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Abstract: The direct 1,6-nucleophilic difluoromethylation, trifluoromethylation, and difluoroalky-
lation of para-quinone methides (p-QMs) with Me3SiRf (Rf = CF2H, CF3, CF2CF3, CF2COOEt, and
CF2SPh) under mild conditions are described. Although Me3SiCF2H shows lower reactivity than
Me3SiCF3, it can react with p-QMs promoted by CsF/18-Crown-6 to give structurally diverse difluo-
romethyl products in good yields. The products can then be further converted into fluoroalkylated
para-quinone methides and α-fluoroalkylated diarylmethanes.
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1. Introduction

Organofluorine compounds have been widely applied in various fields, including
pharmaceuticals, agrochemicals, materials, surfactants, and catalysis, thanks to the unique
properties of fluorine [1–9]. The incorporation of fluorine atoms or fluorinated moieties
is recognized for its ability to significantly enhance the metabolic stability, lipophilicity,
and binding properties of bioactive organic molecules [10–13]. Among the various fluori-
nated moieties, the di- and trifluoromethyl groups have garnered considerable attention
due to their utilization in numerous drugs and pesticides, such as efavirenz (HIV-RT
inhibitor), mefloquine (antimalarial), eflornithine (ODC inhibitor), roflumilast (drug for
COPD), fluxapyroxad (fungicide), and thiazopyr (herbicide) [3,14–17]. Consequently, de-
veloping new methods for the efficient introduction of di- and trifluoromethyl groups into
organic molecules holds significant synthetic interest.

Nucleophilic fluoroalkylation has proven to be a convenient method for prepar-
ing fluorinated compounds [18–21]. Among the various nucleophilic fluoroalkylating
agents, Ruppert–Prakash reagent (Me3SiCF3) is the most popular trifluoromethylating
agent, widely employed for direct nucleophilic trifluoromethylation of aldehyde, ketone,
imine, ester, and amide substrates, etc. [22,23]. However, compared with Me3SiCF3, the
silane reagent Me3SiCF2H exhibits lower reactivity due to the relatively weak electron-
withdrawing ability of the CF2H group, which makes cleavage of the Si-CF2H bond more
difficult than that of the Si-CF3 bond [24]. Therefore, the synthetic application of Me3SiCF2H
in nucleophilic difluoromethylation has been largely retarded [25–36].

In 2011, our group first demonstrated the effectiveness of utilizing Me3SiCF2H in
nucleophilic difluoromethylation activated by CsF or tBuOK under mild conditions [25].
This discovery made people realize that Me3SiCF2H could be used as an efficient difluo-
romethylation reagent. Subsequently, in 2016, our group conducted in-depth research on
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the 1,2-addition of Me3SiCF2H to enolizable ketones. We found that CsF/18-crown-6 acts
as an initiation system to produce a pentavalent silicon reactive intermediate [(18-crown-
6)Cs]+[(CH3)3Si(CF2H)2]−, which serves as a temporary reservoir for the difluoromethyl
anion, playing a pivotal role in the success of the difluoromethylation in enolizable ke-
tones [37]. In recent years, other strong basic initiators, such as tBu-P4 and t-AmOK, among
others, have been developed for various difluoromethylations with TMSCF2H [26,30,31].
However, identifying appropriate initiators to facilitate the difluoromethylation of base-
sensitive substrates with Me3SiCF2H remains a formidable challenge.

Due to the hard nature of fluoroalkyl anions, the direct regioselective 1,4-nucleophilic
fluoroalkylation of α,β-unsaturated carbonyl compounds is a challenging task [38–41], and
1,4-nucleophilic fluoroalkylations are often accompanied with a 1,2-addition reaction [39,40].
Moreover, 1,4-trifluoromethylation of Me3SiCF3 activated by AcONa or TBAF [38] is mainly
limited to electron-deficient olefins containing two electron-withdrawing groups. However,
weak basic initiators struggle to cleave the Si-CF2H bond of Me3SiCF2H, and using Me3SiCF2H
to engage in 1,4-/1,6-nucleophilic addition of α,β-unsaturated carbonyl compounds is difficult
and has not been reported previously. para-Quinone methides (p-QMs), often used as excellent
receptors in Michael reactions, can be used as a potentially unique raw material for the synthesis
of natural and bioactive diarylmethane compounds [42–46]. The radical reactions of p-QMs
with fluoroalkylation reagents have been reported [47–51]; for instance, Song et al. reported the
radical 1,6-hydrodifluoroacetylation of p-QMs with difluoroalkyl bromides and bis(pinacolato)
diboron (B2pin2) via copper catalysis (Equation (1), Scheme 1) [47]. Liu et al. described
the radical tri-/difluoromethylation of p-QMs using sodium tri-/difluoromethanesulfinate
via organic photoredox catalysis (Equation (2)) [49]. In addition, Zhou et al. developed the
Fe(III)-catalyzed 1,6-conjugate addition of p-QMs with fluorinated silyl enol ethers toward
β,β-diaryl α-fluorinated ketones (Equation (3)) [52]. However, to the best of our knowledge,
there are no reports on the 1,6-nucleophilic difluoromethylation of p-QMs with less reactive
Me3SiCF2H. Herein, we report CsF/18-crown-6 facilitated 1,6-nucleophilic difluoromethylation
of p-QMs under mild conditions, and the trifluoromethylation and difluoroalkylation of p-QMs
are also presented.
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2. Results

We initiated the study by optimizing the reaction conditions, including the choice of
initiators, temperature, and solvents, using 4-benzylidene-2,6-di-tert-butylcyclohexa-2,5-
dien-1-one (1a) as the model substrate and Me3SiCF2H as the difluoromethylation reagent
(Table 1). We first performed the reaction under the previously reported conditions for
the direct nucleophilic difluoromethylation of enolizable ketones, which involved using
0.2 equiv. of CsF/18-crown-6 (1:1) and THF as the solvent at room temperature [37].
However, we did not observe any product (entry 1). Then, by gradually increasing the
temperature from −15 ◦C to room temperature and using DMF as the solvent, along
with 0.2 equiv. of TBAF, CsF, or TMAF as the initiator, the product 2,6-di-tert-butyl-4-(2,2-
difluoro-1-phenethyl) phenol 2a was obtained in approximately 30% yield (entries 2, 3,
and 5). When 0.2 equiv. of TBAF was used as the initiator, the yield of the product was
significantly low, irrespective of the temperature (entries 4 and 7). Similarly, using KF as
the initiator only yielded trace amounts of product (entry 6). In contrast, when 0.2 equiv.
of CsF, 0.1 equiv. of 18-crown-6, and DMF were employed, the yield increased to 42% at
−30 ◦C (entry 10). With 1.0 equiv of CsF/18-crown-6 (1:1), the yield of product reached
60% within a temperature range of −15 ◦C to room temperature (entry 12). Further, when
1.5 equiv. of CsF/18-crown-6 (1:1) was used, the yield increased up to 70% (entry 13).
However, 2.0 equiv. of the initiator CsF/18-crown-6 (1:1) caused a decrease in the yield (60%,
entry 14). A 1.5 equiv. amount of KF/18-crown-6 (1:1) was also not suitable for the reaction
(12%, entry 15). Therefore, the optimum conditions for this experiment were 1.0 equiv. of 1a,
2.0 equiv. of Me3SiCF2H, 1.5 equiv. of CsF/18-crown-6 (1:1), and running the reaction in
DMF at temperatures ranging from −15 ◦C to room temperature overnight.

Table 1. Optimization of reaction conditions between p-QMs 1a and Me3SiCF2H a.
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We next investigated the substrate scope of the direct nucleophilic difluoromethylation
between Me3SiCF2H and 4-benzylidene-2,6-di-tert-butylcyclohexa-2,5-dien-1-one deriva-
tives (Table 2). Using the above optimized conditions, as shown in Table 2, most of the
substrates examined provided good yields. A series of p-QMs bearing electron-donating
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groups (R = 4-Me, 4-tBu, and 4-OMe) (2d and 2i–2j) produced the corresponding products
in somewhat lower yields than p-QMs bearing electron-withdrawing groups (R = 4-F, 4-Cl,
and 4-Br) (2e, 2f, and 2k). Among them, the 4-Cl substituted product 2,6-di-tert-butyl-4-
[1-(4-chlorophenyl)-2,2-difluoroethyl]phenol (2f) was obtained in the highest yield of 86%.
Among the o-, m-, and p-Me-substituted substrates examined in the reaction (2b–2d), the
substrate with the o-Me substituent gave the corresponding product in the highest yield
(70%). Additionally, when the benzene ring was replaced by naphthalene, tert-butyl, and
pyridine moiety, the corresponding products were generated with yields of 61%, 23%, and
62%, respectively (2l–2n).

