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Abstract: The emergence of antimicrobial resistance represents a serious threat to public health and for
infections due to multidrug-resistant (MDR) microorganisms, representing one of the most important
causes of death worldwide. The renewal of old antimicrobials, such as colistin, has been proposed as
a valuable therapeutic alternative to the emergence of the MDR microorganisms. Although colistin is
well known to present several adverse toxic effects, its usage in clinical practice has been reconsidered
due to its broad spectrum of activity against Gram-negative (GN) bacteria and its important role
of “last resort” agent against MDR-GN. Despite the revolutionary perspective of treatment with
this old antimicrobial molecule, many questions remain open regarding the emergence of novel
phenotypic traits of resistance and the optimal usage of the colistin in clinical practice. In last years,
several forward steps have been made in the understanding of the resistance determinants, clinical
usage, and pharmacological dosage of this molecule; however, different points regarding the role of
colistin in clinical practice and the optimal pharmacokinetic/pharmacodynamic targets are not yet
well defined. In this review, we summarize the mode of action, the emerging resistance determinants,
and its optimal administration in the treatment of infections that are difficult to treat due to MDR
Gram-negative bacteria.
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1. Introduction

Antibiotic resistance represents a serious public health threat and is associated with
millions of deaths annually [1]. Since the discovery of the first antimicrobial molecules,
the emergence of novel traits of resistance to antimicrobials has been observed concomi-
tantly [2]. It is well known that antimicrobial resistance is associated with the misuse and
overuse of related drugs in different fields of applications (humans, animals and plants).
Indeed, the presence of antimicrobial rich environments creates favorable conditions that al-
low the selection of resistant subpopulations in opposition to sensitive microorganisms [3].

With the diffusion of these drugs and the rapid increase in antimicrobial resistance, the
development of microorganisms resistant to multiple antimicrobial classes of compounds
has been subsequently observed [4]. The emergence of multidrug-resistant (MDR) microor-
ganisms imposes different limitations on clinicians by reducing the available antimicrobial
armamentarium. In the last years, the diffusion of MDR strains, especially Gram-negative
bacteria, has been considered an urgent threat that requires a prompt response. To overcome
these limitations, several strategies have been adopted, including new schemes of treatment
combining antimicrobial molecules with no activity alone and the development of novel
antimicrobial molecules [5,6]. At the same time, the revival of older antibiotics considered
as last resort drugs has posed new prospective issues in the treatment of difficult-to-treat
(DTR) infections due to MDR strains [5].
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Colistin, also known as polymyxin E, is an old antimicrobial molecule that was discov-
ered in the middle of the 19th century in Japan from a culture of the Paenibacillus polymyxa
subspecies [7]. Colistin is a cyclic oligopeptide antimicrobial belonging to the class of
polycationic antibiotics and it is active against most Gram-negative bacteria by binding to
the lipopolysaccharide (LPS) of the outer cell membranes by electrostatic interaction. The
linkage between colistin and the outer membrane created a disorganization of the outer
membrane’s structure thus results in an alteration of the outer membrane and consequent
intracellular content release and bacterial death [7].

In the last years, the renewal of older antibiotics such as colistin has created a new
perspective in the treatment of DTR infections [6,8]. However, the emergence of new traits
of resistance to this drug and its adverse toxic effects to mammalian cells has mitigated its
use in clinical practice [6,7].

In this review, we discuss the principle of the mode of action, the emerging traits
related to the resistance, and the use of colistin in clinical practice from pharmacological
and clinical point of views. The main points discussed in this review are shown in Table 1.

Table 1. Principal points discussed in this review.

Insight Into the
Mechanism of Action

Activity Against
Gram-Negative Bacteria

Interaction with Lipid
A of LPS

Bacteria Death Induced
by Altering

Permeability Outer
Membrane

Bacteria Death Induced
by Oxidative Stress

Bacteria Death Induced
by Inhibiting Bacteria
Respiration Enzymes

Insight into the
mechanism of resistance

Chromosomal resistance Plasmid resistance
Reduction in LPS

negative charge (i.e.,
pmrHIJKLM operon)

Loss of Lipid A (i.e., Lpx
byosinthesis)

Overexpression of efflux
pumps (i.e., AcrAB–TolC

complex)

Modification of Lipid A
structure (i.e., mcr gene)

Insight into pharmacoki-
netic/pharmacodynamic

properties
f AUC/MIC represent the best PK/PD target for colistin

2. Mechanisms of Action, Antibacterial Activity and Adverse Effects
2.1. Structure and Mode of Action

Colistin is an amphiphilic lipopeptide antibiotic, discovered in 1947 by Koyama [9,10];
it is produced by Paenibacillus polymyxa subspecies colistinus. Colistin, also called polymixyn
E, is a member of the polymyxin family of antibiotics. In 1952, the first formulation in
clinical use was a solution for intravenous administration that showed its bactericidal
function against many Gram-negative bacteria, but not against Gram-positive, anaerobic
bacteria or mycoplasmas. Due to its potent antibacterial activity against Gram-negative
bacteria, colistin was initially considered a “miraculous molecule”. However, since the
1970s, its use in clinical practice has been mitigated due to its severe adverse effects [11].
The original molecule has been principally modified to reduce the nephrotoxicity effect,
and two forms of colistin are clinically available for human treatment: colistin sulfate and
colistin methanesulfonate, also called colistimethate sodium (prodrug form). Differences
between these compounds are related to their use and toxicity. In particular, colistin sulfate
is an active compound that is administered topically and orally, while colistimethate is
used in formulations administered by parenteral and nebulization routes.

