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Abstract: Using physical vapor deposition (PVD) technology, GeSe nanowires were successfully
fabricated by heating GeSe powder at temperatures of 500 ◦C, 530 ◦C, 560 ◦C, 590 ◦C, and 620 ◦C.
The microstructure, crystal morphology, and chemical composition of the resulting materials were
thoroughly analyzed employing methods like Scanning Electron Microscopy (SEM), X-ray Diffraction
(XRD), plus Raman Spectroscopy. Through a series of photoelectric performance tests, it was discov-
ered that the GeSe nanowires prepared at 560 ◦C exhibited superior properties. These nanowires not
only possessed high crystalline quality but also featured uniform diameters, demonstrating excellent
consistency. Under illumination at 780 nm, the GeSe nanowires prepared at this temperature showed
higher dark current, photocurrent, and photoresponsivity compared to samples prepared at other
temperatures. These results indicate that GeSe nanomaterials hold substantial potential in the field of
photodetection. Particularly in the visible light spectrum, GeSe nanomaterials exhibit outstanding
light absorption capabilities and photoresponse.

Keywords: two-dimensional materials; GeSe nanowires; physical vapor deposition; substrate;
photoelectric properties

1. Introduction

In the context of an increasingly severe global energy situation, exploring and de-
veloping sustainable energy sources and highly efficient photoelectric devices is not only
an inevitable trend in scientific and technological development but also key to meeting
future societal needs. Particularly in the field of new energy, research on new materials
with high-efficiency photoelectric conversion characteristics has become the frontier of
scientific exploration. Among various research directions, two-dimensional substances
have attracted significant interest from researchers globally and locally, owing to their
distinct physical and chemical traits and their expansive potential in applications such as
photoelectric conversion, sensors, and photocatalysis.

IV–VI Group Compounds, such as germanium selenide (GeSe), tin sulfide (SnS),
and tin selenide (SnSe) [1], have become research hotspots in recent years due to their
stable chemical properties, abundant availability, low cost, and non-toxic nature. Among
them, two-dimensional GeSe nanomaterials have attracted particular attention due to
their excellent photoelectric properties [2]. GeSe is a binary semiconductor material with
a density of 5.56 g/cm3. Its crystal structure is orthorhombic, belonging to the space
group Pnma 62, with lattice constants a = 1.084 nm, b = 0.383 nm, and c = 0.439 nm.
GeSe represents a standard layered compound; Ge and Se atoms link through robust
chemical bonds, whereas the layers unite via van der Waals forces. From a physicochemical
perspective, GeSe possesses a unique crystal structure, exhibiting significant anisotropy.
It has a molecular weight of 151.6 and a high melting point o 670 ◦C. Its direct bandgap
is approximately 1.16 eV [3], with a high absorption coefficient above 105 cm−1 [4], high
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carrier mobility (approximately 128.6 cm2V−1s−1), and a high dielectric constant (>15),
which can effectively shield the effects of charged defects [5]. Additionally, its good carrier
lifetime (approximately 9.9 ns [6]) and ease of sublimation [7] markedly augment its
prospective uses in the realm of photo electronics. As such, it has become a focal point
of research in photonic and infrared photodetection [8,9]. Therefore, in-depth research
into the preparation and photoelectric properties of GeSe nanomaterials is crucial for the
development of new generations of high-efficiency photoelectric devices.

In the discussion of the preparation techniques for GeSe materials, mechanical exfo-
liation, as a traditional and widely used method, involves the direct physical peeling of
materials to obtain layered structures. Due to its straightforward and convenient operation,
it played a significant role in the early research [10–12]. However, as research demands
deepen and application fields continue to expand, a series of limitations of mechanical
exfoliation in preparing GeSe have gradually emerged. These limitations primarily include
the uncontrollability of the thickness, size, and cleanliness of the exfoliated samples, which
significantly restrict the performance and reliability of the materials in precise scientific
research and practical applications [13].