Table 2. Direct nucleophilic difluoromethylation of p-QMs with Me3SiCF2H a,b.
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Table 3. Direct nucleophilic trifluoromethylation of p-QMs with Me3SiCF3
a,b.
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The nucleophilic di-/trifluoromethylation reactions of other p-QMs with Me3SiRf
(Rf = CF2H or CF3) were also investigated (Scheme 2). 4-Benzylidene-2-(tert-butyl)-6-
methylcyclohexa-2,5-dien-1-one (1n) gave the corresponding di-/trifluoromethyl products
4a and 4b in 45–47% yields, which are significantly lower than those obtained with 4-
benzylidene-2,6-di-tert-butylcyclohexa-2,5-dien-1-one (1a). 2,6-Di-tert-butyl-4-(9H-fluoren-
9-ylidene) cyclohexa-2,5-dien-1-one (1o) could be engaged in reactions with Me3SiRf
(Rf = CF2H or CF3) to form di- and trifluoromethyl products containing quaternary carbon
centers. The yield of the trifluoromethyl product 4d was much higher than that of the
difluoromethyl product 4c, indicating that Me3SiCF3 is more reactive than Me3SiCF2H.
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In addition, as illustrated in Table 4, other fluoroalkyl silane reagents Me3SiRf
(Rf = CF2CF3, CF2COOEt, and CF2SPh) could also react with p-QMs to generate the
corresponding 5 products in 60–88% yields. It is noteworthy that the heterocycle-containing
substrates are also compatible with the reaction conditions (5d and 5e).

Table 4. Direct nucleophilic fluoroalkylation of p-QMs with other fluoroalkyltrimethylsilane reagents a,b.
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5a, 88% 5b, 67% 5c, 70% 5d, 73% 5e, 60%
a Me3SiRf (0.8 mmol, 2.0 equiv) and 1 (0.4 mmol, 1.0 equiv) were used. b Isolated yields are given.

Finally, to showcase the practical utility of the fluoroalkylation products, we explored
their further transformations (Scheme 3). Oxidation of 2f with 4 equiv. of K3[Fe(CN)3]
and KOH in a 1:1 mixture of hexane and H2O (v/v) at room temperature afforded difluo-
romethylated p-QM 6a in 78% yield. De-tert-butylation of 2f using a catalytic amount of
H2SO4 at 120 ◦C provided 6b in 81% yield. Notably, α-difluoromethylated diarylmethanes
possess potent cytotoxic activity against HCT116 cells [53,54]. Moreover, we applied our
protocol in the synthesis of a fluorinated analogue of the insecticide 1,1,1-trichloro-2,2-bis(p-
chloro phenyl)ethane (DDT) [55]. Here, treatment of the trifluoromethylation product 3i
with H2SO4 followed by ethylation produced the DDT analogue 7b in 67% overall yield.

Molecules 2024, 29, x FOR PEER REVIEW 7 of 17 
 

 

In addition, as illustrated in Table 4, other fluoroalkyl silane reagents Me3SiRf (Rf = 
CF2CF3, CF2COOEt, and CF2SPh) could also react with p-QMs to generate the correspond-
ing 5 products in 60–88% yields. It is noteworthy that the heterocycle-containing sub-
strates are also compatible with the reaction conditions (5d and 5e). 

Table 4. Direct nucleophilic fluoroalkylation of p-QMs with other fluoroalkyltrimethylsilane rea-
gents a,b. 

 

     
5a, 88% 5b, 67% 5c, 70% 5d, 73% 5e, 60% 

a Me3SiRf (0.8 mmol, 2.0 equiv) and 1 (0.4 mmol, 1.0 equiv) were used. b Isolated yields are given. 

Finally, to showcase the practical utility of the fluoroalkylation products, we ex-
plored their further transformations (Scheme 3). Oxidation of 2f with 4 equiv. of 
K3[Fe(CN)3] and KOH in a 1:1 mixture of hexane and H2O (v/v) at room temperature af-
forded difluoromethylated p-QM 6a in 78% yield. De-tert-butylation of 2f using a catalytic 
amount of H2SO4 at 120 °C provided 6b in 81% yield. Notably, α-difluoromethylated dia-
rylmethanes possess potent cytotoxic activity against HCT116 cells [53,54]. Moreover, we 
applied our protocol in the synthesis of a fluorinated analogue of the insecticide 1,1,1-
trichloro-2,2-bis(p-chloro phenyl)ethane (DDT) [55]. Here, treatment of the trifluorometh-
ylation product 3i with H2SO4 followed by ethylation produced the DDT analogue 7b in 
67% overall yield. 

 
Scheme 3. Synthetic applications of di- and trifluoromethylated p-quinone methides. 

3. Materials and Methods 
3.1. General Information 

All reactions were carried out in oven-dried glassware under nitrogen atmosphere. 
Commercially available reagents were used without further purification. para-Quinone 

Scheme 3. Synthetic applications of di- and trifluoromethylated p-quinone methides.

3. Materials and Methods
3.1. General Information

All reactions were carried out in oven-dried glassware under nitrogen atmosphere.
Commercially available reagents were used without further purification. para-Quinone
methides were prepared according to the reported literature [56]. The solvent DMF was
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dried over CaH2 and distilled under reduced pressure. Column chromatography was
performed with 300–400 mesh silica gel. All melting points are uncorrected. 1H, 13C, and
19F NMR spectra were recorded on a 400 MHz NMR spectrometer (Brucker, Karlsruhe,
Germany). TLC was carried out with 0.2-millimeter-thick silica gel plates (GF254). Visual-
ization was accomplished by UV light. Mass spectra were obtained on a mass spectrometer.
High-resolution mass data were recorded on a high-resolution mass spectrometer in ESI
positive ion mode (Q Exactive HF Orbitrap, Thermo Fisher Scientific, Waltham, MA, USA).

3.2. General Procedure
3.2.1. Experimental Procedures for the Synthesis of 2–5

Under nitrogen atmosphere, para-quinone methide 1 (0.4 mmol), CsF (91.14 mg,
0.6 mmol), and 18-crown-6 (158.6 mg, 0.6 mmol) were added into a Schlenk tube. The
Schlenk tube was placed in a cold bath and stirred at −15 ◦C, and then DMF (2 mL)
and TMSCF2H (100 mg, 107 µL, 0.80 mmol), TMSCF3 (114 mg, 118 µL, 0.80 mmol), or
TMSCF2R (0.80 mmol) were added. The reaction mixture was gradually warmed to room
temperature and stirred overnight. Subsequently, HCl aq. (1.0 M, 1.0 mL) was added
at room temperature and the above mixture was stirred for another 15 min. Finally, the
mixture was extracted with methyl tert-butyl ether (3 × 20 mL). The organic phase was
washed with brine and then dried over anhydrous Na2SO4. After filtration and evapora-
tion under vacuum, the residue was subjected to silica gel column chromatography using
hexane/dichloromethane (4:1-1:1, v/v) as an eluent to give products 2–5.

2,6-Di-tert-butyl-4-(2,2-difluoro-1-phenylethyl)phenol (2a) [49]: 97 mg, 70% yield. Yellow
oil. Purification by column chromatography (hexane/dichloromethane = 4:1, v/v). 1H
NMR (400 MHz, CDCl3): δ 7.34–7.32 (m, 4H), 7.30–7.26 (m, 1H), 7.09 (s, 2H), 6.25 (td,
J = 56.1, 4.4 Hz, 1H), 5.16 (s, 1H), 4.30 (td, J = 16.2, 4.3 Hz, 1H), 1.41 (s, 18H). 13C{1H} NMR
(101 MHz, CDCl3): δ 153.1, 137.6 (t, J = 3.4 Hz), 135.9, 129.1, 128.5, 127.6 (t, J = 3.8 Hz), 127.2,
125.6, 117.3 (t, J = 244.5 Hz), 55.1 (t, J = 20.4 Hz), 34.4, 30.2. 19F NMR (376 MHz, CDCl3):
δ −117.13 (ddd, J = 276.9, 56.1, 15.6 Hz, 1F), −118.28 (ddd, J = 276.9, 56.1, 17.0 Hz, 1F).
HRMS (ESI) m/z: [M − H]+ calcd. for C22H27F2O, 345.2030; found, 345.2039.