Colistin’s basic structure consists of a core region formed by a hydrophobic portion,
which is a cyclic heptapeptide linked by a tripeptide bridge to the fatty acids. The colistin
molecule is positively charged due to the presence of five diaminobutyric acid residues
linked to the core [12]. The prodrug form differs from this structure due to the presence of
methan-sulfonates linked to the diaminobutyric acids (Figure 1) [13].
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Figure 1. Colistin prodrug structure. Two-dimensional representation of colistin methanesulfonate 
molecule highlighted the five methanesulfonate groups (inside the purple dotted circles) 
responsible for the difference between active compound and its colistimethate sodium (prodrug) 
form. This 2D representation was performed with MolView v2.4 online tool (https://molview.org/ 
accessed on 1 January 2024). 

It is noteworthy that the five diaminobutyric acid residues, which confer the positive 
charge to the molecule, play a determining role in the drug’s antibacterial effect, which is 
generally described with the Shai–Matsuzaki–Huang (SMH) model [14–16] and 
represented in Figure 2. 

Colistin acts by competition with and the displacement of Ca2+ and Mg2+ from the 
negatively charged sulfate portion of the lipid A in the lipopolysaccharide molecule (LPS) 
of Gram-negative bacteria (Figure 2a). This ionic dislocation by colistin seems necessary 
for forming pore-like structures [17–19]. The loss of binding ions and their substitution 
with colistin molecules alters the tertiary structure of LPS, creating the possibility for 
colistin itself to insert its own portion of fatty acids into the membrane, definitively 
compromising the permeability of the outer membrane (Figure 2b). In addition, colistin 
acyl fat, inserted into the bilayer, alters the inner membrane stability, leading to bacterial 
membrane disruption and a bactericidal effect [20]. Colistin also plays a key role in 
preventing endotoxin-induced shock by binding to the lipide A portion [21]. This drug 
acts both at the surface and intracellular levels, in particular altering the vesicle–vesicle 
contact of bacterial cells. In brief, colistin crosses the membrane and causes the fusion of 
the inner leaflet of the outer membrane and the outer leaflet of the cytoplasmic membrane, 
disrupting the cytoplasmic bilayer, altering the osmotic balance, and leading to cell death 
[22,23] (Figure 2c). The antibacterial action of colistin was also reported at the molecular 
level, where it can induce oxidative stress and, consequently, DNA, protein, and lipid 
damage in bacteria through ROS production, being able to inhibit essential enzymes 
involved in the respiratory chain, such as the NADH-quinone oxidoreductase [24], 
leading to cell death. 

Figure 1. Colistin prodrug structure. Two-dimensional representation of colistin methanesulfonate
molecule highlighted the five methanesulfonate groups (inside the purple dotted circles) responsible
for the difference between active compound and its colistimethate sodium (prodrug) form. This 2D
representation was performed with MolView v2.4 online tool (https://molview.org/ accessed on 1
January 2024).

It is noteworthy that the five diaminobutyric acid residues, which confer the positive
charge to the molecule, play a determining role in the drug’s antibacterial effect, which is
generally described with the Shai–Matsuzaki–Huang (SMH) model [14–16] and represented
in Figure 2.

Colistin acts by competition with and the displacement of Ca2+ and Mg2+ from the
negatively charged sulfate portion of the lipid A in the lipopolysaccharide molecule (LPS)
of Gram-negative bacteria (Figure 2a). This ionic dislocation by colistin seems necessary for
forming pore-like structures [17–19]. The loss of binding ions and their substitution with
colistin molecules alters the tertiary structure of LPS, creating the possibility for colistin itself
to insert its own portion of fatty acids into the membrane, definitively compromising the
permeability of the outer membrane (Figure 2b). In addition, colistin acyl fat, inserted into
the bilayer, alters the inner membrane stability, leading to bacterial membrane disruption
and a bactericidal effect [20]. Colistin also plays a key role in preventing endotoxin-induced
shock by binding to the lipide A portion [21]. This drug acts both at the surface and
intracellular levels, in particular altering the vesicle–vesicle contact of bacterial cells. In
brief, colistin crosses the membrane and causes the fusion of the inner leaflet of the outer
membrane and the outer leaflet of the cytoplasmic membrane, disrupting the cytoplasmic
bilayer, altering the osmotic balance, and leading to cell death [22,23] (Figure 2c). The
antibacterial action of colistin was also reported at the molecular level, where it can induce
oxidative stress and, consequently, DNA, protein, and lipid damage in bacteria through
ROS production, being able to inhibit essential enzymes involved in the respiratory chain,
such as the NADH-quinone oxidoreductase [24], leading to cell death.

https://molview.org/
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Figure 2. Colistin mechanism of action and SMH model. Schematic representation of colistin’s effect 
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their displacement and leading to (b) formation of pores. Colistin goes through the peptidoglycan 
barrier reaching the inner membrane where it acts by displacing Ca2+ and Mg2+ ions. All the 
structural alteration, induced by colistin action on membranes or colistin intracellular accumulation, 
leads to cell death (c). The three-dimensional model of colistin was generated with MolView v2.4 
online tool (https://molview.org/). This figure was created in BioRender.com. 

