AgIn5S8/g-C3N4 Composite Photocatalyst Coupled with Low-Temperature Plasma-Enhanced Degradation of Hydroxypropyl-Guar-Simulated Oilfield Wastewater
Abstract
:1. Introduction
2. Results and Discussion
2.1. Photocatalytic Activity of AgIn5S8/g-C3N4 for Hydroxypropyl-Guar Wastewater
2.2. Treatment of Hydroxypropyl-Guar Wastewater by DBD–LTP
2.3. Treatment of Hydroxypropyl-Guar Wastewater by DBD–LTP Coupled with AgIn5S8/g-C3N4
2.4. Detection of Active Substances in the Liquid Phase
2.5. Effect of DBD Discharge on AgIn5S8/g-C3N4
3. Materials and Methods
3.1. Materials
3.2. DBD–LTP System
3.3. Preparation of AgIn5S8/g-C3N4
3.4. Photocatalytic Activity and Mechanism of AgIn5S8/g-C3N4
3.5. Treatment of Hydroxypropyl-Guar Wastewater by DBD–LTP
3.6. Treatment of Hydroxypropyl-Guar Wastewater by DBD–LTP Coupled with AgIn5S8/g-C3N4
3.7. Detection of Active Substances in the Liquid Phase of DBD–LTP Sysytem
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Zhang, J.; Xiao, C. Experimental Investigation of Seepage Mechanism on Oil-Water Two-Phase Displacement in Fractured Tight Reservoir. Geofluids 2022, 2022, 1–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, R.; Yang, W.; Tian, Y.; Shi, Z.; Sheng, C.; Song, Y.; Du, H. Effect of temporary plugging agent concentration and fracturing fluid infiltration on initiation and propagation of hydraulic fractures in analogue tight sandstones. J. Petrol. Sci. Eng. 2022, 210, 110060. [Google Scholar] [CrossRef]
- Zhou, M.; Yang, X.; Gao, Z.; Wu, X.; Li, L.; Guo, X.; Yang, Y. Preparation and performance evaluation of nanoparticle modified clean fracturing fluid. Colloids Surf. A 2022, 636, 128117. [Google Scholar] [CrossRef]
- Aghababaei, M.; Luek, J.L.; Ziemkiewicz, P.F.; Mouser, P.J. Toxicity of hydraulic fracturing wastewater from black shale natural-gas wells influenced by well maturity and chemical additives. Environ. Sci. Proc. Impact 2021, 23, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wang, K.; Luo, M.; Bu, T.; Yuan, X.; Du, G.; Wu, H. Treatment and recycling of acidic fracturing flowback fluid. Environ. Technol. 2021, 43, 2310–2318. [Google Scholar] [CrossRef] [PubMed]
- Sitterley, K.A.; Silverstein, J.; Rosenblum, J.; Linden, K.G. Aerobic biological degradation of organic matter and fracturing fluid additives in high salinity hydraulic fracturing wastewaters. Sci. Total Environ. 2021, 758, 143622. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Gao, C.; Chen, T.; Xie, Y.; Wang, X. Treatment of fracturing wastewater by anaerobic granular sludge: The short-term effect of salinity and its mechanism. Bioresour. Technol. 2022, 345, 126538. [Google Scholar] [CrossRef] [PubMed]
- Ge, D. Combined treatment of organic material in oilfield fracturing wastewater by coagulation and UV/H2O2/ferrioxalate complexes process. Water Sci. Technol. 2018, 77, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. Combined treatment of hydroxypropyl guar gum in oilfield fracturing wastewater by coagulation and the UV/H2O2/ferrioxalate complexes process. Water Sci. Technol. 2018, 77, 565–575. [Google Scholar] [CrossRef]
- Hasanzadeh, R.; Souraki, B.A.; Pendashteh, A.; Khayati, G.; Ahmadun, F.l.-R. Application of isolated halophilic microorganisms suspended and immobilized on walnut shell as biocarrier for treatment of oilfield produced water. J. Hazard. Mater. 2020, 400, 123197. [Google Scholar] [CrossRef]