2,6-Di-tert-butyl-4-(2,2-difluoro-1-(o-tolyl)ethyl)phenol (2b): 101 mg, 70% yield. Yellow solid.
M.p.: 75–76 ◦C. Purification by column chromatography (hexane/dichloromethane = 4:1,
v/v). 1H NMR (400 MHz, CDCl3): δ 7.39 (d, J = 7.6 Hz, 1H), 7.24 (d, J = 3.8 Hz, 1H), 7.17 (d,
J = 4.1 Hz, 2H), 7.04 (s, 2H), 6.30 (td, J = 56.2, 5.0 Hz, 1H), 5.14 (s, 1H), 4.53–4.45 (m, 1H), 2.29
(s, 3H), 1.38 (s, 18H). 13C{1H} NMR (101 MHz, CDCl3): δ 152.9, 136.7, 136.4 (t, J = 3.2 Hz),
135.7, 130.8, 127.3, 127.0, 126.9 (td, J = 4.3, 2.8 Hz), 126.0, 125.8, 117.6 (t, J = 243.8 Hz), 50.7 (t,
J = 20.8 Hz), 34.3, 30.2, 20.0. 19F NMR (376 MHz, CDCl3): δ −116.62 (dd, J = 56.2, 14.4 Hz, 1F),
−118.63 (ddd, J = 276.1, 56.1, 16.5 Hz, 1F). HRMS (ESI) m/z: [M − H]+ calcd. for C23H29F2O,
359.2186; found, 359.2187.

2,6-Di-tert-butyl-4-(2,2-difluoro-1-(m-tolyl)ethyl)phenol (2c): 66 mg, 46% yield. Yellow oil.
Purification by column chromatography (hexane/dichloromethane = 4:1, v/v). 1H NMR
(400 MHz, CDCl3): δ 7.22 (d, J = 7.8 Hz, 1H), 7.14–7.12 (m, 2H), 7.12–7.08 (m, 3H), 6.24 (td,
J = 56.2, 4.5 Hz, 1H), 5.17 (s, 1H), 4.25 (td, J = 16.1, 4.5 Hz, 1H), 2.34 (s, 3H), 1.41 (s, 18H).
13C{1H} NMR (101 MHz, CDCl3): δ 153.0, 138.1, 137.5 (t, J = 3.4 Hz), 135.8, 129.9, 128.4,
128.0, 127.6 (t, J = 3.8 Hz), 125.8, 125.6, 117.3 (t, J = 244.5 Hz), 55.1 (t, J = 20.4 Hz), 34.3, 30.2,
21.5. 19F NMR (376 MHz, CDCl3): δ (−116.75)–(−117.65) (m, 1F), (−117.66)–(−118.5) (m,
1F). HRMS (ESI) m/z: [M − H]+ calcd. for C23H29F2O, 359.2186; found, 359.2187.

2,6-Di-tert-butyl-4-(2,2-difluoro-1-(p-tolyl)ethyl)phenol (2d) [49]: 71 mg, 49 yield. Yellow solid.
M.p.: 62–63 ◦C. Purification by column chromatography (hexane/dichloromethane = 4:1,
v/v). 1H NMR (400 MHz, CDCl3): δ 7.22 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 7.09 (s,
2H), 6.23 (td, J = 56.2, 4.4 Hz, 1H), 5.16 (s, 1H), 4.26 (td, J = 16.3, 4.3 Hz, 1H), 2.33 (s, 3H),1.41
(s, 18H). 13C{1H} NMR (101 MHz, CDCl3): δ 153.0, 136.8, 135.8, 134.5 (t, J = 3.4 Hz), 129.2,
128.9, 127.8 (t, J = 3.7 Hz), 125.6, 117.3 (t, J = 244.4 Hz), 54.7 (t, J = 20.4 Hz), 34.3, 30.2, 21.0.
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19F NMR (376 MHz, CDCl3) δ −117.44 (dd, J = 56.2, 15.6 Hz, 1F), −118.01 (dd, J = 56.3, 17.0
Hz. 1F). HRMS (ESI) m/z: [M − H]+ calcd. for C23H29F2O, 359.2186; found, 359.2187.

2,6-Di-tert-butyl-4-(2,2-difluoro-1-(4-fluorophenyl)ethyl)phenol (2e): 114 mg, 78% yield. Yellow
oil. Purification by column chromatography (hexane/dichloromethane = 4:1, v/v). 1H NMR
(400 MHz, CDCl3): δ 7.29 (dd, J = 7.8, 5.7 Hz, 2H), 7.06 (s, 2H), 7.03 (t, J = 8.6 Hz, 2H), 6.22 (td,
J = 56.1, 4.1 Hz, 1H), 5.20 (d, J = 1.2 Hz, 1H), 4.30 (d, J = 6.4 Hz, 1H), 1.41 (s, 18H). 13C{1H}
NMR (101 MHz, CDCl3): δ 162.0 (d, J = 245.9 Hz), 153.1, 136.0, 133.2 (q, J = 3.2 Hz), 130.7 (d,
J = 8.0 Hz), 127.3 (t, J = 3.6 Hz), 125.5, 117.0 (t, J = 244.7 Hz), 115.4 (d, J = 21.3 Hz), 54.2 (t,
J = 20.5 Hz), 34.3, 30.2. 19F NMR (376 MHz, CDCl3): δ (−115.45)–(−115.52) (m, 1F), −116.83
(ddd, J = 277.4, 56.0, 14.8 Hz, 1F), −119.06 (ddd, J = 277.5, 56.2, 18.1 Hz, 1F). HRMS (ESI) m/z:
[M − H]+ calcd. for C22H26F3O, 363.1936; found, 363.1941.

2,6-Di-tert-butyl-4-(1-(4-chlorophenyl)-2,2-difluoroethyl)phenol (2f) [49]: 131 mg, 86% yield. Yellow
solid. M.p.: 64–65 ◦C. Purification by column chromatography (hexane/dichloromethane =
4:1, v/v). 1H NMR (400 MHz, CDCl3) δ 7.31 (d, J = 8.5 Hz,2H), 7.25 (d, J = 8.5 Hz, 2H), 7.05 (s,
2H), 6.22 (td, J = 56.0, 4.1 Hz, 1H), 5.20 (s, 1H), 4.28 (td, J = 18.3, 14.6, 4.0 Hz, 1H), 1.41 (s, 18H).
13C{1H} NMR (101 MHz, CDCl3): δ 153.2, 136.0, 135.9 (t, J = 3.1 Hz), 133.2, 130.5, 128.6, 127.1
(t, J = 4.4 Hz), 125.5, 116.9 (t, J = 244.7 Hz), 54.3 (t, J = 20.5 Hz), 34.4, 30.2. 19F NMR (376 MHz,
CDCl3): δ −116.73 (ddd, J = 277.9, 55.9, 14.5 Hz, 1F), −119.09 (ddd, J = 278.0, 56.1, 18.2 Hz, 1F).
HRMS (ESI) m/z: [M − H]+ calcd. for C22H26ClF2O, 379.1640; found, 379.1642.

4-(1-(4-Bromophenyl)-2,2-difluoroethyl)-2,6-di-tert-butylphenol (2g): 109 mg, 63% yield. Yellow
solid. M.p.: 95–96 ◦C. Purification by column chromatography (hexane/dichloromethane =
4:1, v/v). 1H NMR (400 MHz, CDCl3): δ 7.46 (d, J = 8.4 Hz, 2H), 7.20 (d, J = 8.3 Hz, 2H),
7.06 (s, 2H), 6.22 (tdd, J = 56.1, 4.0, 1.4 Hz, 1H), 5.20 (d, J = 1.6 Hz, 1H), 4.27 (t, J = 14.4 Hz,
1H), 1.41 (s, 18H). 13C{1H} NMR (101 MHz, CDCl3): δ 153.2, 136.5 (t, J = 3.0 Hz), 136.0,
131.6, 130.8, 127.0 (t, J = 3.6 Hz), 125.5, 121.3, 116.9 (t, J = 244.8 Hz), 54.4 (t, J = 20.5 Hz), 34.4,
30.2. 19F NMR (376 MHz, CDCl3): δ −116.66 (ddd, J = 278.1, 55.8, 14.4 Hz, 1F), −119.07
(ddd, J = 278.0, 56.1, 18.1 Hz, 1F). HRMS (ESI) m/z: [M − H]+ calcd. for C22H26BrF2O,
423.1135; found, 423.1139.