2.2. Adverse Effects 
Colistin treatment was dismissed in clinical use, principally due to its nephrotoxicity 

effect, which is lower for the prodrug form (i.e., colistin sodium methanesulfonate). Its 
adverse effects were principally due to its re-absorption by proximal tubule cells through 
an endocytotic process, mediated by megalin, and through facilitative transport by two 
transporters located in the apical cell membrane, the human peptide transporter 2 
(PEPT2), and the carnitine/organic cation transporter 2 (OCTN2) [25,26]. The intracellular 
accumulation of colistin induces mitochondrial and endoplasmic reticulum stress, with 
consequent toxic cellular effects [27]. This mechanism leads to cellular lysis and acute 
tubular necrosis [28,29]. The incidence of colistin-induced acute kidney injury varies 
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duration of treatment and is prevalent in older patients [28,34].  

Due to the high lipid content of neuronal cells, colistin could also exert its action in 
these cells, and some patients (with an incidence of about 7% [34]) experienced 
neurological adverse effects, such as paresthesia, seizures, confusion, ataxia, and visual 
disturbances [35]. The mechanism by which colistin induces these effects is a non-
competitive presynaptic myoneuronal blockade of acetylcholine release [36]. Its adverse 
effects on neuronal cells could be reverted by discontinuing the therapy. 

  

Figure 2. Colistin mechanism of action and SMH model. Schematic representation of colistin’s effect
on Gram-negative bacteria. (a) Colistin drug acts by competition with Ca2+ and Mg2+ ions, causing
their displacement and leading to (b) formation of pores. Colistin goes through the peptidoglycan
barrier reaching the inner membrane where it acts by displacing Ca2+ and Mg2+ ions. All the structural
alteration, induced by colistin action on membranes or colistin intracellular accumulation, leads to
cell death (c). The three-dimensional model of colistin was generated with MolView v2.4 online tool
(https://molview.org/ accessed on 1 January 2024). This figure was created in BioRender.com.

2.2. Adverse Effects

Colistin treatment was dismissed in clinical use, principally due to its nephrotoxicity
effect, which is lower for the prodrug form (i.e., colistin sodium methanesulfonate). Its
adverse effects were principally due to its re-absorption by proximal tubule cells through an
endocytotic process, mediated by megalin, and through facilitative transport by two trans-
porters located in the apical cell membrane, the human peptide transporter 2 (PEPT2), and
the carnitine/organic cation transporter 2 (OCTN2) [25,26]. The intracellular accumulation
of colistin induces mitochondrial and endoplasmic reticulum stress, with consequent toxic
cellular effects [27]. This mechanism leads to cellular lysis and acute tubular necrosis [28,29].
The incidence of colistin-induced acute kidney injury varies between 12.7 and 70% in in-
tensive care unit patients [30–33]. A recent study by Kilic and colleagues demonstrated
that the nephrotoxicity effect depends proportionally on the duration of treatment and is
prevalent in older patients [28,34].

Due to the high lipid content of neuronal cells, colistin could also exert its action in
these cells, and some patients (with an incidence of about 7% [34]) experienced neurological
adverse effects, such as paresthesia, seizures, confusion, ataxia, and visual disturbances [35].
The mechanism by which colistin induces these effects is a non-competitive presynaptic
myoneuronal blockade of acetylcholine release [36]. Its adverse effects on neuronal cells
could be reverted by discontinuing the therapy.

https://molview.org/
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2.3. In Vitro Antimicrobial Activity

The in vitro activity of colistin was tested with success on Acinetobacter baumannii, a
large part of Enterobacteriales, and Pseudomonas aeruginosa [37]. In particular, for 106 non-
duplicate isolates of A. baumannii, the authors reported a minimum inhibiting concentration
of 0.5 µg/mL for MIC50 and of 1.0 µg/mL for MIC90 in monotherapy [37].

Walkty et al. [38] analyzed the colistin antibacterial activity exerted on 3480 isolates
of Gram-negative bacilli from patients recruited over 2 years in 12 hospitals in Canada
(CANWARD Study). In this study, the authors reported a MIC90 value ≤ 2 µg/mL against
several clinically relevant Gram-negative bacilli, such as Escherichia coli (1732 isolates),
Klebsiella spp. (515 isolates), Enterobacter spp., A. baumannii, and P. aeruginosa (561 isolates),
including all 76 MDR P. aeruginosa isolates tested in the CANWARD Study.