- Amakiri, K.T.; Canon, A.R.; Molinari, M.; Angelis-Dimakis, A. Review of oilfield produced water treatment technologies. Chemosphere 2022, 298, 134064. [Google Scholar] [CrossRef] [PubMed]
- Samuel, O.; Othman, M.H.D.; Kamaludin, R.; Sinsamphanh, O.; Abdullah, H.; Puteh, M.H.; Kurniawan, T.A.; Li, T.; Ismail, A.F.; Rahman, M.A.; et al. Oilfield-produced water treatment using conventional and membrane-based technologies for beneficial reuse: A critical review. J. Environ. Manag. 2022, 308, 114556. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Wang, G.; Ma, C.; Li, J.; Cheng, S.; Yang, C.; Chen, L. Effects of pollutants in alkali/surfactant/polymer (ASP) flooding oilfield wastewater on membrane fouling in direct contact membrane distillation by response surface methodology. Chemosphere 2021, 282, 131130. [Google Scholar] [CrossRef] [PubMed]
- George, A.; Raj, A.D.; Irudayaraj, A.A.; Josephine, R.L.; Venci, X.; Sundaram, S.J.; Rajakrishnan, R.; Kuppusamy, P.; Kaviyarasu, K. Regeneration study of MB in recycling runs over nickel vanadium oxide by solvent extraction for photocatalytic performance for wastewater treatments. Environ. Res. 2022, 211, 112970. [Google Scholar] [CrossRef] [PubMed]
- Oluwole, A.O.; Olatunji, O.S. Photocatalytic degradation of tetracycline in aqueous systems under visible light irridiation using needle-like SnO2 nanoparticles anchored on exfoliated g-C3N4. Environ. Sci. Eur. 2022, 34, 5. [Google Scholar] [CrossRef]
- Zhu, C.; Li, Y.; Zhang, Y.; Liu, J.; Hao, X.-q.; Song, M.-P. Visible light photocatalytic reduction of Cr (VI) over polyimide in the presence of small molecule carboxylic acids. Colloids Surf. A 2022, 642, 128657. [Google Scholar] [CrossRef]
- Sivasankaran, R.; Rockstroh, N.; Hollmann, D.; Kreyenschulte, C.; Agostini, G.; Lund, H.; Acharjya, A.; Rabeah, J.; Bentrup, U.; Junge, H. Relations between Structure, Activity and Stability in C3N4 Based Photocatalysts Used for Solar Hydrogen Production. Catalysts 2018, 8, 52. [Google Scholar] [CrossRef]
- Yang, Y.; Mao, B.; Gong, G.; Li, D.; Liu, Y.; Cao, W.; Xing, L.; Zeng, J.; Shi, W.; Yuan, S. In-situ growth of Zn–AgIn5S8 quantum dots on g-C3N4 towards 0D/2D heterostructured photocatalysts with enhanced hydrogen production. Int. J. Hydrogen Energy 2019, 44, 15882. [Google Scholar] [CrossRef]
- Li, X.; Yang, B.; Xu, C.; Liu, J.; Lu, W.; Khan, S.; Feng, L. Construction of AgIn5S8/gC(3)N(4) composite and its enhanced photocatalytic hydrogen production and degradation of organic pollutants under visible light irradiation. J. Mater. Sci.-Mater. Electron. 2019, 30, 16195–16206. [Google Scholar] [CrossRef]
- Fendrich, M.; Bajpai, O.; Edla, R.; Molinari, A.; Ragonese, P.; Maurizio, C.; Orlandi, M.; Miotello, A. Towards the Development of a Z-Scheme FeOx/g-C3N4 Thin Film and Perspectives for Ciprofloxacin Visible Light-Driven Photocatalytic Degradation. Appl. Sci. 2023, 13, 10591. [Google Scholar] [CrossRef]
- Cheng, Y.; Cao, T.; Xiao, Z.; Zhu, H.; Yu, M. Photocatalytic Treatment of Methyl Orange Dye Wastewater by Porous Floating Ceramsite Loaded with Cuprous Oxide. Coatings 2022, 12, 286. [Google Scholar] [CrossRef]
