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Abstract: The electrocatalytic carbon dioxide (CO2) reduction reaction (CO2RR) is extensively re-
garded as a promising strategy to reach carbon neutralization. Copper sulfide (CuS) has been widely
studied for its ability to produce C1 products with high selectivity. However, challenges still remain
owing to the poor selectivity of formate. Here, a Bi/CeO2/CuS composite was synthesized using a
simple solvothermal method. Bi/CeO2–decorated CuS possessed high formate selectivity, with the
Faraday efficiency and current density reaching 88% and 17 mA cm−2, respectively, in an H-cell. The
Bi/CeO2/CuS structure significantly reduces the energy barrier formed by OCHO*, resulting in the
high activity and selectivity of the CO2 conversion to formate. Ce4+ readily undergoes reduction to
Ce3+, allowing the formation of a conductive network of Ce4+/Ce3+. This network facilitates electron
transfer, stabilizes the Cu+ species, and enhances the adsorption and activation of CO2. Furthermore,
sulfur catalyzes the OCHO* transformation to formate. This work describes a highly efficient catalyst
for CO2 to formate, which will aid in catalyst design for CO2RR to target products.

Keywords: CO2RR; formate; Bi/CeO2–decorated CuS catalysts

1. Introduction

In recent decades, the utilization of fossil fuels as energy sources has resulted in a
notable rise in the concentration of carbon dioxide (CO2) in the atmosphere. This increase
poses a threat to the sustainable development of societies [1]. The electrocatalytic CO2
reduction reaction (CO2RR) has emerged as a promising approach for transforming CO2
into valuable products using electricity derived from renewable energy sources [2–4]. This
electrochemical process involves multielectron/proton transfer mechanisms to convert
CO2 into various chemicals, such as CO, HCOOH, CH4, CH3OH, C2H4, CH3COOH, and
CH3CH2OH [5–8]. In these processes, the reduction to formic acid, which is usually consid-
ered an economically viable and atom-economic target, only requires two proton-coupled
electron transfers [9]. Metals, like Zn, Sn, Bi, Pb, Au, and Ag, that have weaker binding
capacities for CO intermediates may produce CO or HCOOH [10,11]. In general, the for-
mation of the product involves three steps: (1) the adsorption of reactants on the surface
of the electrocatalyst; (2) the proton-coupled electron transfer to the reactants; and (3) the
desorption of electrocatalyst surface products [12–14]. At present, there are three pathways
for CO2 to generate HCOOH that proceed via *OCHO, *COOH, and *H intermediates,
where * represents the holes on the catalyst surface or adsorption intermediates [15]. Koh
et al. showed using theoretical calculations that the *OCHO pathway is more energeti-
cally favorable on a bismuth (Bi) surface [16]. First, the CO2

− radical anion is formed by
single-electron transfer to CO2 in which the oxygen in the CO2