A cross-sectional and descriptive study conducted on 52 MDR P. aeruginosa isolates,
collected from urine, pus specimens and respiratory tract, reported a MIC50 value of
1.0 µg/mL and a MIC90 value of 3.0 µg/mL [39].

In the preceding years, several studies reported on the activity of colistin in combina-
tion other antimicrobial molecules. In particular, colistin, in combination with meropenem
or tigecycline, showed synergistic activity against colistin-resistant KPC-producing K.
pneumoniae [40]. In a study based on an in vitro checkerboard assay, Kheshti and cowork-
ers [41] reported the good synergistic activity of colistin treatment in combination with
ciprofloxacin, levofloxacin (5%—the lowest level), imipenem, meropenem, and ampicillin–
sulbactam molecules and its higher synergism in combination with rifampin (55%) when
tested on 20 isolates of A. baumanii.

A recent study [42] conducted on 219 K. pneumoniae isolates demonstrated the strong syn-
ergistic effects of minocycline and colistin on colistin-resistant and minocycline-intermediate
or -resistant K. pneumoniae. This drug combination acts by disrupting the outer mem-
brane (by colistin) without affecting the cytoplasmic membrane, allowing the entrance and
accumulation of minocycline at the intracellular level.

2.4. Antimicrobial Susceptibility Testing

The chemical structure of colistin and its cationic charge make the use of classical
susceptibility tests, like E-tests and disc diffusion, difficult. To overcome this limitation
and to provide a pharmacological alternative to the numerous multi-resistant bacterial
species, classical diagnostic protocols have been modified, allowing the measurement of
colistin susceptibility. Broth microdilution, the gold standard for colistin susceptibility
test, is modified using a cation-adjusted Muller–Hinton broth without adding a surfac-
tant [43,44]. Another method that has been approved by the CLSI for only Enterobactarales
and Pseudomonas spp. is a broth disc elution, modified by Simner and colleagues [45]. The
test, renamed as Colistin Broth Disc Elution (CBDE), is easier than the Broth microdilution
and is based on analysis of the efficacy of a graded concentration of colistin (of 1,2,4 µg/mL)
obtained from colistin disc elution in 10 mL of cation-adjusted Muller–Hinton broth, tested
on a 0.5 Mc Farland of bacteria. EUCAST colistin breakpoints table, version 14.0, reports
the following cut-off value for the detection of phenotypic resistance: an MIC of 2 mg/L
for Enterobacterales and for Acinetobacter spp., and an MIC of 4 mg/L for P. aeruginosa.

3. Mechanisms of Colistin Resistance

A variety of mechanisms may be involved in the acquisition of colistin resistance
in Gram-negative bacteria, and they can be summarized into four groups (Figure 3): the
modification of LPS structures by chromosomal mutations (i), modification of LPS structures
by acquisition of plasmids (ii), the loss of LPS structures (iii), and the overexpression of
efflux pumps (iv).
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Figure 3. Mechanism of resistance to colistin. Schematic representation of principal colistin resistance
mechanisms among Gram-negative bacteria: (i) modification of LPS structure mediated by chromo-
somal mutation; (ii) modification of LPS structure mediated by plasmid-resistance; (iii) loss of LPS
structure; (iv) overexpression of efflux pumps.

3.1. Modification of LPS Structure by Chromosomal Mutations

A reduction in the negative charge of lipid A of LPS leads to the loss of electrostatic
interactions with colistin and consequently to resistance [46]. Many genes and operons
are involved in LPS modifications: (1) pmrC and pmrE genes and the pmrHFIJKLM operon,
which promote the addition of phosphoethanolamine (PEtn) and/or 4-amino-4-deoxy-L-
arabinose (L-Ara4N) to lipidA; (2) regulatory two-component systems such as PmrAB,
PhoPQ, and crab; and (3) mgrB-negative regulator genes.

The addition of L-Ara4N and/or PEtn to lipidA changes the negative charge of the
cell membrane by neutralizing the negatively charged phospholipids [47–50]. In detail,
the addition of PEtn to the 1′- or 4′-phosphate group of lipid A is carried out by PmrC,
a putative membrane protein with phosphoethanolamine transferase activity encoded
by pmrABC operons [11,51–54]. The synthesis of L-Ara4N from uridine diphosphate
glucuronic and its addition to lipid A is promoted by pmrHIJKLM operons (also called
arnBCADTEF) and PmrE activity [51]. PmrB is a cytoplasmic membrane-bound protein
which activates PmrA by phosphorylation, and PmrA in turns activates the regulation of
the pmrABC and pmrHFIJKLM operons and the pmrE gene. Subsequently, these operons
and genes lead to LPS modification by adding PEtn and L-Ara4N to lipid A [55]. Although
the L-Ara4N modification of LPS has been described as a common mechanism of colistin
resistance among Gram-negative bacteria (Klebsiella pneumoniae, Escherichia coli, Salmonella
enterica, and Pseudomonas aeruginosa), it does not occur in Acinetobacter baumannii because it
lacks all the genes required for L-Ara4N biosynthesis [51]. Alternatively, the addition of
galactosamine to the 1′-phosphate position of lipid A, following activation of the sensor
kinase PmrB, is associated with moderate levels of colistin resistance in A. baumannii [52].
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The mutation of PmrA/PmrB results in the upregulation of the pmrABC and pmrFHI-
JKLM operons and pmrE gene. This leads to PEtN modification of lipid A, and in turn,
results in colistin resistance. Several mutations have been reported in many Gram-negative
bacteria, such as Salmonella enterica [56,57], K. pneumoniae [58–60], A. baumannii [61–63], P.
aeruginosa [64,65], and E. coli [57,66,67].