- Liu, H.; Chen, H.; Ding, N. Visible Light-Based Ag3PO4/g-C3N4@MoS2 for Highly Efficient Degradation of 2-Amino-4-acetylaminoanisole (AMA) from Printing and Dyeing Wastewater. Int. J. Environ. Res. Pub. Health 2022, 19, 2934. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Li, C.; He, W.; Hong, W.; Zhu, H.; Liu, G.; Yu, Y.; Lei, C. Preparation of MOF-derived C-ZnO/PVDF composites membrane for the degradation of methylene blue under UV-light irradiation. J. Alloys Compd. 2022, 894, 162559. [Google Scholar] [CrossRef]
- Lin, Z.; Li, J.; Shen, W.; Corriou, J.P.; Chen, X.; Xi, H. Different photocatalytic levels of organics in papermaking wastewater by flocculation-photocatalysis and SBR-photocatalysis: Degradation and GC?MS experiments, adsorption and photocatalysis simulations. Chem Eng. J. 2021, 41, 128715. [Google Scholar] [CrossRef]
- Peng, Y.; Ye, G.; Du, Y.; Zeng, L.; Hao, J.; Wang, S.; Zhou, J. Fe3O4 hollow nanospheres on graphene oxide as an efficient heterogeneous photo-Fenton catalyst for the advanced treatment of biotreated papermaking effluent. Environ. Sci. Pollut. R. 2021, 28, 39199–39209. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Cheng, H.; Liang, Y.; Xiong, J.; Zhu, H.; Wang, S.; Liang, J.; Chen, G. Preparation of TiO2/Sponge Composite for Photocatalytic Degradation of 2,4,6-Trichlorophenol. Water Air Soil Poll. 2020, 231, 412. [Google Scholar] [CrossRef]
- He, H.; Zhang, T.C.; Ouyang, L.; Yuan, S. Superwetting and photocatalytic Ag2O/TiO2@CuC2O4 nanocomposite-coated mesh membranes for oil/water separation and soluble dye removal. Mater. Today Chem. 2022, 23, 100717. [Google Scholar] [CrossRef]
- Li, H.; Wu, L.; Zhang, H.; Yu, F.; Peng, L. Mussel-inspired fabrication of superhydrophobic cellulose-based paper for the integration of excellent antibacterial activity, effective oil/water separation and photocatalytic degradation. Colloids Surf. A 2022, 640, 128490. [Google Scholar] [CrossRef]
- Xiang, X.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Mil-53(Fe)-loaded polyacrylonitrile membrane with superamphiphilicity and double hydrophobicity for effective emulsion separation and photocatalytic dye degradation. Sep. Purif. Technol. 2022, 282, 119910. [Google Scholar] [CrossRef]
- Fan, J.; Wu, H.; Liu, R.; Meng, L.; Sun, Y. Review on the treatment of organic wastewater by discharge plasma combined with oxidants and catalysts. Environ. Sci. Pollut. R 2021, 28, 2522–2548. [Google Scholar] [CrossRef]
- Yi, R.; Yi, C.; Du, D.; Zhang, Q.; Yu, H.; Yang, L. Research on quinoline degradation in drinking water by a large volume strong ionization dielectric barrier discharge reaction system. Plasma Sci. Technol. 2021, 23, 085505. [Google Scholar] [CrossRef]
- Zong, P.; Cheng, Y.; Wang, S.; Wang, L. Simultaneous removal of Cd (II) and phenol pollutions through magnetic graphene oxide nanocomposites coated polyaniline using low temperature plasma technique. Int. J. Hydrogen Energ. 2020, 45, 20106–20119. [Google Scholar] [CrossRef]
- Mu, X.; Wang, X.; Zhang, Y.; Liu, B.; Yang, J. Major products and their formation and transformation mechanism through degrading UDMH wastewater via DBD low temperature plasma. Environ. Technol. 2021, 42, 2709–2720. [Google Scholar] [CrossRef] [PubMed]