− radical anion binds to the
electrode surface [17]. In this case, protonation occurs on the carbon atom and the HCOO*
intermediate forms. Then, the *OCHO intermediate is formed by electron transfer. Finally,
HCOOH is generated by the *OCHO protonation step [12,18]. Bi–based catalysts have
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attracted attention owing to their low toxicity and cost [19]. However, the high overpo-
tential for CO2RR to HCOOH and poor electronic conductivity hinder the electrocatalytic
performance for the selective generation of HCOOH. In addition, owing to the inevitable
complex reaction pathways and inherent low efficiency, the activity and selectivity of
Bi–based electrocatalysts need to be further improved [20]. The addition of Bi on other
metal substrates improves the stability of the catalysts [21]. Additionally, the introduction
of a second metal regulates the electronic structure of the catalyst, thereby enhancing its
selectivity, stability, and activity towards CO2RR. As a CO2RR catalyst, copper (Cu) has
high electronic conductivity and tunable selectivity. Thus, Cu has been introduced into Bi
to form bimetallic Bi–Cu materials that can enhance the conversion of CO2 to HCOOH [22].
These Cu–Bi alloys can be prepared by co-deposition, which expands the interfacial active
area for CO2RR. The CuBi3 catalyst has an exceptional electrochemical performance for
CO2RR towards HCOOH, with a Faraday efficiency (FE) of ~98.4% and a HCOOH partial
current density of 21.2 mA cm−2 in 0.1 M KHCO3. The CuBi3 catalyst has the ability to
regulate electronic states and has outstanding adsorption of CO2, providing a lattice and
spatially constrained environment for active sites [23]. Copper sulfide (CuS) produces C1
products with high selectivity [24], and sulfur (S) can change the electronic properties of Cu,
thereby influencing its capacity to adsorb pertinent intermediates like HCOO* [25]. Chen
et al. prepared CuS catalysts with different morphologies and compositions by adjusting
the Cu/S raw material ratio and the reaction temperature. In the solvothermal synthesis,
the higher Cu/S ratio and reaction temperature leads to a relatively high selectivity of
CuS nanoflowers for the production of HCOOH, with an FE of ~52% [26]. A Cu electrode
with different oxidation states (Cu+ and Cu0-dominated) is capable of directing specific
CO2RR pathways to generate HCOOH [27]. However, the in situ formation of Cu+ is
insufficient and easily reduces to Cu0. Therefore, precisely controlling the local structure
of the catalysts to generate stable and abundant Cu+ active sites is required to improve
the activity and selectivity of the catalysts. Chen et al. reported that Cu+ is stabilized
by the strong interaction between CuO and CeO2 for the highly selective electrocatalytic
reduction of CO2 to ethylene under mild conditions. Adjusting the CuO/CeO2 interface
interaction significantly inhibits proton reduction and enhances CO2 reduction. In 0.1-M
KHCO3, the ethylene FE is as high as 50.0% at −1.1 V vs. the reversible hydrogen electrode
(RHE) [28]. Although previous studies on Cu–based catalysts have made great progress,
it is still difficult to control the selectivity of CO2RR in Cu–based catalysts owing to the
elusive influence of various entanglement factors on the complexity of the CO2RR pathway.

In this study, a simple strategy for the preparation of Bi– and CeO2–loaded CuS com-
posites using the dissolution heat method is introduced. A synthesized Bi/CeO2/CuS
catalyst was used to study the electrocatalytic performance of CO2RR to formate. Elec-
trochemical tests demonstrated that Bi/CeO2/CuS effectively catalyzed the generation of
formate from CO2, achieving a FEformate of 88% and current density of 17 mA cm−2. The
incorporation of CeO2 enhanced conductivity and stabilized Cu+, which promoted CO2
adsorption and activation. The CuS structure of the Bi coating protected the stable existence
of S and prevented the air-based oxidation of Cu. This study provides an effective catalyst
for the production of HCOOH through CO2RR and helps to promote catalyst designs for
CO2RR target products.

2. Results and Discussion

Figure 1a,b present scanning electron microscope (SEM) images of CuS that display
flower-like shapes. The nanosheets possessed smooth surfaces and had an interval range
of 0.5–1 µm. A CuS catalyst loaded with Bi and CeO2, as shown in Figure 1c,d, revealed
an uneven surface, and the nanosheets exhibited rough surfaces that are thicker at the
edges. The uneven surface offered a high specific surface area. In addition, the nanoflower
morphology provided more under-coordinated sites for CO2RR.
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Figure 1. SEM images of (a,b) CuS and (c,d) Bi/CeO2/CuS. 

Figure 2a presents transmission electron microscope (TEM) images of a Bi/CeO2/CuS 
catalyst. There was material cover around the CuS. The lattice interplanar spacings of 
nanosheets measured 0.26 nm, 0.34 nm, and 0.31 nm, corresponding to the (200) plane of 
Bi2O3, the (111) plane of CuS, and the (111) plane of CeO2 [29,30], respectively (Figure 2b). 
CeO2 covered the surface of the CuS, providing oxygen to the neighboring Cu [31]. Figure 
2c–g show the elemental distributions of Cu, S, and Ce. The distribution of CeO2 on the 
surface of the CuS nanosheets was uniform, and there was no observed particle agglom-
eration. 