The transcription of pmrFHIJKLM operons is also activated by the PhoPQ regulatory
two-component system. PhoQ is a sensor kinase that promotes the expression of the regula-
tor protein PhoQ, which promotes pmrFHIJKLM operon transcription via phosphorylation.
Furthermore, PhoP indirectly activates pmrA through the PmrD connector protein, which
subsequently activates the transcription of the pmrHFIJKLM operon. This then leads to
the synthesis and transfer of PEtn to lipid A [11,49,50]. The mutation of the phoP/Q genes.
which that leads to acquired colistin resistance, has been identified in K. pneumoniae and E.
coli [68–70]. Higher polymyxin MICs have been observed in PhoQ-deficient P. aeruginosa
mutants when additional alterations affected other regulatory two-component systems
(CprRS and ColRS) [71].

More evidence has accumulated on the role played by mgrB, a gene encoding a small
regulatory transmembrane protein that exerts negative feedback on the kinase activity of
PhoQ [72]. The inactivation of mgrB leads to the activation of a phosphorylation cascade
involving chain PhoQ, PhoP, PmrD and/or PmrAB. This finally triggers the expression of
the pmrHIJKLM operon, resulting in LPS modification. The mutation of mgrB, including
point mutations, deletions, nonsense, and insertion sequences (IS5-like, IS1F, ISKpn14,
ISKpn13, IS10R), represents the most common mechanism of colistin resistance in clinical
K. pneumoniae isolates [69,73–77]. The wide range of resistance levels showed by Gram-
negative strains harbouring mutations in the genes pmrAB, phoPQ, or mgrB suggests a role
for other genetic loci. Mutations in the CrrAB two-component system has been associated
with increased levels of colistin resistance in strains of K. pneumoniae [74,78]. The muta-
tion/inactivation of the crrB gene led to the activation of the pmrHFIJKLM operon and the
pmrC and pmrE genes through the overexpression of the pmrAB operon [77,78]. Further-
more, various PEtn-coding genes, such as eptA (pmrC), eptB (pagC), and eptC (cptA), are
able to add PEtn to LPS and can be involved in colistin resistance [79]. The overexpression
of eptA has been associated with colistin resistance in A. baumannii [61,80]. Gerson et al.
showed that mutations in the eptA gene (R127L and ISAba1 insertion) were associated with
the overexpression of EptA and colistin resistance in A. baumannii [61].

3.2. Loss of LPS Structure

The complete loss of lipid A or the LPS core, leading to colistin resistance, has been
observed in A. baumannii. The analysis of laboratory-induced colistin-resistant A. baumannii
showed that the high level of resistance to colistin was caused by the inactivation of
LPS biosynthesis genes lpxA, lpxC, lpxD, and lpsB [81]. Various nucleotide substitutions,
deletions, and insertions that cause frameshifts or result in truncated proteins have been
reported for in vitro mutants and clinical isolates [81–84]. Moreover, the disruption of lpxC
and lpxD via the insertion of IS elements was described in colistin-resistant A. baumannii
isolates [81–86]. Although LPS loss is an effective mechanism of colistin resistance, it has
significant fitness costs, and this explains why these mutants are rarely encountered in the
clinical setting [87].

3.3. Plasmid-Mediated Colistin Resistance

Since the first report of the mcr gene encoding for phosphoethanolamine transferase
(mcr-1) in E. coli in China in 2015 [88], several reports worldwide have demonstrated the
presence of mcr-1 and additional 9 families (mcr-2 to mcr-10), with more than 100 overall
variants of different Gram-negative species distributed worldwide [11,49–53,89–94]. MCR
is a member of the PETN enzyme family, located mainly in the bacteria plasmids, and its
activity results in the modification of lipid A via PETN addition. The enzyme has a domain
inserted into the inner membrane and a periplasmic C-terminal sulfatase catalytic domain.
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In 2018, Partridge et al. proposed a nomenclature for mcr genes. Several variants were
identified, especially for MCR-3 and MCR-1 [95]. MCR-1 and MCR-2 share 81% identity
at the amino acid sequence level. Sequence identity suggests that these two variants
originated from Moraxella spp. [89], with mcr-3, mcr-4, and mcr-7 coming from Aeromonas
spp. and Shewanella frigidimarina, respectively [90–93].