In light of this, researchers have continually explored and experimented with new
synthesis methods in recent years to overcome the limitations of mechanical exfoliation,
successfully synthesizing GeSe materials through various innovative approaches. These new
methods aim to achieve higher sample quality and better controllability to accommodate
the in-depth study of the performance and application potential of GeSe. These synthesis
techniques encompass, though are not confined to, Physical Vapor Deposition (PVD) [14–16],
Chemical Vapor Deposition (CVD) [17–19], and the solvothermal method [20].

Although significant advancements have been made in the laboratory preparation
techniques for GeSe nanomaterials, in-depth studies on their preparation methods and
photoelectric properties remain insufficient. The preparation of high-quality GeSe nanoma-
terials and the precise evaluation of their photoelectric performance are not only crucial
for elucidating the mechanisms of their photoelectric responses but also foundational for
their widespread adoption in practical applications such as photoelectric devices. Physical
vapor deposition technology has the advantages of a simple process, no pollution, fewer
consumables, uniform and dense film formation, and a strong binding force with the matrix.
Therefore, the aim of this study is to prepare GeSe nanowires by physical vapor deposition
and to analyze the impact of various temperatures (500 ◦C, 530 ◦C, 560 ◦C, 590 ◦C, and
620 ◦C) on their morphology, X-ray Diffraction (XRD) patterns, and photoelectric properties
to explore their potential applications in the field of photoelectronics.

2. Results and Discussion
2.1. Structural Characterization

Figure 1a displays the X-ray diffraction (XRD) patterns of GeSe nanowires grown
at different temperatures. In the spectra, the two prominent peaks marked by circles at
32.18◦ and 33.24◦ correspond respectively to the (111) and (400) planes of the orthorhom-
bic phase of GeSe structure (according to JCPDS NO.48-1226, a = 10.84 Å, b = 3.834 Å,
c = 4.39 Å) [21]. The peaks marked with asterisks represent the characteristic diffraction
peaks of the substrate material–ceramic plates (Al2O3). Due to the high intensity of the
diffraction peaks from the ceramic substrate, the characteristic peaks of GeSe are relatively
weak. The analysis of the spectra reveals that as the heating temperature increases, the
intensities of the (111) and (400) planes’ diffraction peaks first significantly increase and
then decrease, indicating an initial improvement followed by a decline in the crystalline
quality of the GeSe nanowires. The diffraction peaks reach their relative maximum intensi-
ties at a temperature of 560 ◦C, suggesting the highest relative crystalline quality of GeSe
nanowires at this temperature. As the heating temperature continues to rise, the residual
stress between the GeSe crystal nuclei adsorbed on the Al2O3 substrate and the substrate
decreases, and the rate of GeSe growth along the energetically favorable direction of the
nuclei increases, thus reducing the internal defects and enhancing its crystallinity. However,
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when the temperature reaches 590 ◦C, the rapid growth rate of the GeSe nanowire array
leads to an increase in internal defects, resulting in decreased crystallinity. At 620 ◦C, the
growth leads to nucleation and subsequent merging of nuclei, causing more internal defects
and grain boundaries, thus further diminishing the crystallinity.
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Figure 1. (a) XRD patterns of GeSe nanowires grown at various temperatures. (b–f) Raman spectrum
of the GeSe nanowires grown at 500 ◦C, 530 ◦C, 560 ◦C, 590 ◦C, and 620 ◦C.

Figure 1b–f presents the Raman spectrum of GeSe nanowires grown at 500 ◦C, 530 ◦C,
560 ◦C, 590◦ C, and 620 ◦C. According to the symmetry principles of the D2h

16 group,
GeSe theoretically possesses 12 Raman active vibrational modes, including 4 Ag modes,
2 B1g modes, 4 B2g modes, and 2 B3g modes [22–24]. In the Raman spectrum shown in
Figure 1b–f, we successfully observed three main vibrational modes, located near 81 cm−1

(Ag3 mode), 150 cm−1 (B3g mode), and 188 cm−1 (Ag1 mode). These results are highly
consistent with previous research reports on the Raman peak positions of GeSe [25–27],
thereby confirming the structure and composition of the synthesized GeSe nanowires.