 
Figure 2. (a) TEM images of Bi/CeO2/CuS; (b) high-resolution TEM images of Bi/CeO2/CuS; and (c–
g) EDS mapping of Bi/CeO2/CuS. 

  

Figure 1. SEM images of (a,b) CuS and (c,d) Bi/CeO2/CuS.

Figure 2a presents transmission electron microscope (TEM) images of a Bi/CeO2/CuS
catalyst. There was material cover around the CuS. The lattice interplanar spacings of
nanosheets measured 0.26 nm, 0.34 nm, and 0.31 nm, corresponding to the (200) plane of
Bi2O3, the (111) plane of CuS, and the (111) plane of CeO2 [29,30], respectively (Figure 2b).
CeO2 covered the surface of the CuS, providing oxygen to the neighboring Cu [31].
Figure 2c–g show the elemental distributions of Cu, S, and Ce. The distribution of CeO2
on the surface of the CuS nanosheets was uniform, and there was no observed particle
agglomeration.
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The crystal structure of the sample was analyzed using X-ray diffraction (XRD), and
the diffraction spectra (Figure 3) displayed distinctive peaks at the 2θ positions of 29.2◦,
31.7◦, 32.8◦, and 47.9◦, which corresponded to the CuS crystals (PDF#06–0464) [32]. The
peaks at the 2θ positions of 29.2◦, 33.07◦, 46.7◦, and 56.34◦ corresponded to the CeO2 crystals
(PDF#43–1002). The XRD pattern of the Bi/CeO2/CuS catalyst revealed clear diffraction
peaks of Bi2O3 and CeO2 [33,34]. These results indicated the successful preparation of
Bi/CeO2/CuS.
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The valence and electronic structures of the elements Cu, S, and Ce in the Bi/CeO2/CuS
catalyst were investigated using XPS. In the Cu 2p spectrum (Figure 4a), two main peaks
appeared at 932.38 eV and 952.23 eV, corresponding to Cu 2p3/2 and Cu 2p1/2, respectively.
These could be divided into Cu2+2p3/2 (932.13 eV), Cu2+2p3/2 (933.83 eV), Cu2+2p1/2
(952.13 eV), and Cu2+2p1/2 (954.13 eV) [35]. The two subpeaks with binding energies
located at ~931.58 and 951.28 eV indicated the presence of Cu–S bonds. The characteristic
peaks at ~933.3 and 954.13 eV, as well as two satellite peaks at 945.23 eV and 963.08 eV,
were attributed to Cu–O for the surface oxidation of Cu in air [28,36]. For Bi/CeO2/CuS,
a positive shift of Cu 2p was observed, indicating that electron transfer occurred on the
surface of the Cu [22]. The two peaks in the S 2p XPS spectrum (Figure 4b) with binding
energies at 164.43 eV and 165.13 eV were attributed to S 2p3/2 and S 2p1/2, corresponding to
metal sulfide [24]. In the Ce 3d spectrum, as shown in Figure 4c, the peaks of CeO2 at 881.23,
887.18, 899, 903.53, 909.03, and 914.53 eV were attributed to the mixed configurations of the
3d94f1, 3d94f2, and 3d94f0 Ce4+ states. The peaks at 884.78 and 908.78 eV were attributed to
the mixed configuration of the 3d94f1 and 3d94f2 Ce3+ states. Thus, CeO2 contained Ce3+