4-(1-(3-Bromophenyl)-2,2-difluoroethyl)-2,6-di-tert-butylphenol (2h): 115 mg, 68% yield. Yellow
solid. M.p.: 86–87 ◦C. Purification by column chromatography (hexane/dichloromethane
= 4:1, v/v). 1H NMR (400 MHz, CDCl3): δ 7.47 (s, 1H), 7.42–7.40 (m, 1H), 7.25 (s, 1H),
7.21 (t, J = 7.8 Hz, 1H), 7.06 (s, 2H), 6.22 (td, J = 55.9, 4.1 Hz, 1H), 5.21 (s, 1H), 4.26 (td,
J = 18.3, 14.6, 4.1 Hz, 1H), 1.42 (s, 18H). 13C{1H} NMR (101 MHz, CDCl3): δ 153.3, 139.7 (t,
J = 3.2 Hz), 136.1, 132.3, 130.4, 130.0, 127.7, 126.8 (t, J = 3.8 Hz), 125.5, 122.5, 116.8 (t,
J = 244.9 Hz), 54.7 (t, J = 20.6 Hz), 34.4, 30.2. 19F NMR (376 MHz, CDCl3): δ −116.78 (ddd,
J = 278.2, 55.9, 14.6 Hz, 1F), −118.85 (ddd, J = 278.1, 56.1, 17.9 Hz, 1F). HRMS (ESI) m/z:
[M − H]+ calcd. for C22H26BrF2O, 423.1135; found, 423.1139.

2,6-Di-tert-butyl-4-(1-(4-tert-butylphenyl)-2,2-difluoroethyl)phenol (2i): 97 mg, 60% yield. Yel-
low oil. Purification by column chromatography (hexane/dichloromethane = 4:1, v/v). 1H
NMR (400 MHz, CDCl3): δ 7.36 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.3 Hz, 2H), 7.11 (s, 2H), 6.23
(td, J = 56.3, 4.4 Hz, 1H), 5.16 (s, 1H), 4.26 (td, J = 16.4, 4.3 Hz, 1H), 1.41 (s, 18H), 1.30 (s,
9H). 13C{1H} NMR (101 MHz, CDCl3): δ 153.0, 150.0, 135.8, 134.5 (t, J = 3.3 Hz), 128.6, 127.7
(t, J = 3.7 Hz), 125.6, 125.4, 117.4 (t, J = 244.5 Hz), 54.7 (t, J = 20.4 Hz), 34.4, 34.3, 31.3, 30.2.
19F NMR (376 MHz, CDCl3): δ −116.93 (ddd, J = 276.0, 56.2, 15.7 Hz, 1F), −118.29 (ddd,
J = 276.0, 56.3, 17.0 Hz, 1F). HRMS (ESI) m/z: [M − H]+ calcd. for C26H35F2O, 401.2656;
found, 401.2663.

2,6-Di-tert-butyl-4-(2,2-difluoro-1-(4-methoxyphenyl)ethyl)phenol (2j): 60 mg, 40% yield. Yellow
solid. M.p.: 75–76 ◦C. Purification by column chromatography (hexane/dichloromethane
= 4:1, v/v). 1H NMR (400 MHz, CDCl3): δ 7.24 (d, J = 8.7 Hz, 2H), 7.09 (s, 2H), 6.88 (d,
J = 8.7 Hz, 2H), 6.21 (td, J = 56.3, 4.3 Hz, 1H), 5.17 (s, 1H), 4.33–4.12 (m, 1H), 3.78 (s, 3H), 1.41
(s, 18H). 13C{1H} NMR (101 MHz, CDCl3): δ 158.7, 153.0, 135.8, 130.1, 129.6 (t, J = 3.5 Hz),
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127.9 (t, J = 3.7 Hz), 125.5, 117.3 (t, J = 244.4 Hz), 113.9, 55.2, 54.2 (t, J = 20.4 Hz), 34.3, 30.2.
19F NMR (376 MHz, CDCl3): δ −116.96 (ddd, J = 276.2, 56.2, 15.3 Hz, 1F), −118.55 (ddd,
J = 276.3, 56.3, 17.4 Hz, 1F). HRMS (ESI) m/z: [M − H]+ calcd. for C23H29F2O2, 375.2136;
found, 375.2143.

2,6-Di-tert-butyl-4-(1-(2,4-dichlorophenyl)-2,2-difluoroethyl)phenol (2k): 111 mg, 67% yield.
Yellow oil. Purification by column chromatography (hexane/dichloromethane = 4:1, v/v).
1H NMR (400 MHz, CDCl3): δ 7.45–7.40 (m, 2H), 7.29–7.24 (m, 1H), 7.08 (s, 2H), 6.26 (td,
J = 55.8, 4.1 Hz, 1H), 5.19 (s, 1H), 4.85 (td, J = 16.3, 4.0 Hz, 1H), 1.40 (s, 18H). 13C{1H} NMR
(101 MHz, CDCl3): δ 153.3, 136.0, 135.3, 134.3 (t, J = 3.2 Hz), 133.6, 130.5, 129.8, 127.2, 125.9 (t,
J = 3.2 Hz), 125.7, 116.7 (t, J = 245.2 Hz), 50.2 (t, J = 21.1 Hz), 34.3, 30.2. 19F NMR (376 MHz, CDCl3):
δ (−117.38)–(−118.21) (m, 1F), (−118.27)–(−118.69) (m, 1F). HRMS (ESI) m/z: [M − H]+ calcd.
for C22H26Cl2F2O, 413.1251; found, 413.1261.

2,6-Di-tert-butyl-4-(2,2-difluoro-1-(naphthalen-2-yl)ethyl)phenol (2l): 97 mg, 61% yield. Orange
solid. M.p.: 104–105 ◦C. Purification by column chromatography (hexane/dichloromethane
= 5:1, v/v). 1H NMR (400 MHz, CDCl3): δ 8.06 (d, J = 8.1 Hz, 1H), 7.86 (d, J = 7.3 Hz, 1H),
7.80 (d, J = 8.1 Hz, 1H), 7.58 (d, J = 7.1 Hz, 1H), 7.51–7.46 (m, 3H), 7.15 (s, 2H), 6.43 (td,
J = 56.0, 4.6 Hz, 1H), 5.13 (s, 1H), 1.37 (s, 18H). 13C{1H} NMR (101 MHz, CDCl3): δ 153.1,
135.7, 134.1, 133.8 (t, J = 3.7 Hz), 131.8, 128.9, 127.9, 127.1 (t, J = 3.6 Hz), 126.3, 125.8,
125.6, 125.4, 125.2, 123.4, 117.6 (t, J = 244.3 Hz), 50.0 (t, J = 20.9 Hz), 34.3, 30.2. 19F NMR
(376 MHz, CDCl3): δ –115.55 (ddd, J = 275.9, 56.1, 13.6 Hz), –118.53 (ddd, J = 276.0, 56.0,
17.2 Hz). HRMS (ESI) m/z: [M − H]+ calcd. for C26H29F2O, 395.2186; found, 395.2192.

2,6-Di-tert-butyl-4-(1,1,1,3,3-pentafluoropropan-2-yl)phenol (2m): 30 mg, 23% yield. Yellow oil.
Purification by column chromatography (hexane/dichloromethane = 3:1, v/v). 1H NMR
(400 MHz, CDCl3): δ 6.99 (s, 2H), 6.17 (td, J = 56.0, 3.8 Hz, 1H), 5.11 (s, 1H), 2.72 (ddd,
J = 21.9, 15.1, 3.8 Hz, 1H), 1.43 (s, 18H), 0.98 (s, 9H). 13C{1H} NMR (101 MHz, CDCl3): δ
152.7, 135.0, 126.8, 118.3 (t, J = 243.2 Hz), 58.9 (t, J = 17.7 Hz), 34.2, 33.6–32.7 (m), 30.4, 28.9.
19F NMR (376 MHz, CDCl3): δ (−114.45)–(−115.41) (m, 1F), (−115.41)–(−116.36) (m, 1F).
HRMS (ESI) m/z: [M − H]+ calcd. for C20H31F2O, 325.2343; found, 325.2348.

