for healing and disinfection of skin wounds.

Author Contributions: Conceptualization, E.V.S. and V.A.S.; methodology, E.V.S., V.A.S., O.S.I.,
A.E.B. and E.B.A.; validation, E.V.S., O.S.I., E.S.V., Y.G.S. and O.A.M.; formal analysis, E.V.S., V.A.S.,
N.E.M., E.B.A., O.S.I., V.A.S., O.V.K. and E.S.V.; investigation, E.V.S., V.A.S., O.S.I., A.A.K., S.A.D.,
O.V.K., Y.G.S. and E.S.V.; data curation, E.V.S., O.S.I., A.E.B., E.B.A., A.A.K., S.A.D., M.P.G. and M.P.K.;
visualization, O.S.I., E.V.S., V.A.S., A.E.B. and O.A.M.; supervision, E.V.S., V.A.S. and O.A.M.; project
administration, E.V.S., V.A.S., N.E.M. and A.E.B.; writing—original draft preparation, E.V.S., V.A.S.
and O.S.I.; writing—review and editing, N.E.M., A.E.B., M.P.K., E.B.A., O.A.M. and O.V.K. All authors
have read and agreed to the published version of the manuscript.

Funding: The research was funded by the Russian Science Foundation, grant No. 23-65-10040,
https://rscf.ru/project/23-65-10040/ accessed on 12 June 2024.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

https://rscf.ru/project/23-65-10040/


Molecules 2024, 29, 2853 21 of 23

References
1. Roussas, A.; Masjedi, A.; Hanna, K.; Zeeshan, M.; Kulvatunyou, N.; Gries, L.; Tang, A.; Joseph, B. Number and Type of

Complications Associated with Failure to Rescue in Trauma Patients. J. Surg. Res. 2020, 254, 41–48. [CrossRef] [PubMed]
2. Boodhoo, K.; Vlok, M.; Tabb, D.L.; Myburgh, K.H.; van de Vyver, M. Dysregulated healing responses in diabetic wounds occur in

the early stages postinjury. J. Mol. Endocrinol. 2021, 66, 141–155. [CrossRef] [PubMed]
3. Roberts, Z.; Collins, J.A.; James, D.; Bouamra, O.; Young, M.; Lyttle, M.D.; Roland, D.; Mullen, S.; on behalf of PERUKI.

Epidemiology of adolescent trauma in England: A review of TARN data 2008–2017. Emerg. Med. J. 2020, 37, 25–30. [CrossRef]
[PubMed]

4. Voth, M.; Sommer, K.; Schindler, C.; Frank, J.; Marzi, I. Rise of extremity fractures and sport accidents in children at 8-12 years
and increase of admittance via the resuscitation room over a decade. Eur. J. Trauma. Emerg. Surg. 2022, 48, 3439–3448. [CrossRef]
[PubMed]

5. Spitzer, S.A.; Vail, D.G.; Heindel, P.; Dey, T.; Cooper, Z.; Salim, A.; Jarman, M.P. Gentrification as a Factor in the Incidence of
Firearm Injuries. JAMA Surg. 2023, 158, 1152–1158. [CrossRef] [PubMed]

6. Nyberger, K.; Caragounis, E.C.; Djerf, P.; Wahlgren, C.M. Epidemiology of firearm injuries in Sweden. Eur. J. Trauma. Emerg. Surg.
2022, 48, 2349–2357. [CrossRef] [PubMed]

7. Feinglass, J.; Patel, T.R.; Rydland, K.; Sheehan, K. Trends in Hospital Care for Intentional Assault Gunshot Wounds Among
Residents of Cook County, Illinois, 2018–2020. Am. J. Public Health 2022, 112, 795–802. [CrossRef] [PubMed]

8. Huemer, M.; Mairpady Shambat, S.; Brugger, S.D.; Zinkernagel, A.S. Antibiotic resistance and persistence-Implications for human
health and treatment perspectives. EMBO Rep. 2020, 21, e51034. [CrossRef]

9. Eisenreich, W.; Rudel, T.; Heesemann, J.; Goebel, W. Link Between Antibiotic Persistence and Antibiotic Resistance in Bacterial
Pathogens. Front. Cell. Infect. Microbiol. 2022, 12, 900848. [CrossRef]

10. Rather, M.A.; Gupta, K.; Mandal, M. Microbial biofilm: Formation, architecture, antibiotic resistance, and control strategies. Braz.
J. Microbiol. 2021, 52, 1701–1718. [CrossRef]