and Ce4+ [28]. In addition, the binding energies of the Ce elements in the Bi/CeO2/CuS
composite were less than that of CeO2, indicating that CeO2 gained electrons, and the
electron cloud density of CeO2 in the Bi/CeO2/CuS composite materials increased [37].
As shown in Figure 4c, the Bi 4f spectrum had four peaks at 157.88, 159.68, 163.28, and
165.03 eV. The first double peak at 157.88 and 163.28eV corresponded to the Bi 4f7/2 and
4f5/2 of Bi0 [38]. The second double peak at 159.68 and 165.03 eV was attributed to a layer
of Bi2O3 [22].
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The catalytic performances of Bi/CeO2/CuS were investigated in a sealed H-type
electrolytic cell with a three-electrode system. The experiment utilized a CO2–saturated
0.5 M KHCO3 electrolyte. Figure 5a shows the linear sweep voltammetry (LSV) curves
of CuS, CeO2, and Bi/CeO2/CuS in N2–saturated and CO2–saturated electrolytes with a
scan rate of 10 mV s−1. For the lack of active sites, CeO2 does not respond to CO2. The
cathodic current densities in the CO2–saturated electrolytes were higher than those in
the N2–saturated electrolytes within the potential range of −0.2 V to −1.1 V vs. RHE.
Additionally, the Bi/CeO2/CuS catalysts had lower onset potentials than the CuS in the
CO2–saturated electrolytes. Furthermore, the current density of the Bi/CeO2/CuS was
significantly higher than that of the CuS, suggesting that Bi/CeO2/CuS has a comparatively
superior activity of CO2RR [22]. At a potential of −1.1 V vs. RHE, the current density of
CeO2/CuS reached 47.3 mA cm−2, which was 1.3 times higher than that of the CuS. This
enhancement was attributed to the reduction of Ce4+ to Ce3+ in CeO2, which created a
conductive network (Ce4+/Ce3+) and improved the conductivity of the catalyst, enhancing
the electrocatalytic performance of the CuS.

To further demonstrate the superior electrocatalytic performance of Bi/CeO2/CuS over
CuS, CV curves were obtained at different scanning speeds (20, 40, 60, 80, and 100 mV s−1)
(Figure 5b), and the electrochemical active area of the sample was evaluated by calculat-
ing the double-layer capacitance (Cdl). As shown in Figure 5c, the Cdl (8.67 mF cm−2) of
Bi/CeO2/CuS was greater than that of CuS (3.24 mF cm−2). The addition of CeO2 effec-
tively increased the active area of the reaction, and the unique structure of Bi/CeO2/CuS
resulted in good electrocatalytic activity. To reveal the mechanism behind the performance
enhancement, the reaction kinetics of the catalyst in the electrocatalytic reduction of CO2
were studied. The Tafel slope was obtained by fitting the LSV curve to evaluate differ-
ent catalysts’ CO2RR kinetic performances. As shown in Figure 5d, the Tafel slope of
Bi/CeO2/CuS (399.4 mV dec−1) was much smaller than that of CuS (799.7 mV dec−1),
indicating that Bi/CeO2/CuS is more prone to generate *CO2