2,6-Di-tert-butyl-4-(2,2-difluoro-1-(pyridin-2-yl)ethyl)phenol (2n): 86 mg, 62% yield. Yellow
oil. Purification by column chromatography (hexane/dichloromethane = 20:1, v/v). 1H
NMR (400 MHz, CDCl3) δ 8.65–8.50 (m, 1H), 7.60 (td, J = 7.7, 1.8 Hz, 1H), 7.24–7.12 (m,
4H), 6.59 (td, J = 56.3, 6.3 Hz, 1H), 5.17 (s, 1H), 4.37 (ddd, J = 14.0, 11.6, 6.3 Hz, 1H), 1.40 (s,
18H). 13C NMR (101 MHz, CDCl3) δ 158.4 (d, J = 7.8 Hz), 153.4, 149.2, 136.7, 136.0, 126.9 (d,
J = 7.0 Hz), 125.8, 124.1, 122.1, 117.9 (t, J = 243.3 Hz), 57.1 (t, J = 21.7 Hz), 34.3, 30.2.
19F NMR (376 MHz, CDCl3) δ −117.08 (dd, J = 54.5, 11.9 Hz, 1F), −122.47 (dd, J = 56.8,
14.3 Hz, 1F). HRMS (ESI) m/z: [M + H]+ calcd. for C21H27F2NO, 348.2139; found, 348.2146.

2,6-Di-tert-butyl-4-(2,2,2-trifluoro-1-phenyl-ethyl)-phenol (3a) [49]: 96 mg, 66% yield. Yellow
solid. M.p.: 64–65 ◦C. Purification by column chromatography (hexane/dichloromethane =
4:1, v/v). 1H NMR (400 MHz, CDCl3): δ 7.40–7.29 (m, 5H), 7.15 (s, 2H), 5.19 (s, 1H), 4.56 (q,
J = 10.2 Hz, 1H), 1.41 (s, 18H). 13C{1H} NMR (101 MHz, CDCl3): δ 153.4, 136.0, 135.9, 129.0,
128.6, 127.9 (q, J = 280.5 Hz), 127.6, 125.9, 125.8, 55.5 (q, J = 27.3 Hz), 34.3, 30.2. 19F NMR
(376 MHz, CDCl3): δ −65.96 (d, J = 10.1 Hz, 3F). HRMS (ESI) m/z: [M − H]+ calcd. for
C22H26F3O, 363.1936; found, 363.1931.

2,6-Di-tert-butyl-4-(2,2,2-trifluoro-1-o-tolyl-ethyl)-phenol (3b): 129 mg, 85% yield. Yellow solid.
M.p.: 112–114 ◦C. Purification by column chromatography (hexane/dichloromethane = 4:1,
v/v). 1H NMR (400 MHz, CDCl3): δ 7.57 (d, J = 7.7 Hz, 1H), 7.29–7.13 (m, 3H), 7.11 (s, 2H), 5.17
(s, 1H), 4.79 (q, J = 10.2 Hz, 1H), 2.30 (s, 3H), 1.39 (s, 18H). 13C{1H} NMR (101 MHz, CDCl3): δ
152.3, 135.5, 134.7, 133.5, 129.8, 126.5, 126.4, 126.4, 125.7 (q, J = 280.78 Hz), 125.2, 125.1, 49.8 (q,
J = 27.1 Hz), 33.3, 29.2, 19.1. 19F NMR (376 MHz, CDCl3): δ −65.24 (d, J = 10.2 Hz, 3F). HRMS
(ESI) m/z: [M − H]+ calcd. for C23H28F3O, 377.2092; found, 377.2108.
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2,6-Di-tert-butyl-4-(2,2,2-trifluoro-1-m-tolyl-ethyl)-phenol (3c): 92 mg, 61% yield. Yellow solid.
M.p.: 68–70 ◦C. Purification by column chromatography (hexane/dichloromethane = 4:1, v/v).
1H NMR (400 MHz, CDCl3): δ 7.23–7.19 (m, 3H), 7.16 (s, 2H), 7.10 (d, J = 6.4 Hz, 1H), 5.19 (s,
1H), 4.51 (q, J = 10.2 Hz, 1H), 2.34 (s, 3H), 1.41 (s, 18H). 13C{1H} NMR (101 MHz, CDCl3): δ
152.4, 137.2, 134.8, 134.7, 128.9, 127.4, 127.3, 125.5 (q, J = 280.5 Hz), 124.9, 124.8, 124.7, 54.5 (q,
J = 27.1 Hz), 33.3, 29.2, 20.4. 19F NMR (376 MHz, CDCl3): δ −65.93 (d, J = 10.2 Hz, 3F). HRMS
(ESI) m/z: [M − H]+ calcd. for C23H28F3O, 377.2092; found, 377.2101. 2,6-Di-tert-butyl-4-

(2,2,2-trifluoro-1-p-tolyl-ethyl)-phenol (3d) [49]: 124 mg, 82% yield. Yellow solid. M.p.: 92–94 ◦C.
Purification by column chromatography (hexane/dichloromethane = 4:1, v/v). 1H NMR
(400 MHz, CDCl3): δ 7.28–7.24 (m, 2H), 7.15–7.13 (m, 4H), 5.18 (s, 1H), 4.52 (q, J = 10.2 Hz,
1H), 2.33 (s, 3H), 1.41 (s, 18H). 13C{1H} NMR (101 MHz, CDCl3): δ 152.3, 136.3, 134.8, 132.0,
128.3, 127.8, 125.5 (q, J = 280.4 Hz), 125.1, 124.7, 54.2 (q, J = 27.2 Hz), 33.3, 29.2, 20.0. 19F NMR
(376 MHz, CDCl3): δ −65.24 (d, J = 10.2 Hz, 3F). HRMS (ESI) m/z: [M − H]+ calcd. for
C23H28F3O, 377.2092; found, 377.2098.

2,6-Di-tert-butyl-4-[2,2,2-trifluoro-1-(4-fluoro-phenyl)-ethyl]-phenol (3e) [49]: 87 mg, 57% yield. Yellow
solid. M.p.: 84–85 ◦C. Purification by column chromatography (hexane/dichloromethane =
4:1, v/v). 1H NMR (400 MHz, CDCl3): δ 7.35 (dd, J = 8.3, 5.4 Hz, 2H), 7.12 (s, 2H), 7.03 (t,
J = 8.7 Hz, 2H), 5.22 (s, 1H), 4.56 (q, J = 10.0 Hz, 1H), 1.41 (s, 18H). 13C{1H} NMR (101 MHz, CDCl3):
δ 163.4, 161.0, 153.5, 136.0, 131.9, 130.7 (d, J = 8.1 Hz), 126.3 (q, J = 281.2, 280.7 Hz), 125.7, 115.5 (d,
J = 21.5 Hz), 54.7 (q, J = 27.4 Hz), 30.2, 18.4. 19F NMR (376 MHz, CDCl3): δ −66.24 (d, J = 10.3
Hz), −114.72 (ddd, J = 13.6, 8.6, 5.2 Hz, 3F). HRMS (ESI) m/z: [M − H]+ calcd. for C22H25F4O,
381.1842; found, 381.1851.

4-[1-(4-Bromo-phenyl)-2,2,2-trifluoro-ethyl]-2,6-di-tert-butyl-phenol (3f) [49]: 152 mg, 86% yield.
Yellow solid. M.p.: 93–95 ◦C. Purification by column chromatography (hexane/
dichloromethane = 4:1, v/v). 1H NMR (400 MHz, CDCl3): δ 7.39 (d, J = 8.5 Hz, 2H),
7.18 (d, J = 8.4 Hz, 2H), 7.03 (s, 2H), 5.15 (s, 1H), 4.45 (q, J = 10.0 Hz, 1H), 1.33 (s, 18H).
13C{1H} NMR (101 MHz, CDCl3): δ 152.5, 135.0, 134.0, 130.7, 129.7, 125.1 (q, J = 280.7 Hz),
124.6, 124.3, 120.8, 53.9 (q, J = 27.5 Hz), 33.3, 29.2. 19F NMR (376 MHz, CDCl3): δ −66.08
(d, J = 10.2 Hz, 3F). HRMS (ESI) m/z: [M − H]+ calcd. for C22H25BrF3O, 441.1041; found,
441.1044.

