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Abstract: The amount of free ions, ion pairs, and higher aggregate of the possible species present in a
solution during the gold(I)-catalyzed alkoxylation of unsaturated hydrocarbon, i.e., ISIP (inner sphere
ion pair) [(NHC)AuX] and OSIP (outer sphere ion pairs) [(NHC)Au(TME)X] [NHC 1,3-bis(2,6-di-
isopropylphenyl)-imidazol-2-ylidene; TME = tetramethylethylene (2,3-bis methyl-butene); X− = Cl−,
BF4

−, OTf−; and OTs− BArF4
− (ArF = 3,5-(CF3)2C6H3)], has been determined. The 1H and 19F DOSY

NMR measurements conducted in catalytic conditions indicate that the dissociation degree (α) of
the equilibrium ion pair/free ions {[(NHC)Au(TME)X]
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Abstract: The amount of free ions, ion pairs, and higher aggregate of the possible species present in 
a solution during the gold(I)-catalyzed alkoxylation of unsaturated hydrocarbon, i.e., ISIP (inner 
sphere ion pair) [(NHC)AuX] and OSIP (outer sphere ion pairs) [(NHC)Au(TME)X] [NHC 1,3-
bis(2,6-di-isopropylphenyl)-imidazol-2-ylidene; TME = tetramethylethylene (2,3-bis methyl-
butene); X− = Cl−, BF4−, OTf−; and OTs− BArF4− (ArF = 3,5-(CF3)2C6H3)], has been determined. The 1H 
and 19F DOSY NMR measurements conducted in catalytic conditions indicate that the dissociation 
degree (α) of the equilibrium ion pair/free ions {[(NHC)Au(TME)X] ↔ [(NHC)Au(TME)]+ + X−} 
depends on the nature of the counterion (X−) when chloroform is the catalytic solvent: while the 
compounds containing OTs− and OTf− as the counterion gave a low α (which means a high number 
of ion pairs) of 0.13 and 0.24, respectively, the compounds containing BF4− and BArF4− showed higher 
α values of 0.36 and 0.32, respectively. These results experimentally confirm previous deductions 
based on catalytic and theoretical data: the lower the α value, the greater the catalytic activity 
because the anion that can activate methanol during a nucleophilic attack, although the lower 
propensity to activate methanol of BF4− and BArF4−, as suggested by the DFT calculations, cannot be 
completely overlooked. As for the effect of the solvent, α increases as the dielectric constant 
increases, as expected, and in particular, green solvents with high dielectric constants show a very 
high α (0.90, 0.84, 0.80, and 0.70 for propylene carbonate, γ-valerolactone, acetone, and methanol, 
respectively), thus confirming that the moderately high activity of NHC-Au-OTf in these solvents 
is due to the specific effect of polar functionalities (O-H, C=O, O-R) in activating methanol. Finally, 
the DOSY measurements conducted in p-Cymene show the formation of quadrupole species: under 
these conditions, the anion can better exercise its ‘template’ and ‘activating’ roles, giving the highest 
TOF. 
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1. Introduction 
Gold(I) catalysis is a vitally important area of research with many reported examples 

[1–11], and the mechanistic proposals for reactions involving gold(I) catalysts are well 
established when concerning the roles of ligands [12–14], counterions [15–25], substrates 
[26–31], nucleophiles, solvents, and additives [32]. 

Over the last few years, some of us has been engaged in the rationalization, from an 
experimental and theoretical point of view, of the important features of gold(I) [33–39] 
and gold(III) [40,41] catalysis.  

We started with the preliminary determination of the ion-pairing structure of 
[(L)Au(UHS)]+X− (L = carbene and phosphane, UHS = unsaturated hydrocarbon, and X− = 
weakly coordinating counterion) systems, which are the most important intermediates 
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[(NHC)Au(TME)]+ + X−} depends on
the nature of the counterion (X−) when chloroform is the catalytic solvent: while the compounds
containing OTs− and OTf− as the counterion gave a low α (which means a high number of ion pairs)
of 0.13 and 0.24, respectively, the compounds containing BF4

− and BArF4
− showed higher α values

of 0.36 and 0.32, respectively. These results experimentally confirm previous deductions based on
catalytic and theoretical data: the lower the α value, the greater the catalytic activity because the
anion that can activate methanol during a nucleophilic attack, although the lower propensity to
activate methanol of BF4

− and BArF4
−, as suggested by the DFT calculations, cannot be completely

overlooked. As for the effect of the solvent, α increases as the dielectric constant increases, as expected,
and in particular, green solvents with high dielectric constants show a very high α (0.90, 0.84, 0.80, and
0.70 for propylene carbonate, γ-valerolactone, acetone, and methanol, respectively), thus confirming
that the moderately high activity of NHC-Au-OTf in these solvents is due to the specific effect of polar
functionalities (O-H, C=O, O-R) in activating methanol. Finally, the DOSY measurements conducted
in p-Cymene show the formation of quadrupole species: under these conditions, the anion can better
exercise its ‘template’ and ‘activating’ roles, giving the highest TOF.