− intermediates compared
with CuS [39,40]. In a further comparison of the conductivity of the CuS and Bi/CeO2/CuS
catalysts, the electrochemical impedance spectra of CuS and Bi/CeO2/CuS were deter-
mined in 0.1-M CO2–saturated KHCO3 solution at −0.9 V vs. RHE. As shown in Figure 5e,
the Bi/CeO2/CuS exhibited an obviously smaller equivalent series resistance than that of
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CuS, illustrating its faster catalytic kinetics [41]. In addition, chronocoulometry was used
to evaluate the electrochemically effective area of the catalysts (Figure S5), which were
0.0132 cm2 and 0.032 cm2 for CuS and Bi/CeO2/CuS, respectively. This indicated that the
Bi/CeO2/CuS catalyst possessed a high electroactive surface area, which enhanced the
electrochemical response [42].
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The electrocatalytic reduction of CO2 by Bi/CeO2/CuS was investigated at various
constant potentials using the constant potential method. The liquid product obtained
from electrocatalytic CO2 production was found to be pure formate (Figures 6a and S3).
Figure 6a shows the FEs for formate production from the catalysts at different potentials,
with Bi/CeO2/CuS exhibiting the highest FE for formate at all potentials. The maximum FE
of formate reached 88% at −0.9 V vs. RHE. Compared with the Bi/CeO2/CuS catalyst, the
FEHCOOH of CuS was significantly lower. These results indicated that Bi/CeO2/CuS had
the highest electrochemical reduction activity for CO2. Moreover, the FE of Bi/CeO2/CuS
was higher than that of CuS, suggesting that Bi/CeO2/CuS is more suitable for the electro-
chemical reduction of CO2 and that it exhibits higher selectivity towards formate. This can
be attributed to the S atom energy in the Cu lattice, which effectively reduces the Gibbs
free energy for the conversion of CO2 into *OCHO intermediates. These intermediates
play crucial roles in the formation of formate. Additionally, Bi doping is conducive to the
adsorption and activation of CO2 and accelerated electron transfer processes [43]. Therefore,
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Bi/CeO2/CuS demonstrates the capability to generate formate with high selectivity [44,45].
Ce4+ in CeO2, which is easily reduced at a negative potential [46], stabilizes Cu+ species.
This increases the adsorption and activation of CO2, as well as the conversion of HCOO*
intermediates, which further improves the FE of formate. Figure 6b shows the FE of for-
mate at different potentials, with a potential window of −0.4 V to −0.9 V vs. RHE for the
generation of formate for Cu–based catalysts [47]. The FE of formate decreased when the
applied constant potential was more negative than −0.9 V vs. RHE, which was caused by
transport limitations [48]. The formate partial current densities of the catalysts at different
point positions were calculated and compared. As shown in Figure 6c, the formate partial
current density of Bi/CeO2/CuS was higher than that of CuS, showing an increasing trend
from −0.8 V to −1.05 V vs. RHE. To further verify the stability of Bi/CeO2/CuS in the
electrocatalytic reduction of CO2, a constant potential test was carried out at a potential of
−0.9 V vs. RHE (Figure 6d). The Bi/CeO2/CuS catalyst exhibited an apparently stabilized
FEHCOOH and current density at −0.9 V vs. RHE in CO2–saturated 0.5-M KHCO3 for over
6 h. Meanwhile, the FEHCOOH remained above 85%.
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The structural stability of Bi/CeO2/CuS after CO2RR at −0.9 V vs. RHE was charac-
terized by XRD and SEM. As shown in Figure 7a, the obvious diffraction peak belonged
to carbon paper. Other peaks correspond to the main peak position of Bi/CeO2/CuS
(29.2–32.8◦, 46.7–48.2◦, 55.2◦, 58.6–59.5◦). Affected by the C peak, the peak resolution
of Bi/CeO2/CuS is reduced, merging into a typical broad peak. Figure 7b show the
SEM images after the reaction. The morphology remains uniform particles, similar to
the morphology before the reaction. Based on the XRD and SEM results, we believe that
the catalysts are relatively stable. Comparing with the previous results in Table 1, it can
be seen the Bi/CeO2/CuS fabricated in this research has good performance as a CO2
electrochemical catalysts.
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The possible reaction pathway of CO2RR to HCOOH over the Bi/CeO2/CuS catalyst
is shown in Figure 8. The CO2 was adsorbed by the catalyst, and it captured an electron
and proton to form the *COOH intermediate, which was further converted into HCOOH
with the help of electrons. In addition, the HCOO* intermediate produced HCOOH [25].
Specifically, the adsorbed CO2 was activated to form *CO2, the *CO2 was protonated to
form the HCOO* intermediate, and proton–electron transfer formed HCOOH [49]. The
mechanism is as follows [24,25]:

CO2 + e− → *CO2
− (1)

*CO2
− + H+ → *OCHO (2)

*OCHO + e− + H+ → HCOOH. (3)

Molecules 2024, 29, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 7. (a) XRD pattern and (b) SEM image of Bi/CeO2/CuS after CO2RR. 

The possible reaction pathway of CO2RR to HCOOH over the Bi/CeO2/CuS catalyst 
is shown in Figure 8. The CO2 was adsorbed by the catalyst, and it captured an electron 
and proton to form the *COOH intermediate, which was further converted into HCOOH 
with the help of electrons. In addition, the HCOO* intermediate produced HCOOH [25]. 
Specifically, the adsorbed CO2 was activated to form *CO2, the *CO2 was protonated to 
form the HCOO* intermediate, and proton–electron transfer formed HCOOH [49]. The 
mechanism is as follows [24,25]: 

CO2 + e− → *CO2− (1)

*CO2− + H+ → *OCHO (2)

*OCHO + e− + H+ → HCOOH. (3)