Figure 2 depicts scanning electron microscope (SEM) images of GeSe nanowires syn-
thesized at various temperatures. It is evident that under conditions of 500 ◦C (Figure 2a),
the grown GeSe nanowires exhibit relatively sparse distribution, accompanied by uneven
nanowire shapes, with some portions even revealing the underlying ceramic substrate.
GeSe nanowires prepared at 530 ◦C (Figure 2b) are comparatively denser in arrangement
yet display irregular features, featuring nanowires with varying diameters. In contrast,
GeSe nanowires grown at 560 ◦C (Figure 2c) exhibit a sparser distribution with uniform
diameters. Those synthesized at 590 ◦C (Figure 2d) are again relatively dense but with a
disorderly arrangement, showing nanowires with more consistent diameters. Lastly, GeSe
nanowires prepared at 620 ◦C (Figure 2e) display a granular structure.
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Figure 2. SEM images of GeSe nanowires grown at different temperatures: (a) 500 ◦C, (b) 530 ◦C,
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From the perspective of crystal growth, in the process of preparing GeSe nanowires
via physical vapor deposition (PVD)), the precursor GeSe evaporates and decomposes into
gas-phase molecular groups at high temperatures, subsequently reaching the surface of an
Al2O3 ceramic substrate through diffusion. Once the concentration reaches a critical value,
nucleation spontaneously occurs at lower-energy positions on the substrate surface. During
further growth, GeSe atoms initially adsorb onto the substrate surface, then preferentially
bond at the lower-energy sites of the nuclei, causing the nuclei to gradually enlarge. Eventu-
ally, GeSe nanowires are formed on the Al2O3 ceramic substrate. Additionally, temperature
also affects the adsorption and desorption processes of GeSe vapor on the substrate surface,
thereby influencing the growth rate of GeSe. When the reaction temperature is 500 ◦C, the
low concentration of vapor generated from the evaporation decomposition of GeSe powder
results in fewer adsorbed and nucleated microcrystals on the Al2O3 ceramic substrate sur-
face, leading to a lower density. During subsequent nucleation growth, GeSe grows slowly
along the lower-energy direction, resulting in sparse and unevenly sized GeSe nanowires.
However, at 530 ◦C, the increased concentration of vapor generated from the evaporation
decomposition of GeSe powder leads to a higher density of adsorbed and nucleated micro-
crystals on the substrate surface. During nucleation growth, the growth rate of GeSe along
the lower-energy direction increases, resulting in denser GeSe nanowires, albeit with un-
even diameters. As the temperature further increases to 560 ◦C, the vapor generated from
the evaporation decomposition of GeSe powder continues to increase in quantity, further
raising the concentration. However, due to the excessively high temperature of the Al2O3
ceramic substrate surface, the probability of desorption of GeSe increases, resulting in a
reduction in the number of nucleated microcrystals. During subsequent nucleation growth,
the growth rate of GeSe along the lower-energy direction increases, leading to a decrease
in the density of the GeSe nanowire array and a tendency towards uniform diameters.
When the temperature continues to rise to 590 ◦C, the quantity of vapor generated from
the evaporation decomposition of GeSe powder further increases, and the concentration
continues to rise. However, with the increase in GeSe vapor concentration, desorbed GeSe
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molecular clusters rebound to the substrate surface after collisions and tend to re-adsorb at
nucleation sites with stronger binding, resulting in a continued increase in the number and
density of nucleated microcrystals on the substrate surface. During subsequent nucleation
growth, the excessively rapid growth rate of GeSe along the lower-energy direction results
in denser and irregularly shaped GeSe nanowires. When the temperature continues to rise
to 620 ◦C, the quantity of vapor generated from the evaporation decomposition of GeSe
powder becomes extremely large, with a very high concentration. The number of nucleated
microcrystals rapidly increases on the surface of the Al2O3 ceramic substrate, resulting in
very high density. During subsequent nucleation growth, the nuclei merge with each other,
and smaller nuclei gradually disappear due to the reduction in surface free energy, leading
to a rapid growth of GeSe crystals. Ultimately, irregularly shaped GeSe nanowires with
larger dimensions are obtained [28].