2,6-Di-tert-butyl-4-[1-(2,4-dichloro-phenyl)-2,2,2-trifluoro-ethyl]-phenol (3g): 105 mg, 61% yield.
Yellow solid. M.p.: 99–100 ◦C. Purification by column chromatography (hexane/
dichloromethane = 4:1, v/v). 1H NMR (400 MHz, CDCl3): δ 7.58 (d, J = 8.5 Hz, 1H),
7.42 (d, J = 2.1 Hz, 1H), 7.28 (dd, J = 8.5, 2.1 Hz, 1H), 7.12 (s, 2H), 5.23 (s, 1H), 5.17 (q,
J = 10.0 Hz, 1H), 1.40 (s, 18H). 13C{1H} NMR (101 MHz, CDCl3): δ 153.7, 136.0, 135.3, 134.1,
132.8, 129.9, 129.8, 127.4, 126.1 (q, J = 280.6 Hz), 125.9, 124.2, 50.5 (q, J = 28.2 Hz), 34.3, 30.2.
19F NMR (376 MHz, CDCl3): δ −65.57 (d, J = 9.5 Hz, 3F). HRMS (ESI) m/z: [M − H]+

calcd. for C22H24Cl2F3O, 431.1156; found, 431.1151.

2,6-Di-tert-butyl-4-[1-(4-tert-butyl-phenyl)-2,2,2-trifluoro-ethyl]-phenol (3h) [50]: 76 mg, 45%
yield. Yellow solid. M.p.: 83–85 ◦C. Purification by column chromatography (hexane/
dichloromethane = 4:1, v/v). 1H NMR (400 MHz, CDCl3): δ 7.37-7.31 (m, 4H), 7.17 (s, 2H),
5.18 (s, 1H), 4.52 (q, J = 10.3 Hz, 1H), 1.41 (s, 18H), 1.30 (s, 9H). 13C{1H} NMR (101 MHz,
CDCl3): δ 153.4, 150.5, 135.9, 133.0, 128.6, 128.0 (q, J = 280.6 Hz), 126.2, 125.8, 125.5, 55.2 (q,
J = 27.1 Hz), 34.5, 34.4, 31.3, 30.3. 19F NMR (376 MHz, CDCl3): δ −66.04 (d, J = 10.2 Hz, 3F).
HRMS (ESI) m/z: [M − H]+ calcd. for C26H34F3O, 419.2562; found, 419.2552.

2,6-Di-tert-butyl-4-(2,2,2-trifluoro-1-(4-methoxyphenyl)ethyl)phenol (3i) [49]: 87 mg, 55% yield.
Yellow oil. Purification by column chromatography (hexane/dichloromethane = 4:1, v/v).
1H NMR (400 MHz, CDCl3): δ 7.30 (d, J = 8.4 Hz, 2H), 7.14 (s, 2H), 6.88 (d, J = 8.8 Hz, 2H),
5.19 (s, 1H), 4.52 (q, J = 10.2 Hz, 1H), 3.79 (s, 3H), 1.41 (s, 18H). 13C{1H} NMR (101 MHz,
CDCl3): δ 159.0, 153.3, 135.9, 130.2, 128.2, 128.0 (q, J = 280.5 Hz), 126.2, 125.6, 55.2, 54.7 (q,
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J = 27.2 Hz), 34.4, 30.2. 19F NMR (376 MHz, CDCl3): δ −66.24 (d, J = 2.7 Hz), −66.27 (d,
J = 2.7 Hz). HRMS (ESI) m/z: [M − H]+ calcd. for C23H28F3O2, 393.2041; found, 393.2044.

2,6-Di-tert-butyl-4-(2,2,2-trifluoro-1-naphthalen-2-yl-ethyl)-phenol (3j) [49]: 129 mg, 78% yield.
Yellow solid. M.p.: 145–147 ◦C. Purification by column chromatography (hexane/
dichloromethane = 5:1, v/v). 1H NMR (400 MHz, CDCl3): δ 8.02 (d, J = 8.3 Hz, 1H),
7.90–7.74 (m, 3H), 7.57–7.43 (m, 3H), 7.21 (s, 2H), 5.44 (q, J = 9.9 Hz, 1H), 5.17 (s, 1H),
1.37 (s, 18H). 13C{1H} NMR (101 MHz, CDCl3): δ 153.4, 135.8, 134.1, 131.7, 131.6, 129.1,
128.4, 126.9 (q, J = 286.4 Hz), 126.5, 126.0, 125.8, 125.7, 125.6, 125.5, 125.2, 123.1, 50.3 (q,
J = 27.3 Hz), 34.3, 30.2. 19F NMR (376 MHz, CDCl3): δ −64.83 (d, J = 9.7 Hz, 3F). HRMS
(ESI) m/z: [M − H]+ calcd. for C26H28F3O, 413.2092; found, 413.2091.

2,6-Di-tert-butyl-4-(2,2,2-trifluoro-1-(pyridin-2-yl)ethyl)phenol (3k): 43 mg, 30% yield. Yellow
oil. Purification by column chromatography (hexane/dichloromethane = 5:1, v/v). 1H
NMR (400 MHz, CDCl3) δ 8.62 (ddd, J = 4.9, 1.9, 0.9 Hz, 1H), 7.69 (td, J = 7.8, 1.9 Hz, 1H),
7.45 (d, J = 7.9 Hz, 1H), 7.26–7.19 (m, 3H), 5.23 (s, 1H), 4.79 (q, J = 9.9 Hz, 1H), 1.41 (s, 18H).
13C NMR (101 MHz, CDCl3) δ 155.9 (d, J = 1.9 Hz), 153.7, 149.6, 136.8, 135.9, 126.2,126.0
(q, J = 280.2 Hz), 123.3, 122.6, 57.8 (q, J = 27.1 Hz), 34.4, 30.2. 19F NMR (376 MHz, CDCl3)
−66.14 (d, J = 8.7 Hz, 3F). HRMS (ESI) m/z: [M + H]+ calcd. for C21H26F3NO, 366.2045;
found, 366.2049.

2-Tert-butyl-4-(2,2-difluoro-1-phenylethyl)-6-methylphenol (4a): 55 mg, 45% yield. Orange solid.
M.p.: 104–105 ◦C. Purification by column chromatography (hexane/dichloromethane = 4:1,
v/v). 1H NMR (400 MHz, CDCl3): δ 7.33–7.11 (m, 5H), 6.99 (s, 1H), 6.85 (s, 1H), 6.17 (td,
J = 56.1, 4.4 Hz, 1H), 4.67 (s, 1H), 4.21 (td, J = 16.1, 4.1 Hz, 1H), 2.12 (s, 3H), 1.30 (s, 9H).
13C{1H} NMR (101 MHz, CDCl3): δ 152.0, 137.6 (t, J = 3.4 Hz), 135.8, 129.0, 128.9, 128.6,
128.3 (t, J = 3.7 Hz), 127.3, 126.0, 123.2, 117.2 (t, J = 244.3 Hz), 54.7 (t, J = 20.6 Hz), 34.6, 29.7,
16.1. 19F NMR (376 MHz, CDCl3): δ (−116.71)–117.77 (m, 1F), (−117.78)–(−118.82) (m, 1F).
HRMS (ESI) m/z: [M − H]+ calcd. for C19H21F2O, 303.1560; found, 303.1566.

2-(Tert-butyl)-6-methyl-4-(2,2,2-trifluoro-1-phenylethyl)phenol (4b) [50]: 61 mg, 47% yield.
Yellow oil. Purification by column chromatography (hexane/dichloromethane = 4:1, v/v).
1H NMR (400 MHz, CDCl3): δ 7.41–7.22 (m, 5H), 7.12 (s, 1H), 7.00 (s, 1H), 4.79 (s, 1H), 4.56
(q, J = 10.1 Hz, 1H), 2.21 (s, 3H), 1.38 (s, 9H). 13C{1H} NMR (101 MHz, CDCl3): δ 152.3,
135.9, 135.8, 128.9, 128.9, 128.6 (q, J = 280.5 Hz), 127.8, 127.7, 126.5, 126.2, 123.2, 55.2 (q,
J = 27.3 Hz), 34.6, 29.6, 16.1. 19F NMR (376 MHz, CDCl3): δ −65.98 (d, J = 10.1 Hz, 3F).
HRMS (ESI) m/z: [M − H]+ calcd. for C19H20F3O, 321.1466; found, 321.1474.