The mcr-1 variant can be connected to various types of plasmids, including IncHI2,
IncI2, IncX4, IncP, IncX, and IncFIP. The mcr-2 gene was detected on an IncX4 plasmid. The
presence of insertion sequences (ISApl1, IS1595) on the genetic environment of mcr genes
explains the possibility of their integration into bacterial chromosomes [94].

Plasmid-mediated colistin resistance represents the mechanism of greatest concern
because of the ease of intra- and inter-species spread. Despite most of MCR-harboring
microorganisms belonging to the Enterobacterales order, such as E. coli, Salmonella spp., and
K. pneumoniae, several reports showed the presence of mcr-genes in non-fermenting Gram-
negative species such as P. aeruginosa and A. baumannii complexes [96–110]. The mcr-1
gene is the most commonly detected in P. aeruginosa in both clinical [96–99] and animal
settings [100–103], followed by mcr-5 [104,105]. In A. baumannii complex, the mcr-1 and mcr-
4.3 are the major variants observed in clinical isolates from Asia and Europe [98,99,106–109].
Other mcr genes found in A. baumannii include mcr-2 and mcr-3 [110].

3.4. Overexpression of Efflux Pumps

The role of efflux pumps in colistin resistance is suggested by a few studies. Efflux
pumps, such as the KpnEF and AcrAB, have been reported in Enterobactericeae. The ∆KpnEF
mutants showed increased susceptibility to various cationic antimicrobial peptides such
as colistin [111]. On the other hand, AcrAB is a part of the AcrAB–TolC complex and its
overexpression has been observed in colistin-resistant E. coli, K. pneumoniae, and Salmonella
strains [112–114].

The contribution of EmrAB efflux systems to colistin resistance in A. baumannii was
shown by in vitro experiments with the ∆emrB mutant [115]. Moreover, the upregulation
of the gene-encoding protein components of efflux pumps (adeI, adeC, emrB, mexB, and
macAB) was also observed in colistin-resistant A. baumannii strains [83].

The overexpression of the efflux pumps MexXY (RND family) under exposure to
ribosome-targeting antibiotics was found to correlate with the increased levels of colistin
resistance in P. aeruginosa [116]. However, the heterogeneity of MexXY expression observed
in clinical isolates of P. aeruginosa, showing variable levels of colistin resistance, suggested
that the contribution of the efflux pumps to colistin resistance might also be related to other
specific genetic backgrounds [117].

Further evidence of the role of efflux pumps in colistin resistance is the suppression of
resistance by efflux pump inhibitor (EPI) and cyanide-3-chlorophenylhydrazone (CCCP)
in A. baumannii, P. aeruginosa, K. pneumoniae, and S. maltophilia [118]. However, a possible
explanation is that CCCP-mediated depolarization of the electrochemical gradient may
restore the negative charge of the outer membrane and lead to increased susceptibility to
colistin [48,118]. Furthermore, various studies suggested a complex regulatory relationship
between the efflux pumps and their transcriptional regulators and LPS synthesis, transport,
and modification [48].

4. Pharmacokinetic/Pharmacodynamic Features

According to several pieces of preclinical evidence, the free area under the concentration-
to-time curve to minimum inhibitory concentration ratio (f AUC/MIC) was defined as the
best pharmacokinetic/pharmacodynamic (PK/PD) target for achieving colistin efficacy in
infections caused by P. aeruginosa and A. baumannii [119]. In a neutropenic murine thigh and
lung infection model aimed against three P. aeruginosa strains, Dudhani et al. [120] found
that the f AUC/MIC ratio was the best PK/PD index, correlating with colistin efficacy in
both thigh (R2 = 0.87) and lung infection models (R2 = 0.89). The colistin f AUC/MIC targets
required to achieve 1-log and 2-log kills against the three strains were 15.6 to 22.8 and
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27.6 to 36.1, respectively, in the thigh infection model, whereas a f AUC/MIC ratio ranging
from 12.2 to 16.7 and from 36.9 to 45.9 in the lung infection model was found to achieve
1-log and 2-log kills [120]. In a neutropenic murine thigh and lung infection model aimed
against three A. baumannii strains (of which two were colistin heteroresistant), Dudhani
et al. [121] reported that the f AUC/MIC ratio was the best PK/PD index, correlating with
colistin efficacy in both the thigh (R2 = 0.90) and lung infection model (R2 = 0.80). The
colistin f AUC/MIC targets required to achieve stasis and 1-log kill against the three strains
were 1.89–7.41 and 6.98–13.6 in the thigh infection model, respectively, and 1.57–6.52 and
8.18–42.1, respectively, in the lung infection model [121]. Notably, these colistin PK/PD
targets, acting against P. aeruginosa and A. baumannii, were consistent with those retrieved
in a recent murine thigh and lung infection model [122]. Indeed, the f AUC/MIC ratio was
confirmed as the best PK/PD target for predicting colistin efficacy, with f AUC/MIC ratios
of 7.4–13.7 and 7.4–17.6 required for achieving 2-log kills against Pseudomonas aeruginosa
and A. baumannii strains of, respectively [122]. It should be noted that these PK/PD targets
could only be attained in two P. aeruginosa strains and in one A. baumannii strain in the lung
infection model, even at the highest colistin dose tolerated [122].