Through SEM-EDS and mapping analysis of GeSe nanowires prepared under condi-
tions of 560 ◦C, we have obtained the elemental composition and distribution characteristics
on the surface of the nanowires, as illustrated in Figure 3. The analysis reveals that the
atomic percentages of germanium (Ge) and selenium (Se) in the sample are 47.43% and
43.06%, respectively. Additionally, traces of oxygen (O) and carbon (C) elements were
detected, accounting for 6.17% and 3.34% of the composition, respectively. It is noteworthy
that the atomic ratio of Ge to Se elements is close to 1:1, indicating a relatively balanced
stoichiometry of GeSe nanowires. The detected oxygen and carbon elements are likely
derived from air contamination or substrate materials, as no other foreign elements were
found in the analysis of the sample.
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Figure 3. (a) SEM (b) C mapping (c) O mapping (d) Ge mapping (e) Se mapping (f) EDS (The inner
illustration is the element distribution) of GeSe nanowires grown at 560 ◦C.

Observation of the elemental distribution in the mapping images reveals that the
distribution of germanium (Ge) and selenium (Se) elements in the sample is remarkably
uniform and closely packed. This further confirms the uniformity and high purity of
the synthesized nanowires. This result is consistent with the conclusions obtained from
previous X-ray diffraction (XRD) and Raman spectroscopy analyses, all indicating that the
obtained sample consists of high-quality GeSe nanowires.

In order to thoroughly investigate the chemical composition of the prepared germa-
nium selenide (GeSe) nanosheets, this study employed X-ray photoelectron spectroscopy
(XPS) to perform detailed characterization of the samples. The XPS spectra analysis re-
sults are shown in Figure 4. Figure 4a displays the XPS spectrum of Ge3d, revealing two
prominent peaks located at approximately 29.95 eV and 32.28 eV, corresponding to the
energy levels of Ge3d3/2 and Ge3d5/2 electron orbitals in the GeSe molecule, respectively.
Furthermore, Figure 4b illustrates the XPS spectrum of Se3d, where two characteristic
peaks are observed around 53.65 eV and 54.45 eV, representing the energy levels of Se3d3/2
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and Se3d5/2 electron orbitals, respectively. By performing a fitting analysis of the binding
energies of Ge and Se, the obtained results closely match the standard binding energy data
reported in the literature for GeSe [29,30], confirming the high purity of the sample as GeSe,
with no presence of any oxidation states observed in the sample.
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The optical properties of GeSe nanowires were characterized by UV-Vis-NIR spec-
troscopy. The absorbance begins to decline sharply at about 450 nm and gradually decreases
at 1050 nm (Figure 5a), indicating that GeSe nanowires have good light absorption potential.
The band gap width of GeSe nanowires can be calculated by Tauc’s equation [31], which is
shown as follows:

(ahv)2 = A (hv − Eg)

where a, h, v and A are absorption coefficient, Planck constant, photon frequency and
constant respectively, and the linear fitting line with the X-axis gives a direct band-gap of
1.69 eV (Figure 5b), which is in good agreement with the previously reported results [11].
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2.2. Computational Analysis

In this study, first-principles calculations were employed to systematically analyze
monolayer GeSe, obtaining its band structure, partial density of states (PDOS), and optical
absorption properties. The top and side views of the monolayer GeSe model are depicted
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in Figure 6a. By calculating the electronic band structure of single-layer GeSe using the
GGA method, we predict that the possible direct transitions come from the direct band
gaps of 1.168 and 1.702 in the Gamma-F and F-K directions, which are located in the
visible and near-infrared spectral ranges around 737 nm and 1034 nm, respectively, as
shown in Figure 6b. This characteristic renders GeSe highly promising for applications
in photodetection.
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In further analysis, Figure 6c illustrates the partial density of states (PDOS) of GeSe,
revealing that the peaks near the Fermi level associated with P orbitals are significantly
higher than those of S orbitals, indicating the dominant role of P orbitals in the electronic
structure. Additionally, as shown in Figure 6d, theoretical calculations of optical absorption
for monolayer GeSe cover a broad spectral range from ultraviolet to visible and even near-
infrared regions. Particularly in the visible light region, the absorption intensity exceeds
the magnitude of 105. These computational results not only demonstrate the excellent
performance of GeSe materials in broad-spectrum light absorption but also anticipate their
vast potential applications in fields such as photodetection.