Keywords: gold catalysis; ion pairing; diffusion measurements

1. Introduction

Gold(I) catalysis is a vitally important area of research with many reported exam-
ples [1–11], and the mechanistic proposals for reactions involving gold(I) catalysts are
well established when concerning the roles of ligands [12–14], counterions [15–25], sub-
strates [26–31], nucleophiles, solvents, and additives [32].

Over the last few years, some of us has been engaged in the rationalization, from an
experimental and theoretical point of view, of the important features of gold(I) [33–39] and
gold(III) [40,41] catalysis.

We started with the preliminary determination of the ion-pairing structure of
[(L)Au(UHS)]+X− (L = carbene and phosphane, UHS = unsaturated hydrocarbon, and
X− = weakly coordinating counterion) systems, which are the most important intermedi-
ates formed during gold-catalyzed nucleophilic additions to an unsaturated substrate. The
anion, in order to influence the kinetics of the reaction, must be in the correct position, at
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least at the RDS of the reaction [42]. From 2009 onwards [43], several interionic characteri-
zations [44,45] of the [(L)Au(UHS)]+X− species have been made by some of us researchers,
taking advantage of nuclear Overhauser effect (NOE) NMR experiments and DFT calcula-
tions of potential energy surfaces (PESs) as well as the Coulomb potential of ions. Recently,
also, a cationic gold (III) pre-catalyst ion-pairing structure was determined for the first
time using the same approach [46]. These powerful experimental and theoretical methods
were used by us to understand the relative anion–cation orientation determined by the
nature of the ancillary ligand (L), substrate (S), and counterion (X−). This fine-tuning of the
interionic structure has paved the way for larger control over the properties and activity of
these catalysts [47].

The hydration and alkoxylation of alkynes are key processes for the industrial produc-
tion of carbonyl derivatives, and the pivotal role of ion pairing in the mechanism of the
hydration and alkoxylation of alkynes promoted by the gold(I) catalyst L-Au-X is deeply
analyzed and discussed in the literature [48].

Kinetic experiments, together with multinuclear and multidimensional NMR mea-
surements and DFT calculations, allowed us to study, understand, and rationalize the
importance of both counterions [49] (in terms of the gold–counterion coordination ability
and basicity/proton affinity) and ligands [50,51] (in terms of the donation and π-back
donation properties versus gold) in the catalytic cycle (pre-equilibrium step, nucleophilic
attack, protodeauration), as shown in Figure 1. Moreover, we have pointed out the crucial
role of solvent and noncovalent interactions from both an experimental and theoretical
point of view [52]. These results allowed us to develop, for the first time, a green strategy
for the hydration of alkynes promoted by gold(I) species in both neat conditions [53] and
in green solvents [54,55].
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Figure 1. The generally accepted reaction mechanism for gold(I)-complex-catalyzed alkoxylation
of alkynes.

In summary, the main previous results [56] concerning the pivotal role of the counte-
rion in the alkoxylation of alkynes promoted by the L-Au(I) catalyst are as follows:

a. The rate-determining step resulted in the nucleophilic attack of methanol on the
coordinated alkyne (Figure 1), and the intermediate coordination ability, basicity, and
hydrogen bond-accepting properties of OTs− and OTf− provide the best compromise
for achieving an efficient catalyst (high TOF) [57].

b. In the optimized geometry of the transition state, the anions OTs− and OTf− are
located near the alkyne, interacting both with the metal center and with the methanol
acting as a template, helping the methanol to assume its reactive position and acti-
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vating the methanol through a hydrogen bond (enhancing the nucleophilicity of the
alcohol). If the basicity of the anion is too low (BF4

− and BARF−), the template effect
is lost, and then the hydrogen bonding with the methanol does not take place [58].

c. The polarity of the solvent is crucial in determining the catalytic activity of L-Au(I)
complexes because it is related to the amount of ion pairs in the solution. Moreover,
peculiar functional groups present in the solvent could promote the nucleophilic
attack [54].

These important considerations and deductions in gold catalysis are still missing one
fundamental finding: the experimental determination of the number of free ions, ion pairs,
and higher aggregates in catalytic conditions as a function of both the counterion and
solvent.