For Enterobacterales, an in vitro model investigated the best PK/PD target of colistin
efficacy against three K. pneumoniae strains exhibiting MIC values of 0.5, 1, and 4 mg/L,
respectively [123]. The f AUC/MIC ratio emerged as the best PK/PD target for colistin
efficacy, with an f AUC/MIC ≥ 25 being more predictive for a bactericidal effect [123].
Notably, this PK/PD target may be attained at standard colistin doses of 9 MU in 100%,
5–70%, and 0% of K. pneumoniae isolates, showing MIC values of 0.5, 1, and 2 mg/L, respec-
tively [123]. These findings may suggest on the one hand the need to revise the current
colistin clinical breakpoint against Enterobacterales, and on the other hand the potential
relevance of implementing a therapeutic-drug-monitoring (TDM)-guided approach for
personalizing colistin dosage.

It should be noted that evidence investigating the relationship between optimal
PK/PD target attainment for colistin retrieved in preclinical studies and clinical outcomes
is currently limited. A prospective observational study investigated the relationship be-
tween PK/PD target attainment of colistin and microbiological/clinical outcomes in nine
patients affected by multidrug-resistant (MDR) Gram-negative infections (eight caused
by A. baumannii and one by K. pneumoniae) [124]. After the fifth colistin dose of 2 MU,
the AUC0–8/MIC ranged from 35.5 to 126. Although no significant relationship between
AUC/MIC ratio and microbiological/clinical cure was found, a positive trend was observed
at logistic regression (p = 0.28) [124]. A prospective observational study, including 33 pa-
tients affected by urinary tract infections and/or pyelonephritis caused by extremely drug-
resistant P. aeruginosa, reported no significant difference in the f AUC/MIC ratio between
cases exhibiting favourable clinical outcomes and those with clinical failure (21.5 vs. 47.4;
p = 0.85) or in the proportion of attainment of an AUC/MIC ratio ≥60 mg/L (32.3% vs.
50.0%; p = 0.99) [125]. Undergoing multivariate analysis, the average steady-state col-
istin concentration showed a trend towards statistical significance for acute kidney injury
occurrence (OR 4.36; 95%CI 0.86–20.0; p = 0.07—Sorlí et al., 2019) [125].

Studies assessing colistin penetration into different sites of infection are reported in
Table 2. Currently, data are only available for the lungs, central nervous system (CNS), and
eye (Table 1). Specifically, a prospective observational study investigating the epithelial
lining fluid (ELF) penetration of intravenous colistin, administered at a dosage of 2 MU
every 8 h in 13 critically ill patients affected by ventilator-associated pneumonia, reported
undetectable colistin concentrations in ELF [126].
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Table 2. Colistin penetration and assessment of PK/PD target attainment in different sites of infection.

Site of
Infection Study Design Number

of Patients Setting Dose
Absolute

Tissue Concen-
trations

Absolute
Plasmatic

Concentrations

Penetration Rate
(AUCtissue/AUCplasma)

PK/PD Target
Attainment Ref.

Lung Prospective
observational 13 ICU

VAP
2 MU

q8h IV Undetectable

Cmin 1.03 ± 0.69
mg/L

AUC/MIC ratio
17.3 ± 9.3

(for MIC = 2
mg/L)

0.00 Suboptimal in
ELF [126]

CSF Prospective
observational 5 ICU 2–3 MU

q8h IV

Cmin 0.47 mg/L
AUC 0.53
mg·h/L

Cmin 9.26 mg/L
AUC 10.4 mg·h/L 0.05

Optimal PK/PD
target attainment

only for P.
aeruginosa and A.
baumannii strains
exhibiting MIC

values up to 0.06
mg/L

[127]

Ocular
Preclinical

rabbit uveitis
model

20

Uveitis
induced

after
endotoxin
injection

5
mg/kg

IV

Aqueous humor
0.62 ± 0.07 (at

0.5 h)
0.45 ± 0.05 (at

3 h)
0.38 ± 0.08 (at

6 h)
Vitreous humor
0.02 ± 0.01 (at

3 h)

9.84 ± 2.0 (at 0.5
h)

0.93 ± 0.07 (at 3 h)
0.24 ± 0.08 (at 6

h)

0.07
(aqueous humor at 0.5

h)
0.48

(aqueous humor at 3 h)
1.58

(aqueous humor at 6 h)
0.02

(vitreous humor at 3 h)

Not assessable [128]

AUC: area under concentration-to-time curve; Cmin: trough concentrations; CSF: cerebrospinal fluid; ELF: ep-
ithelial lining fluid; ICU: intensive care unit; IV: intravenous; MIC: minimum inhibitory concentration; PK/PD:
pharmacokinetic/pharmacodynamic; VAP: ventilator-associated pneumonia.