2.3. Photoelectric Performance Analysis

In order to investigate the photoresponse performance of GeSe photodetector devices
under different wavelengths of light, the results obtained under laser irradiation at seven
different wavelengths of 365 nm, 425 nm, 470 nm, 515 nm, 635 nm, 780 nm, and 1200 nm
were compared with the calculated optical absorption spectra as references. The obtained
results, as shown in Figure 7, indicate a good linear relationship between the current (I)
and voltage (V), suggesting ohmic contact between the Ag metal and GeSe semiconduc-
tor [32,33]. Additionally, the photoelectric current generated by the constructed GeSe photo
detector devices under different light sources exceeds their dark current, indicating respon-
siveness to various light sources. However, as the wavelength of the light source increases,
the photoelectric current response of the GeSe photodetector devices initially increases and
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then decreases. The best photoelectric current response of the GeSe photodetector device is
observed when the light source wavelength is 780 nm.
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In order to investigate the photoresponse of GeSe photodetector devices prepared
at different temperatures under 780 nm wavelength light, their I-V curves, I-T curves,
and response times are shown in Figure 8. From Figure 8 a1–e1, it can be observed that
the dark current and voltage of the prepared GeSe photodetector devices exhibit a linear
relationship, demonstrating good ohmic characteristics. Under illumination with 780 nm
light, the photoelectric current of the prepared GeSe photodetector devices increases with
increasing voltage, indicating a significant photoelectric response. Figure 8 a2–e2 displays
the response characteristics of the different GeSe photodetector devices under a bias voltage
of 5 V, with the current responding to the switching of light illumination over time.

R = (Iph − Id)/(P0A), where R signifies the photoresponsivity, indicative of the photo-
electric current generated per unit power of incident light at a designated wavelength across
the device area [34,35]. In this context, Iph represents the photocurrent under laser exposure,
Id denotes the dark current, A is the illuminated region of the GeSe device microstructure
(−0.01 cm2), and P0 is the optical power density, recorded at 9.94 mW/cm2 [36,37]. The
dark currents of different GeSe photodetector devices prepared at 500 ◦C, 530 ◦C, 560 ◦C,
590 ◦C, and 620 ◦C are 0.350 nA, 47.5 nA, 53.45 nA, 10.15 nA, and 0.232 nA, respectively.
The photocurrents are 0.86 nA, 164.16 nA, 230.08 nA, 49.35 nA, and 0.627 nA, respectively.
The sensitivity of the photodetector prepared at 560 ◦C and 590 ◦C is 4.3 and 4.86 respec-
tively, which is better than the parameters of 2.59, 2.63 and 3.45 in the literature [33]. By
calculation, the photoresponsivities of the photodetector prepared at 530 ◦C, 560 ◦C and
590 ◦C are determined as 11.74, 17.77, 3.94 (×10−4 A/W), respectively. All of them are
higher than the response of 43.6–76.3 µA/W in reference [34].