11. Wencewicz, T.A. Crossroads of Antibiotic Resistance and Biosynthesis. J. Mol. Biol. 2019, 431, 3370–3399. [CrossRef]
12. Baquero, F. Threats of antibiotic resistance: An obliged reappraisal. Int. Microbiol. 2021, 24, 499–506. [CrossRef] [PubMed]
13. Abdelrazik, E.; El-Hadidi, M. Tracking Antibiotic Resistance from the Environment to Human Health. Methods Mol. Biol. 2023,

2649, 289–301. [CrossRef] [PubMed]
14. Bombaywala, S.; Mandpe, A.; Paliya, S.; Kumar, S. Antibiotic resistance in the environment: A critical insight on its occurrence,

fate, and eco-toxicity. Environ. Sci. Pollut. Res. 2021, 28, 24889–24916. [CrossRef]
15. Arabpour, Z.; Abedi, F.; Salehi, M.; Baharnoori, S.M.; Soleimani, M.; Djalilian, A.R. Hydrogel-Based Skin Regeneration. Int. J. Mol.

Sci. 2024, 25, 1982. [CrossRef]
16. Qi, L.; Zhang, C.; Wang, B.; Yin, J.; Yan, S. Progress in Hydrogels for Skin Wound Repair. Macromol. Biosci. 2022, 22, e2100475.

[CrossRef]
17. Kolimi, P.; Narala, S.; Nyavanandi, D.; Youssef, A.A.A.; Dudhipala, N. Innovative Treatment Strategies to Accelerate Wound

Healing: Trajectory and Recent Advancements. Cells 2022, 11, 2439. [CrossRef]
18. Kim, H.S.; Sun, X.; Lee, J.H.; Kim, H.W.; Fu, X.; Leong, K.W. Advanced drug delivery systems and artificial skin grafts for skin

wound healing. Adv. Drug Deliv. Rev. 2019, 146, 209–239. [CrossRef] [PubMed]
19. Guillamat-Prats, R. The Role of MSC in Wound Healing, Scarring and Regeneration. Cells 2021, 10, 1729. [CrossRef]
20. Mazini, L.; Rochette, L.; Admou, B.; Amal, S.; Malka, G. Hopes and Limits of Adipose-Derived Stem Cells (ADSCs) and

Mesenchymal Stem Cells (MSCs) in Wound Healing. Int. J. Mol. Sci. 2020, 21, 1306. [CrossRef]
21. Ding, J.Y.; Chen, M.J.; Wu, L.F.; Shu, G.F.; Fang, S.J.; Li, Z.Y.; Chu, X.R.; Li, X.K.; Wang, Z.G.; Ji, J.S. Mesenchymal stem cell-derived

extracellular vesicles in skin wound healing: Roles, opportunities and challenges. Mil. Med. Res. 2023, 10, 36. [CrossRef]
[PubMed]

22. Díaz-García, D.; Filipová, A.; Garza-Veloz, I.; Martinez-Fierro, M.L. A Beginner’s Introduction to Skin Stem Cells and Wound
Healing. Int. J. Mol. Sci. 2021, 22, 11030. [CrossRef] [PubMed]

23. Wang, W.; Lu, K.J.; Yu, C.H.; Huang, Q.L.; Du, Y.Z. Nano-drug delivery systems in wound treatment and skin regeneration. J.
Nanobiotechnology 2019, 17, 82. [CrossRef] [PubMed]

24. Bellu, E.; Medici, S.; Coradduzza, D.; Cruciani, S.; Amler, E.; Maioli, M. Nanomaterials in Skin Regeneration and Rejuvenation.
Int. J. Mol. Sci. 2021, 22, 7095. [CrossRef] [PubMed]

25. Qi, Y.; Yu, Z.; Hu, K.; Wang, D.; Zhou, T.; Rao, W. Rigid metal/liquid metal nanoparticles: Synthesis and application for locally
ablative therapy. Nanomedicine 2022, 42, 102535. [CrossRef] [PubMed]

26. Kuchur, O.A.; Tsymbal, S.A.; Shestovskaya, M.V.; Serov, N.S.; Dukhinova, M.S.; Shtil, A.A. Metal-derived nanoparticles in tumor
theranostics: Potential and limitations. J. Inorg. Biochem. 2020, 209, 111117. [CrossRef] [PubMed]
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