The HCOO* intermediate generated HCOOH on Cu (111) through proton–electron 
pair transfer (formate binds to the surface through its O atom) [14]. The doping of S into 
Cu (111) affects the formation of HCOOH. The presence of S weakens the adsorption and 
desorption of HCOO* and *COOH, and inhibits the formation of CO [24]. Additionally, 
the presence of S species facilitates the formation of the key *OCHO intermediates toward 
HCOOH production [50]. Furthermore, the incorporation of S into the Cu surface lowers 
the performance of the Cu catalyst for H2 evolution [51]. However, the addition of CeO2 
forms a Ce3+/Ce4+ conductive network, which improves the catalyst’s conductivity [46], 
reduces the electron density of the Cu2+ site, and changes the valence state of Cu at the 
Bi/CeO2/CuS interface [28]. The Bi nanoparticles provide active sites and facilitate electron 
transfer. 

 
Figure 8. Schematic diagram of the possible reaction pathways of the CO2RR to HCOOH. Figure 8. Schematic diagram of the possible reaction pathways of the CO2RR to HCOOH.

The HCOO* intermediate generated HCOOH on Cu (111) through proton–electron
pair transfer (formate binds to the surface through its O atom) [14]. The doping of S into
Cu (111) affects the formation of HCOOH. The presence of S weakens the adsorption and
desorption of HCOO* and *COOH, and inhibits the formation of CO [24]. Additionally,
the presence of S species facilitates the formation of the key *OCHO intermediates toward
HCOOH production [50]. Furthermore, the incorporation of S into the Cu surface lowers
the performance of the Cu catalyst for H2 evolution [51]. However, the addition of CeO2
forms a Ce3+/Ce4+ conductive network, which improves the catalyst’s conductivity [46],
reduces the electron density of the Cu2+ site, and changes the valence state of Cu at
the Bi/CeO2/CuS interface [28]. The Bi nanoparticles provide active sites and facilitate
electron transfer.
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Table 1. Comparison of FEHCOOH for Bi/CeO2/CuS electrode with reported Cu–based electrocatalysts.

Catalysts Cell Type Electrolyte FE(%) Current Density
(mA cm−2) Ref.

Cu-xS H-cell 0.1 M KHCO3 74 13.9 [52]
CuSx H-cell 0.1 M KHCO3 75 12 [24]

Cu7S4 NSs Flow cell 1 M KOH 82.7 456 [53]
GDY/CuSx H-cell 0.1 M KHCO3 70 65.6 [54]

CuS/N,S-rGO H-cell 0.5 M KHCO3 82 24.2 [36]
Sn–Cu@Sn GDE 1 M KHCO3 84.2 30 [55]

CuBi3 H-cell 0.1 M KHCO3 98.4 21.2 [23]
Bi@NCA H-cell 0.5 M KHCO3 95 – [43]

Bi-PVP/CC-600 H-cell 0.5 M KHCO3 81 54 [56]
Bi-NFs H-cell 0.1 M KHCO3 92.3 28.5 [41]

Bi/CeO2/CuS H-cell 0.5 M KHCO3 88 17 This work

Cu-xS: Sulfur-doped Cu2O–derived Cu catalyst; CuSx: Sulfur-doped Cu catalyst; Cu7S4 NSs: Cu7S4 nanosheets;
GDY/CuSx: Graphdiyne/copper sulfide heterostructure; CuS/N,S-rGO: CuS anchored on nitrogen and sulfur
Co-doped graphene; Sn–Cu@Sn: Sn–Cu@Sn dendrites that have a core@shell architecture. CuBi3: Co-deposition
to prepare Cu–Bi alloy. Bi@NCA: Bi nanoparticles were anchored on N–doped carbon aerogel. Bi-PVP/CC-600:
Ultrasmall Bi nanoparticles confined in carbon nanosheets. Bi-NFs: Bi nanoflowers.

3. Experimental Section
3.1. Materials

Copper chloride dihydrate (CuCl2·2H2O, AR, 99%), thiourea (CH4N2S, AR, 99%),
ethylene glycol (C2H6O2, AR, 98%), cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O,
99.9%), bismuth (III) nitrate hexahydrate (Bi(NO3)3·5H2O, AR.), nafion (5 wt.%), potassium
bicarbonate (KHCO3), dimethyl sulfoxide (C2H6OS), deuterium oxide (D2O), and absolute
ethanol were purchased from Macklin, Shanghai, China. CO2 (99.999%) was purchased
from Shandong Baiyan Chemical Co., Ltd., Zibo, China. Carbonized paper (hydrophobic)
was purchased from Shanghai Hesen Electric Co., Ltd., Shanghai, China.