When the temperature is 500 ◦C, the prepared GeSenanowires material is relatively
sparse and does not completely cover the entire substrate surface, resulting in small dark
and photocurrents, thus yielding a lower responsivity of the device. In our designed
optoelectronic test system, the GeSe nanobelt device forms a “conductive network” where
all individual nanowires contact each other for charge carrier transport, as shown in Figure 9.
For a given area of the conductive network, the high density of the nanowires arrangement
increases the direct contact area between nanowires, resulting in an increase in interface
states and potential barriers and consequently lowering the dark current due to poor crystal
quality. Conversely, a low nanobelt density reduces the contact area within the conductive
network, resulting in fewer interface states and potential barriers, and thus increasing
the dark current due to better crystal quality. Under illumination, the dense nanobelt
arrangement with poor crystal quality impedes the transfer of photo-generated charge
carriers through the lattice and interfaces, resulting in a smaller photocurrent. Conversely,
a sparse nanobelt arrangement with better crystal quality facilitates the transfer of photo-
generated charge carriers through the lattice and interfaces, leading to a larger photocurrent.
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the figure marks the rising period, and the green arrow in the figure (g) marks the falling period
respectively, of GeSe nanowires grown at 560 ◦C under 780 nm light.
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Compared to GeSe nanowires heated at 530 and 590 ◦C, those heated at 560 ◦C exhibit
a relatively sparse arrangement with better crystal quality, resulting in a reduction in
interface states and potential barriers within the conductive network, thereby yielding
the highest dark current. Under illumination with 780 nm light, the GeSe nanowires with
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better crystal quality allow rapid migration of photo-generated charge carriers through the
lattice and fewer migrations between nanorods, resulting in the highest photocurrent and,
consequently, the highest responsivity of the photodetector device. Conversely, samples
prepared under heating conditions of 620 ◦C consist of large irregular GeSe particles with
poor crystal quality, leading to smaller dark and photocurrents and, consequently, relatively
lower responsivity.

Figure 8f,g illustrates the light response of the device under 780 nm illumination
(LPD = 9.94 mW/cm2). The rise time of the light response (τr) is characterized as the
duration for the photocurrent to ascend from 10% to 90%, while the fall time (τf) is the
period for the photocurrent to decline from 90% to 10%. The GeSe photodetector device
manifests a rise time of 142 ms and a fall time of 939 ms at a 780 nm wavelength, indicating
a stable and swift response. The rise time is lower than the times of 200 ms, 280 ms, and
150 ms in reference [4,13,38].

3. Experimental Section and Theoretical Calculations
3.1. Synthesis of Nanowires

GeSe nanowires were successfully synthesized using the Physical Vapor Deposition
(PVD) method, as depicted in Figure 10. The procedure commenced with the precise
weighing of 25 mg of GeSe powder (160 mesh, 99.99% purity, supplied by Jiangxi Ketai
New Materials Co., Ltd., Nanchang, China) placed in a 10 cm quartz boat at the center
of a quartz tube. A ceramic piece, measuring 5 mm by 10 mm by 0.5 mm, was selected
as the substrate for the experiment. Prior to the deposition of the GeSe film, the ceramic
substrate was subjected to cleaning with a mixture of ethanol and acetone under ultrasonic
agitation for approximately 30 min. After cleaning, the substrate is located downstream
of the heating zone at a horizontal distance of 26 cm from the center of the GeSe powder
source, and the vertical distance between the substrate and the bottom of the quartz tube is
about 4 cm.
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Figure 10. Schematic of the PVD process for synthesizing GeSe nanowires.

To thoroughly eliminate any air from the system, the interior of the quartz tube was
evacuated using a vacuum pump. Subsequently, the tube was flushed with argon gas (Ar)
at a flow rate of 450 sccm for 10 min, with the gas flow precisely controlled by a mass flow
controller. Next, the temperature of the heating zone was adjusted to various set points
(500 ◦C, 530 ◦C, 560 ◦C, 590 ◦C, and 620 ◦C) and maintained for 70 min at each temperature.
Concurrently, the argon gas flow was adjusted to 190 sccm to guide the gas into the reaction
tube. Once the reaction concluded, the apparatus naturally settled to ambient temperature.
The ceramic substrate was then removed, revealing a uniformly grown black film on its
surface. Most of the GeSe precursor powder in the quartz boat had reacted, leaving only a
small amount of silvery-gray residue.