A prospective observational study including five critically ill patients assessed colistin
penetration into cerebrospinal fluid (CSF) administered intravenously at a dosage of 2–3 MU
every 8 h [127]. The colistin CSF-to-plasma ratio was 0.05, with the absolute concentrations
retrieved in CSF allowing the attainment of optimal PK/PD targets, but only against P.
aeruginosa and A. baumannii strains, showing an MIC value up to 0.06 mg/L [127]. In regard
to ocular penetration, currently, only a preclinical animal model has assessed this issue
in twenty rabbits receiving intravenous colistin at a dosage of 5 mg/kg [128]. Overall,
absolute colistin concentrations were extremely low in.

Aqueous humor and undetectable in vitreous humor in most of the included cases [128].
Overall, these findings strongly support the implementation of alternative agents in

the case of deep-seated infections, especially given the limited colistin penetration rate in
lung and CSF and the failure in attaining optimal PK/PD targets. Notably, these findings
may be expected according to the physicochemical and PK features of colistin, namely its
hydrophilic properties, large molecular weight, and limited volume of distribution [129].

5. Future Prospectives

Several strategies have been proposed for contrasting the emergence and diffusion
of antibiotic-resistance. Since the discovery of the first antimicrobial molecules, several
groups aimed to evaluate the in vitro activity of different antimicrobial combinations due
to their potentially promising results, especially against multidrug-resistant clinical iso-
lates. In particular, recent studies demonstrated that colistin in combination with different
antimicrobial molecules (i.e., rifampicin, meropenem, etc.) exerted potent synergy in vitro
against MDR also including colistin-resistant strains [40,130]. However, the discordance of
the different in vitro results and the prognostic utility of the synergy tests in the clinical
practice still remain controversial [131].

In the last years, the revival of old microbiological techniques such as the serum
bactericidal titres (SBTs) has been proposed for monitoring the antibiotic treatment of
multidrug-resistant Gram-negative infections [132]. Indeed, SBT is the only laboratory
test that integrates drug pharmacodynamics, host pharmacokinetics, and synergistic or
antagonistic interactions of antimicrobial combinations into a single index of antimicrobial
activity [132]. Recent study demonstrated the high bactericidal activity in serum of patients
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treated with colistin in association with meropenem rather than other combinations [133].
Although SBT appears to be a promising surrogate PK/PD marker for assessing antimicro-
bial treatment of Gram-negative infections, the predictive value of the SBT still remains
poorly defined, as does the standardization of a more rapid SBT testing method [132].

Novel techniques have been proposed to fight the emergence of antimicrobial resis-
tance, especially among MDR strains. An example is the phenylboronic acid (PBA)-installed
micellar nanocarriers, incorporating different antimicrobials that have shown promising
in vitro and in vivo results [134]. Recently, Huang and co-workers on a study based on
PBA-functionalized micelle loaded with vancomycin and curcumin demonstrated the abil-
ity to eradicate drug-resistant bacteria in vitro and in vivo due to the synergism of the two
drugs [134]. However, further studies are needed to confirm the results obtained by this
novel application.

Lastly, meta-organic framework (MOF)-loaded biohybrid magnetic microrobots have
been proposed as an alternative strategy for non-antibiotic bacterial killing [135]. This
strategy uses the gradual release of metal ions to cause damage to the bacterial membrane,
thus resulting in the efficient killing of bacteria. Although this novel methodology could be
considered a promising strategy for treating infections due to MDR strains, further studies
are necessary to confirm its clinical utility.

6. Conclusions

In the last years, the renewed use of older antimicrobial molecules has revolutionized
the treatment of infections due to MDR-GN microorganisms. At the same time, novel
approaches, including therapeutic drug monitoring (TDM), for the personalization of the
antimicrobial dosage of the different antimicrobial molecules and new therapeutic schemes
of treatment, designed by combining antibiotics with limited antimicrobial activity, have
revolutionized the treatment of infections due to MDR pathogens.

The clinical usage of colistin alone and in combination with other antimicrobials with
scarce and/or limited antimicrobial activity has recently reinvented its role in clinical prac-
tice [136,137]. Also, considering the limited antimicrobial options against these pathogens,
colistin was defined as the “last-hope resource” for the treatment of DTR infections, espe-
cially among critical-ill patients [8]. In this context, the further application of colistin in
clinical practice could be utilized in the treatment of emerging pathogens with novel traits
of resistance, considering the limited antimicrobial options available.

Conversely, the adverse toxic effects and the limited tissue penetrations in different
anatomical districts prompted us to mitigate its role in the clinical setting by limiting its
use [1]. In addition, the widespread use of colistin-resistant strains [2,3] poses a serious
limitation in terms of the issue of this molecule, especially in light of the new antimi-
crobial molecules developed recently, possessing high bactericidal activity against MDR
microorganisms (i.e., cefiderocol, ceftazidime/avibactam, meropenem/vaborbactam, etc.).
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