3.2. Catalyst Preparation
3.2.1. Synthesis of CuS Nanosheets

The CuS nanosheets were prepared in accordance with the solvothermal method [50].
Briefly, 0.85 g CuCl2·2H2O was dissolved in 30 mL ethylene glycol and stirred for 30 min
in water bath at 90 ◦C. The mixture was stirred to obtain a uniform solution. Then, 1.52 g
thiourea dissolved in 25 mL ethylene glycol was added slowly into the CuCl2·2H2O
solution, and stirring continued for 30 min. The mixture was transferred to 100 mL
polytetrafluoroethylene-lined stainless steel high-pressure reactor at 170 ◦C for 5 h. Finally,
the obtained black product was centrifuged and washed several times with absolute
ethanol and deionized water. It was then dried in a vacuum oven at 60 ◦C for 6 h to obtain
CuS nanosheets.

3.2.2. Synthesis of Bi/CeO2/CuS Nanosheets

Briefly, 100 mg of CuS nanosheets was dispersed into 40 mL of deionized water and
stirred for 1 h. Subsequently, 20 mL 0.023 mol L−1 Ce(NO3)3 of ethanol solution was
dropped into the CuS dispersion with continuous stirring. Then, 200 mg of Bi(NO3)3·5H2O
was added to the solution. The mixture then underwent hydrothermal synthesis at 170 ◦C
for 5 h. Finally, the obtained black product was centrifuged and washed several times with
absolute ethanol and deionized water. Then, the obtained powder was dried at 60 ◦C for
6 h in vacuum oven to obtain Bi/CeO2/CuS nanosheets.

3.2.3. Preparation of Working Electrodes

To construct the cathode electrode, 10 mg of powder prepared above was suspended
in 1 mL acetone supplemented with 20 µL Nafion (5 wt%) via ultrasound. Then, the
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catalyst slurry (0.1 mL) was slowly drop cast onto a PTFE–hydrophobized carbon fiber
paper (1 cm × 1 cm) to achieve a catalyst loading of ~1.0 mg cm−2.

3.3. Catalyst Characterization

The crystal structure of the catalyst was analyzed using an X-ray diffractometer from
Bruker AXS (Billerica, MA, USA), using Cu Kα radiation in the wide 2θ range of 10–90◦.
The morphology and elemental mapping images of the catalysts were characterized using
an FEI Sirion 200 field emission SEM (Portland, OR, USA). TEM images were recorded
on an FEI Tecnai F20 TEM (Portland, OR, USA) at an operating voltage of 200 KV. XPS
spectra were recorded on a K-Alpha (Thermo Fisher Scientific Co., Ltd., Waltham, MA,
USA) instrument. The liquid product was quantitatively analyzed using a Bruker AVANCE
400 MHz (Billerica, MA, USA) nuclear magnetic resonance spectrometer. A gas chromato-
graph (Shandong Lunan Ruihong Chemical Instrument Co., Ltd.; SP-7890 Plus, Tengzhou,
China) was used for the quantitative analysis of gas products.