3.2. Fabrication of Ag Electrodes

The silver electrodes were prepared using a dotting technique. Specifically, a toothpick
was used to dip into type 3701 silver paste, which was then evenly applied to the surface of
the pre-prepared GeSe nanowires. The distance between the two electrodes was maintained
at approximately 1 mm, ensuring an effective contact area of 0.01 cm2.
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3.3. Characterization and Testing

The crystal structure of the samples was extensively analyzed using X-ray Powder
Diffraction (XRD) to determine their phase composition. Additionally, the molecular vibra-
tion modes of the samples were investigated using a Raman spectrometer with an excitation
wavelength of 532 nm, further verifying their structural information. Scanning Electron Mi-
croscopy (SEM) was utilized to examine the surface morphology and microstructure of the
substances. X-ray Photoelectron Spectroscopy (XPS) was applied to analyze the chemical
composition and electronic states on the surfaces of the materials. Simultaneously, Energy
Dispersive X-ray Spectroscopy (EDS) served as a complementary technique, providing
qualitative and quantitative information on the distribution and content of elements within
the materials.

3.4. Performance Testing of Photodetectors

In this study, a Keysight B2901A (Shenzhen Zhongrui Yike Electronics Co., Ltd.,
Shenzhen, China) source meter was utilized as an external power source to measure the
photoelectric performance of GeSe nanowires under various conditions. The experiment
employed lasers of seven different wavelengths: 365 nm, 425 nm, 470 nm, 515 nm, 635 nm,
780 nm, and 1200 nm, to conduct detailed testing and analysis on GeSe samples prepared at
different temperatures (500 ◦C, 530 ◦C, 560 ◦C, 590 ◦C, and 620 ◦C). A DHC GCI-7103M-B
shutter (Daheng New Era Technology Co., LTD., Beijing, China) was used to switch the
on/off states to determine the time response characteristics of the device.

Numerous calculations were performed with the CASTEP component in the Materials
Studio [39,40], targeting precise simulations of the electronic structure and traits of mono-
layer GeSe. These calculations utilized the plane-wave pseudopotential technique, where
the exchange-correlation energy was handled via the generalized gradient approximation
(GGA) following the Perdew–Burke–Ernzerhof (PBE) approach. To ensure computational
precision, an energy cutoff of 450 eV was set. The initial step of the study involved con-
structing the primitive cell model of a monolayer GeSe and performing detailed geometric
optimization. The optimization results indicated that the lattice parameters of the resulting
monolayer GeSe structure were a = 4.00 Å and b = 4.22 Å, aligning with existing literature
reports [41,42], thus confirming the reliability of the computational model. Subsequently,
by expanding the optimized primitive cell in-plane, a 3 × 3 × 1 supercell model was con-
structed, comprising 18 germanium (Ge) and 18 selenium (Se) atoms. To eliminate interlayer
interactions that could arise during simulations, a vacuum layer of 20 Å was specifically
implemented in the vertical direction of the monolayer GeSe model. In these calculations,
the convergence criteria for atomic energies and forces were set to 1.0 × 10−5 eV/atom
and 0.03 eV/Å, respectively, ensuring rigor in the computational process and precision in
the results.

4. Summary

In summary, utilizing the physical vapor deposition (PVD) method, GeSe nanowires
were successfully synthesized by heating GeSe powder at temperatures of 500 ◦C, 530 ◦C,
560 ◦C, 590 ◦C, and 620 ◦C. Through a series of optoelectronic performance tests, it was
found that GeSe nanowires prepared at 560 ◦C exhibited outstanding performance under
780 nm light irradiation. These nanowires demonstrated high crystalline quality, uniform
diameter, and significant dark current, photocurrent, and responsivity. These results
underscore the significant potential of GeSe nanomaterials in the field of optoelectronic
detection. Particularly in the visible light spectrum, the GeSe nanowires array displayed
excellent light absorption capability and photo response, indicating its ability to rapidly
convert external light signals into electrical output signals. These characteristics position
GeSe nanomaterials with broad prospects in the field of optoelectronic detector devices.
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