2,6-Di-tert-butyl-4-(9-(difluoromethyl)-9H-fluoren-9-yl)phenol (4c): 50 mg, 30% yield. Yel-
low oil. Purification by column chromatography (hexane/dichloromethane = 20:1, v/v).
1H NMR (400 MHz, CDCl3) δ 7.77 (d, J = 7.6 Hz, 2H), 7.58 (d, J = 7.6 Hz, 2H), 7.43 (t,
J = 7.6 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), 7.22 (s, 2H), 6.08 (t, J = 56.0 Hz, 1H), 5.13 (s, 1H), 1.35
(s, 18H). 13C NMR (101 MHz, CDCl3) δ 153.1, 144.91 (t, J = 3.5 Hz), 141.3, 135.6, 128.5, 127.6,
126.7, 124.5, 120.2, 117.8 (t, J = 233.1 Hz), 62.4 (t, J = 19.8 Hz), 34.5, 30.2. 19F NMR (377 MHz,
CDCl3) −119.21 (d, J = 56.2 Hz, 2F),. HRMS (ESI) m/z: [M − H]+ calcd. for C28H30F2O,
419.2186; found, 419.2191.

2-(Tert-butyl)-6-methyl-4-(9-(trifluoromethyl)-9H-fluoren-9-yl)phenol (4d): 109 mg, 62% yield.
Yellow solid. M.p.: 156–158 ◦C. Purification by column chromatography (hexane/
dichloromethane = 5:1, v/v). 1H NMR (400 MHz, CDCl3): δ 7.66 (d, J = 7.4 Hz, 2H),
7.53 (d, J = 7.1 Hz, 2H), 7.33 (t, J = 7.4 Hz, 2H), 7.28–7.08 (m, 4H), 5.07 (s, 1H), 1.25 (s, 20H).
13C{1H} NMR (101 MHz, CDCl3): δ 152.2, 142.9, 140.2, 134.5, 127.8, 126.6, 126.3, 125.3, 124.7
(q, J = 282.4 Hz), 123.3, 119.2, 62.5 (q, J = 26.5, 26.1 Hz), 33.4, 29.1. 19F NMR (376 MHz,
CDCl3): δ −66.72 (s, 3F). HRMS (ESI) m/z: [M − H]+ calcd. for C28H28F3O, 437.2092;
found, 437.2092.

2,6-Di-tert-butyl-4-(2,2,3,3,3-pentafluoro-1-phenylpropyl)phenol (5a): 146 mg, 88% yield. Yellow
solid. M.p.: 70–72 ◦C. Purification by column chromatography (hexane/dichloromethane =
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4:1, v/v). 1H NMR (400 MHz, CDCl3) δ 7.46–7.45 (m, 2H), 7.39–7.26 (m, 3H), 7.21 (s, 2H),
5.19 (s, 1H), 4.45 (t, J = 18.0 Hz, 1H), 1.41 (s, 18H). 13C{1H} NMR (101 MHz, CDCl3) δ 153.5,
135.9, 135.8, 129.3, 128.7, 127.8, 126.0, 125.6 (d, J = 3.3 Hz), 121.1–112.9 (m, CF2CF3), 53.3 (t,
J = 20.7 Hz), 34.4, 30.2. 19F NMR (376 MHz, CDCl3): δ −81.12 (s, 3F), −114.93 (qd, J = 270.8,
18.3 Hz, 2F). HRMS (ESI) m/z: [M − H]+ calcd. for C27H35F5O, 413.1904; found, 413.1913.

Ethyl 3-(4-(tert-butyl)phenyl)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2-difluoropropanoate (5b) [47]:
112 mg, 67% yield. Brown oil. Purification by column chromatography (hexane/
dichloromethane = 4:1, v/v). 1H NMR (400 MHz, CDCl3): δ 7.43–7.41 (m, 2H),
7.34–7.25 (m, 3H), 7.18 (s, 2H), 5.17 (s, 1H), 4.64 (t, J = 18.5 Hz, 1H), 4.11 (qt, J = 7.1,
3.6 Hz, 2H), 1.40 (s, 18H), 1.02 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ
164.1 (t, J = 32.4 Hz), 153.4, 136.1 (d, J = 3.8 Hz), 135.8, 129.6, 128.5, 127.6, 126.3, 125.9 (d,
J = 4.1 Hz), 116.1 (t, J = 255.7 Hz), 62.6, 55.5 (t, J = 21.8 Hz), 34.3, 30.3, 13.6. 19F NMR
(376 MHz, CDCl3): δ (−105.34)–(−107.42) (m, 2F). HRMS (ESI) m/z: [M − H]+ calcd. for
C29H40F2O3, 417.2241; found, 417.2243.

2,6-Di-tert-butyl-4-(2,2-difluoro-1-phenyl-2-(phenylthio)ethyl)phenol (5c): 127 mg, 70% yield.
Yellow solid. M.p.: 99–111 ◦C. Purification by column chromatography (hexane/
dichloromethane = 5:1, v/v). 1H NMR (400 MHz, CDCl3): δ 7.53–7.51 (m, 2H),
7.46–7.45 (m, 2H), 7.36–7.25 (m, 6H), 7.22 (s, 2H), 5.15 (s, 1H), 4.55 (t, J = 15.3 Hz, 1H), 1.41
(s, 18H). 13C{1H} NMR (101 MHz, CDCl3): δ 153.2, 137.6 (d, J = 2.2 Hz), 136.2, 135.6, 130.2
(t, J = 284.6 Hz), 129.7, 129.5, 128.9, 128.4, 127.5, 127.4, 127.3, 126.4, 59.9 (t, J = 22.1 Hz),
34.4, 30.3. 19F NMR (376 MHz, CDCl3): δ −72.36 (dd, J = 204.7, 15.0 Hz, 1F), −73.06 (dd,
J = 204.8, 15.7 Hz, 1F). HRMS (ESI) m/z: [M − H]+ calcd. for C28H31OSF2, 452.2064; found,
453.2065.

2,6-Di-tert-butyl-4-((2,2,3,3,3-pentafluoro-1-(furan-2-yl)propy)phenol (5d): 118 mg, 73% yield.
Yellow solid. M.p.: 112–114 ◦C. Purification by column chromatography (hexane/
dichloromethane = 5:1, v/v). 1H NMR (400 MHz, CDCl3): δ 7.39 (d, 1H), 7.24 (s, 2H),
6.39–6.33 (m, 2H), 5.24 (s, 1H), 4.61 (dd, J = 19.1, 14.8 Hz, 1H), 1.43 (s, 18H). 13C{1H} NMR
(101 MHz, CDCl3): δ 153.9, 148.4 (d, J = 6.1 Hz), 142.6, 135.9, 126.4, 122.8 (d, J = 2.8 Hz),
120.9–111.1 (m, CF2CF3), 110.5, 109.3, 47.2 (dd, J = 23.6, 20.9 Hz), 34.3, 30.2. 19F NMR
(376 MHz, CDCl3): δ −81.93 (s, 3F), −115.62 (dd, J = 269.2, 14.6 Hz, 1F), −117.41 (dd,
J = 269.3, 19.3 Hz, 1F). HRMS (ESI) m/z: [M − H]+ calcd. for C21H24O2F5, 403.1696; found,
403.1699.

Ethyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,2-difluoro-3-(furan-2-yl)propanoate (5e): 98 mg,
60% yield. Brown oil. Purification by column chromatography (hexane/dichloromethane =
5:1, v/v). 1H NMR (400 MHz, CDCl3): δ 7.38 (dd, J = 1.8, 0.9 Hz, 1H), 7.19 (s, 2H), 6.37–6.33
(m, 2H), 5.22 (s, 1H), 4.75 (t, J = 16.8 Hz, 1H), 4.17 (qd, J = 7.2, 5.5 Hz, 2H), 1.42 (s, 18H),
1.15 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3): δ 163.79 (t, J = 32.3 Hz), 153.81,
149.43 (d, J = 6.2 Hz), 142.4, 135.8, 126.6, 123.2 (d, J = 2.6 Hz), 114.9 (t, J = 256.5 Hz), 110.4,
109.1, 62.7, 49.7 (t, J = 23.3 Hz), 34.3, 30.2, 13.7. 19F NMR (376 MHz, CDCl3): δ −108.07 (dd,
J = 253.3, 15.9 Hz, 1F), −109.06 (dd, J = 253.5, 17.8 Hz, 1F). HRMS (ESI) m/z: [M − H]+

calcd. for C23H29F2O4, 407.2034; found, 407.2040.