3.4. CO2RR Performance

The CO2RR performance of the catalyst was tested using the three-electrode system of
CS-350 electrochemical workstation (Wuhan Correst Instrument Co., Ltd., Wuhan, China).
The experiment was performed using a sealed H-type electrolytic cell, and an air tightness
test was conducted prior to the experiment. The working electrode consisted of catalyst-
loaded carbon paper, an Ag/AgCl reference electrode, and a carbon rod counter electrode.
A proton exchange membrane was utilized to separate the cathode chamber and the anode
chamber, and a 0.5-M KHCO3 solution was employed as the electrolyte. Before each test,
continuously bubbling high-purity CO2 (at a rate of 20 mL min−1) into the electrolyte for
30 min is recommended. Cyclic voltammetry scans at a scanning rate of 100 mV s−1 to
activate and stabilize the electrode material were performed. LSV was conducted at a
scanning rate of 10 mV s−1 in N2–saturated and CO2–saturated 0.5-M KHCO3 solution
with a voltage range from 0 to −1.1 V (vs. RHE). The potentiostatic method was used to
test the Faraday efficiency of catalysts, with a potential range of −0.7 V~−1.1V (vs. RHE).
The Tafel slope (b) was obtained by fitting the linear portion of the Tafel plot to the Tafel
equation (η = b lgJ + a) [57]. The test voltage for electrochemical impedance test was −0.1 V,
test frequency 105–0.01 Hz, and amplitude 5 mV. Double-layer capacitance was determined
by CV with different scan rates from 20 to 100 mV s−1 [58]. All of the electrochemical tests
were performed without iR compensation.

3.5. Product Analysis

After electrolysis at a constant potential for 60 min, the gas products were collected
using a gas collection bag and analyzed using a gas chromatograph equipped with a
hydrogen flame ionization detector for CO and CH4 or a thermal conductivity detector for
H2. The concentrations of the gas products were calculated from the ratio of the peak areas
of the gas products and the standard gas. The FEs of the gas products were reported as the
averages of three measurements.

Liquid products were analyzed by nuclear magnetic resonance spectrometry [59].
To quantify the concentration of formate, the concentration of 0.47-M dimethyl sulfoxide
solution was used as the internal standard. A calibration curve was prepared using the
NMR peak area of a standard concentration of HCOONa solution relative to the internal
standard. Subsequently, the concentration of formate was determined by measuring the
NMR peak area of formate relative to the internal standard, using the calibration curve as a
reference. This approach enabled the accurate quantification of the formate concentration.

The FE was calculated as follows [60]:

FE (%) = (x × n × F/Q) × 100%, (4)

where x represents the molar amount of the product produced (mol) and n represents the
number of electrons transferred to form different products. For example, in the case of
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formate, n is 2. F represents the Faraday constant (96,485 C mol−1), and Q represents the
total amount of electricity consumed throughout the reaction (C).

The FE of gas products was calculated as follows:

FE (%) = (N × Vp × Cst × P × F)/(Vst × R × T× j× t), (5)

where N represents the number of electrons transferred to form gas molecules, Vp represents
the peak area of gas products in GC spectrum, Cst represents the volume concentration
of standard gas, P represents the standard atmospheric pressure (101.3 kpa), F represents
the Faraday constant (96,485 C mol−1), Vst represents the peak area of standard gas in GC
spectrum, T represents the room temperature (298 K), j represents the recorded current,
and t represents the reaction time.

4. Conclusions

In this work, we demonstrated that Bi/CeO2/CuS can be used as a highly active and
selective catalyst for the electrochemical reduction of CO2 to generate formate in a wide
potential range. At −0.9 V vs. RHE, the FE of formate reached 88% and the current density
was −17 mA cm−2. Bi/CeO2/CuS also showed excellent stability. After a 1 h reaction,
FE of formate remained stable at −0.9 V vs. RHE, as did the structure. The S inhibited
hydrogen evolution reactions, CeO2 improved the catalyst conductivity, and Bi provided
active sites and facilitated electron transfer. This work provides an easily synthesizable
catalyst for the generation of formate by electrocatalytic CO2 reduction, and these findings
will aid in the rational design of Cu–based catalysts for the electroreduction of CO2.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29132948/s1, Reference [41] are cited in the supplementary
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all products of CuS catalyst. Figure S4. The current density of Bi/CeO2/CuS at different potential.
Figure S5. The effective surface area curves of different simples. Figure S6. Standard curve of formate.
Figure S7. Formate yield of Bi/CeO2/CuS. Figure S8. (a–c) The NMR of different concentration
standard, (d) The NMR of Bi/CeO2/CuS at −0.9 V vs. RHE. Figure S9. (a) The GC of standard, (b)
The GC FID 1 image of simple, (c) The GC FID 2 image of simple, (d) The GC TCD image of simple.
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