In this context, pulsed-field-gradient spin-echo (PGSE) NMR and its implementation
of DOSY (diffusion-ordered NMR spectroscopy) are the most effective approaches for the
analysis of organometallic compounds in a solution [59–61]. PGSE and DOSY provide
an accurate estimate of the translational diffusion coefficients (Dt) of the corresponding
organometallic compounds. These coefficients can be interpreted using several approaches,
which provide information on the molecular sizes and are used to estimate the hydrody-
namic radii of organometallic compounds. These approaches have been highly successful
in the characterization of neutral gold molecules [62,63] and salts [64,65].

Even if a number the amount of free ions, ion pairs, and higher aggregates present
in catalytic conditions, they are very important parameters for gold(I) catalysis, and their
determination can be essential to better understand the mechanism of a catalyst; to the
best of our knowledge, there are no examples in the literature [66] of PGSE (or DOSY)
measurements conducted in catalytic conditions.

In this paper, the amount of free ions, ion pairs, and higher aggregates in a solution
of (NHC)AuX and [(NHC)Au(TME)X] [NHC 1,3-bis(2,6-di-isopropylphenyl)-imidazol-2-
ylidene; TME = tetramethylethylene (2,3-bis methyl-butene); X− = Cl−, BF4

−, OTf−; OTs−

BARF− (BARF = B(3,5-(CF3)2C6H3)4] have been determined by means of 1H and 19F DOSY
NMR, conducted in the catalytic alkoxylation of unsaturated hydrocarbon conditions. These
measurements indicate that the dissociation degree (α) of the equilibrium ion pair/free ions
{[(NHC)Au(TME)X]
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sphere ion pair) [(NHC)AuX] and OSIP (outer sphere ion pairs) [(NHC)Au(TME)X] [NHC 1,3-
bis(2,6-di-isopropylphenyl)-imidazol-2-ylidene; TME = tetramethylethylene (2,3-bis methyl-
butene); X− = Cl−, BF4−, OTf−; and OTs− BArF4− (ArF = 3,5-(CF3)2C6H3)], has been determined. The 1H 
and 19F DOSY NMR measurements conducted in catalytic conditions indicate that the dissociation 
degree (α) of the equilibrium ion pair/free ions {[(NHC)Au(TME)X] ↔ [(NHC)Au(TME)]+ + X−} 
depends on the nature of the counterion (X−) when chloroform is the catalytic solvent: while the 
compounds containing OTs− and OTf− as the counterion gave a low α (which means a high number 
of ion pairs) of 0.13 and 0.24, respectively, the compounds containing BF4− and BArF4− showed higher 
α values of 0.36 and 0.32, respectively. These results experimentally confirm previous deductions 
based on catalytic and theoretical data: the lower the α value, the greater the catalytic activity 
because the anion that can activate methanol during a nucleophilic attack, although the lower 
propensity to activate methanol of BF4− and BArF4−, as suggested by the DFT calculations, cannot be 
completely overlooked. As for the effect of the solvent, α increases as the dielectric constant 
increases, as expected, and in particular, green solvents with high dielectric constants show a very 
high α (0.90, 0.84, 0.80, and 0.70 for propylene carbonate, γ-valerolactone, acetone, and methanol, 
respectively), thus confirming that the moderately high activity of NHC-Au-OTf in these solvents 
is due to the specific effect of polar functionalities (O-H, C=O, O-R) in activating methanol. Finally, 
the DOSY measurements conducted in p-Cymene show the formation of quadrupole species: under 
these conditions, the anion can better exercise its ‘template’ and ‘activating’ roles, giving the highest 
TOF. 
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[(NHC)Au(TME)]+ + X−} and the amount of higher quadrupolar
aggregates {2[(NHC)Au(TME)X]
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[(NHC)Au(TME)X]2} depends on both the nature of
the counterion (X−) and solvent. These values relate to the performance of the (NHC)Au
catalyst as a function of X− and the solvent and provide further insight into the effects of
ion pairs in gold catalysis.

2. Results and Discussion

1OTf and 1OTs (Figure 2) have been synthesized following literature-available syn-
thetic protocols [49] by chloride abstraction by adding AgOTf and AgOTs, respectively, to
a solution of 1Cl in methylene chloride, affording the desired compounds with excellent
yields and purity (see Section 3 for details).