3.2.2. Experimental Procedures for the Synthesis of 2,6-Di-tert-butyl-4-(1-(4-chlorophenyl)-2,2-
difluoroethylidene)cyclohexa-2,5-dien-1-one (6a)

K3[Fe(CN)6] (395 mg, 1.2 mmol) and KOH (71 mg, 1.26 mmol) in water (3 mL) were
added in one portion to a solution of 2f (114 mg, 0.3 mmol) in hexane (3 mL) under N2 in a
25-milliliter round-bottom flask equipped with a magnetic stir bar. The reaction mixture
was stirred at room temperature for 5 h. The organic layer was separated and the aqueous
layer was extracted with hexane. The combined organic layer was washed with brine and
dried over Na2SO4. After filtration, the solution was concentrated by rotary evaporation.
The residue was purified by silica gel flash column chromatography using petroleum ether
to afford 6a (88.5 mg, 78%).
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2,6-Di-tert-butyl-4-(1-(4-chlorophenyl)-2,2-difluoroethylidene)cyclohexa-2,5-dien-1-one (6a):
118 mg, 78% yield. Yellow solid. M.p.: 125–127 ◦C. Purification by column chromatography
using hexane. 1H NMR (400 MHz, CDCl3): δ 7.48–7.42 (m, 2H), 7.41–7.37 (m, 1H), 7.25 (d,
J = 9.0 Hz, 2H), 6.98 (t, J = 54.9 Hz, 1H), 6.81 (d, J = 2.5 Hz, 1H), 1.34 (s, 9H), 1.15 (s, 9H).
13C{1H} NMR (101 MHz, CDCl3): δ 186.1, 150.5, 150.4, 139.9 (t, J = 20.6 Hz), 135.4, 133.5 (t,
J = 7.5 Hz), 131.7, 131.7, 129.8, 128.6, 125.3, 111.7 (t, J = 237.9 Hz), 35.8, 35.5, 29.5, 29.3. 19F
NMR (376 MHz, CDCl3): δ −109.91 (d, J = 54.7 Hz, 2F). HRMS (ESI) m/z: [M − H]+ calcd.
for C22H24ClF2O, 377.1484; found, 377.1482.

3.2.3. Experimental Procedures for the Synthesis of 4-(1-(4-Chlorophenyl)-2,2-difluoroethyl)
Phenol (6b)

A 10-milliliter sealed tube equipped with a magnetic stir bar was charged with 2f
(114 mg, 0.3 mmol) and dry toluene (3 mL). The solution was added with concentrated
H2SO4 (1 drop) and heated at 120 ◦C (oil bath temperature) for 18 h with vigorous stirring.
After cooling to room temperature, water (20 mL) was poured into the reaction mixture,
and then the mixture was extracted with dichloromethane (3 × 20 mL). The combined
organic layer was dried over Na2SO4, filtered, and evaporated under reduced pressure.
The residue was purified by flash column chromatography on silica gel using petroleum
ether-ethyl acetate (5:1-1:1, v/v) as an eluent to afford the product 6b (65.0 mg, 81%).

4-(1-(4-Chlorophenyl)-2,2-difluoroethyl)phenol (6b): 87 mg, 81% yield. Yellow oil. Purification
by column chromatography (hexane/dichloromethane = 5:1, v/v). 1H NMR (400 MHz,
CDCl3): δ 7.34–7.27 (m, 2H), 7.21 (d, J = 8.5 Hz, 2H), 7.17–7.07 (m, 2H), 6.87–6.71 (m, 2H),
6.22 (td, J = 55.8, 4.1 Hz, 1H), 5.14 (s, 1H), 4.32 (td, J = 16.1, 4.1 Hz, 1H). 13C{1H} NMR
(101 MHz, CDCl3): δ 155.1, 135.7 (t, J = 3.3 Hz), 133.4, 130.4, 130.2, 128.8, 128.7, 116.6 (t,
J = 244.7 Hz), 115.7, 53.5 (t, J = 20.8 Hz). 19F NMR (376 MHz, CDCl3): δ −117.75 (ddd,
J = 279.3, 55.8, 15.6 Hz, 1F), −118.89 (ddd, J = 280.0, 56.8, 17.0 Hz, 1F). HRMS (ESI) m/z:
[M − H]+ calcd. for C14H10ClF2O, 267.0388; found, 267.0390.

3.2.4. General Experimental Procedure for the Synthesis of
1-Ethoxy-4-(2,2,2-trifluoro-1-(4-methoxyphenyl)ethyl)benzene (7b)

A 30-milliliter sealed tube equipped with a magnetic stir bar was charged with 3i
(236 mg, 0.6 mmol) and dry toluene (5 mL). The solution was added with concentrated
H2SO4 (2 drops) and heated at 120 ◦C (oil bath temperature) for 18 h with vigorous stirring.
After cooling to room temperature, water (20 mL) was poured into the reaction mixture,
and then the mixture was extracted with dichloromethane (3 × 20 mL). The combined
organic layer was dried over Na2SO4, filtered, and evaporated under reduced pressure.
The residue was purified by flash column chromatography on silica gel using petroleum
ether-ethyl acetate (5:1–1:1, v/v) as an eluent to afford the intermediate 7a (127.0 mg, 75%).

A 25-milliliter round-bottom flask was charged with a magnetic stir bar, the intermediate
7a (84.5 mg, 0.3 mmol), Cs2CO3 (71 mg, 0.6 mmol), CH3CN (10 mL), and iodoethane (93.5 mg,
0.6 mmol). The reaction mixture was stirred for about 24 h at 90 ◦C (oil bath temperature) and
then cooled to room temperature and filtered. The solvent was evaporated under vacuum.
The residue was subjected to silica gel column chromatography using petroleum ether–ethyl
acetate (10:1, v/v) as an eluent to give the product 7b (82.8 mg, 89% yield).

4-(2,2,2-Trifluoro-1-(4-methoxyphenyl)ethyl)phenol (7a): 85 mg, 75% yield. Yellow oil. Purifica-
tion by column chromatography (hexane/dichloromethane = 5:1, v/v). 1H NMR (400 MHz,
CDCl3): δ 7.26 (d, J = 8.7 Hz, 2H), 7.21 (d, J = 8.5 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 6.82–6.73
(m, 2H), 5.21– 5.17 (m, 1H), 4.56 (q, J = 10.0 Hz, 1H), 3.79 (s, 1H). 13C{1H} NMR (101
MHz, CDCl3): δ 159.1, 155.2, 130.4, 130.1, 128.0, 127.8, 126.4 (q, J = 280.3 Hz), 115.5, 114.1,
55.3, 53.9 (q, J = 27.6 Hz). 19F NMR (376 MHz, CDCl3): δ −66.38 (s, 3F). HRMS (ESI) m/z:
[M − H]+ calcd. for C15H12F3O2, 281.0789; found, 281.0793.

1-Ethoxy-4-(2,2,2-trifluoro-1-(4-methoxyphenyl)ethyl)benzene (7b): 110 mg, 89% yield. Yellow
oil. Purification by column chromatography (hexane/dichloromethane = 10:1, v/v). 1H
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NMR (400 MHz, CDCl3): δ 7.28–7.24 (m, 4H), 7.04–6.44 (m, 4H), 4.57 (q, J = 9.8 Hz, 1H),
4.00 (q, J = 7.0 Hz, 2H), 3.78 (s, 3H), 1.39 (t, J = 7.0 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3):
δ 159.1, 158.5, 130.1, 130.1, 129.2 (q, J = 280.4 Hz), 127.9 (d, J = 1.4 Hz), 127.6 (d, J = 1.3 Hz),
114.6, 114.1, 63.4, 55.2, 54.0 (q, J = 27.5 Hz), 14.8. 19F NMR (376 MHz, CDCl3): δ −66.38 (s).
MS (EI, m/z, %): 213 (46.74), 241 (100.00), 310 (M+, 36.84).

4. Conclusions

In summary, we have developed a direct method for the 1,6-nucleophilic diflu-
oromethylation, trifluoromethylation, and difluoroalkylation of p-QMs using Me3SiRf
(Rf = CF2H, CF3, CF2CF3, CF2COOEt, and CF2SPh) as a reagent, promoted by CsF/18-
crown-6, within a temperature range of −15 ◦C to room temperature. The nucleophilic
reaction is suitable for p-QMs with various substituents, giving the corresponding products
in satisfactory to good yields. The synthetic utility of the approach has been exemplified
by the formation of fluoroalkylated p-quinone methide (via oxidation) and α-fluoroalkyl
diarylmethane (via de-tert-butylation).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29122905/s1. The NMR spectra of all products are
included in.
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