- Bethi, B.; Radhika, G.B.; Thang, L.M.; Sonawane, S.H.; Boczkaj, G. Photocatalytic decolourization of Rhodamine-B dye by visible light active ZIF-8/BiFeO3 composite. Environ. Sci. Pollut. R. 2022, 30, 25532–25545. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huo, H.; Chen, W.; Li, H.; Gao, L.; Yi, S. Efficient photocatalytic degradation of tetracycline under visible light by AgCl/Bi12O15Cl6/g-C3N4 with a dual electron transfer mechanism. Colloids Surf. A 2022, 638, 128227. [Google Scholar] [CrossRef]
- Wang, G.; Li, Y.; Dai, J.; Deng, N. Highly efficient photocatalytic oxidation of antibiotic ciprofloxacin using TiO2@g-C3N4@biochar composite. Environ. Sci. Pollut. R 2022, 29, 48522–48538. [Google Scholar] [CrossRef] [PubMed]
- Motamedi, M.; Yerushalmi, L.; Haghighat, F.; Chen, Z. Recent developments in photocatalysis of industrial effluents: A review and example of phenolic compounds degradation. Chemosphere 2022, 296, 133688. [Google Scholar] [CrossRef] [PubMed]
- Tu, W.; Liu, Y.; Chen, M.; Zhou, Y.; Xie, Z.; Ma, L.; Li, L.; Yang, B. Carbon nitride coupled with Ti3C2-Mxene derived amorphous Ti-peroxo heterojunction for photocatalytic degradation of rhodamine B and tetracycline. Colloids Surf. A 2022, 640, 128448. [Google Scholar] [CrossRef]
- Jiang, L.; Yuan, X.; Pan, Y.; Liang, J.; Zeng, G.; Wu, Z.; Wang, H. Doping of graphitic carbon nitride for photocatalysis: A reveiw. Appl. Catal. B Environ. 2017, 217, 388–406. [Google Scholar] [CrossRef]
- Solis-Fernandez, P.; Paredes, J.; Cosio, A.; Martinez-Alonso, A.; Tascon, J. A comparison between physically and chemically driven etching in the oxidation of graphite surfaces. J. Colloid. Interf. Sci. 2010, 344, 451–459. [Google Scholar] [CrossRef]
Reagents | Molecular Formula | CAS | Purity Grade |
---|---|---|---|
Melamine | C3H6N6 | 108-78-1 | AR |
Dilute nitric acid ① | HNO3 | 7697-37-2 | AR |
Silver nitrate | AgNO3 | 7761-88-8 | AR |
Indium nitrate | In(NO3)3·4H2O | 13770-61-1 | AR |
Ethylene glycol | (CH2OH)2 | 107-21-1 | AR |
Thioacetamide | CH3CSNH2 | 62-55-5 | AR |
Ethyl Alcohol | CH3CH2OH | 64-17-5 | AR |
Hydroxypropyl guar | C3H8O2·x | 39421-75-5 | AR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhang, Y.; Wang, Y.; Zhu, L.; Liu, Y.; Wang, L. AgIn5S8/g-C3N4 Composite Photocatalyst Coupled with Low-Temperature Plasma-Enhanced Degradation of Hydroxypropyl-Guar-Simulated Oilfield Wastewater. Molecules 2024, 29, 2862. https://doi.org/10.3390/molecules29122862
Li X, Zhang Y, Wang Y, Zhu L, Liu Y, Wang L. AgIn5S8/g-C3N4 Composite Photocatalyst Coupled with Low-Temperature Plasma-Enhanced Degradation of Hydroxypropyl-Guar-Simulated Oilfield Wastewater. Molecules. 2024; 29(12):2862. https://doi.org/10.3390/molecules29122862
Chicago/Turabian StyleLi, Xiang, Yuhang Zhang, Yiling Wang, Li Zhu, Yuhang Liu, and Lingxing Wang. 2024. "AgIn5S8/g-C3N4 Composite Photocatalyst Coupled with Low-Temperature Plasma-Enhanced Degradation of Hydroxypropyl-Guar-Simulated Oilfield Wastewater" Molecules 29, no. 12: 2862. https://doi.org/10.3390/molecules29122862
APA StyleLi, X., Zhang, Y., Wang, Y., Zhu, L., Liu, Y., & Wang, L. (2024). AgIn5S8/g-C3N4 Composite Photocatalyst Coupled with Low-Temperature Plasma-Enhanced Degradation of Hydroxypropyl-Guar-Simulated Oilfield Wastewater. Molecules, 29(12), 2862. https://doi.org/10.3390/molecules29122862