On the other hand, 1(TME)BF4 and 1(TME)BARF have been generated in situ in an
NMR tube by chloride abstraction. This was achieved by adding AgBF4 and AgBARF,
respectively, to (i) a solution of 1Cl in CDCl3 in the presence of five equivalents of TME
[TME = tetramethylethylene (2,3-bis methyl-butene)] and (ii) in pseudo-catalytic conditions
(solvent, Methanol-d4, and TME), affording the desired compounds and AgCl (see Section 3
and Supporting Information for details).

The NMR spectra of complexes 1OTf and 1OTs are consistent with those reported in
the literature [57]. The NMR spectra of complexes 1(TME)BF4 and 1(TME)BARF clearly
show the characteristic signals of the coordinated alkene, as reported for the compound
1(TME)SbF6 [67].
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Figure 2. Gold complexes used in this work.

1H and 19F DOSY NMR experiments were performed for gold complexes and TME
in chloroform-d (Table S2) and in pseudo-catalytic conditions (Tables 1 and 2). In order to
avoid the reaction of 3-hexyne with methanol during the 1H and 19F DOSY experiments,
3-hexyne was replaced with unreactive TME towards alkoxylation at room temperature.
However, this approximation remains valid because the coordination properties towards
gold and the dielectric constant of the TME are comparable to those of 3-hexyne.

Table 1. Diffusion coefficient (10−10 m2s−1), hydrodynamic radius (rH
±, Å), hydrodynamic volume

(VH
±, Å3), aggregation number (N±), and α for complexes 1Cl and 1(TME)X (in parenthesis, the

VH
0,IP and Å3; see text for details) in pseudo-catalytic conditions (400 µL of CDCl3, 142 µL of CD3OD,

and 105 µL of TME).

Entry Compound Dt
+ Dt− rH+ VH

+ rH− VH− N+ N− α

1 1Cl (937) 6.99 6.1 937 1.00
2 1(TME)OTs (1245) 5.93 5.24 6.6 1188 6.4 1098 0.95 0.88 0.13
3 1(TME)OTf (1152) 6.40 7.38 6.2 998 6.0 900 0.87 0.78 0.24
4 1(TME)BF4 (1089) 6.01 7.65 6.9 1376 5.6 720 1.26 0.66 0.36
5 1(TME) BARF (1927) 6.84 5.58 6.7 1260 7.3 1596 0.65 0.82 0.32

Table 2. Diffusion coefficient (10−10 m2s−1), hydrodynamic radius (rH
±, Å), hydrodynamic volume

(VH
±, Å3), aggregation number (N±), and α for complexes 1(TME)OTf (VH

0,IP = 1152 Å3; see text for
details) in pseudo-catalytic conditions in different solvents (400 µL of solvent, 142 µL of CD3OD, and
105 µL of TME).

Entries Solvent Dt
+ Dt− rH

+ VH
+ rH− VH− N+ N− α

1 p-cymene 3.60 5.26 8.4 2509 7.1 1499 2.18 1.3 0
2 chloroform * 6.40 7.38 6.2 998 6.0 900 0.87 0.78 0.24
3 methanol 6.57 10.5 6.5 1166 4.2 306 1.01 0.26 0.70
4 acetone 14.6 10.2 6.1 946 3.9 250 0.82 0.22 0.80
5 γ-valerolactone 3.52 7.94 6.3 1067 4.0 270 0.93 0.23 0.84
6 propylene carbonate 3.56 9.47 6.3 1023 3.7 217 0.89 0.18 0.90

* entry 3 Table 1, for comparison.

The experimental observable of DOSY NMR spectroscopy is the self-diffusion coeffi-
cients (Dt, see Section 3) of the species (both cationic, D+, or anionic, D−), from which the
corresponding hydrodynamic radius can be derived by the Stokes–Einstein Equation (1)

Dt =
kT

c(rsolv, rH)πηrH
(1)
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where k is the Boltzmann constant, T is the absolute temperature, η is the viscosity, and c is
a numerical factor, which usually approximates to 6 for large-size molecules.

A more accurate estimation of the hydrodynamic radius rH can be obtained by
Equation (2)

c(rsolv, rH) =
6

1 + 0.695
(

rsolv
rH

)2.234 (2)

where the c factor is expressed as a function of the solvent-to-solute ratio of radii on the
basis of the model proposed by Wirtz and coworkers [68,69], and where rsolv is the radius
of the solvent. The Dt data were treated accordingly to Equation (2), as described in the
literature [70], to derive the hydrodynamic dimensions, taking the solvent or TME as the
internal standard. Assuming the shape of the aggregate is spherical, rH

± can easily be
converted to a hydrodynamic volume (VH

±). The average degree of aggregation can be
evaluated by dividing VH

± by the hydrodynamic volume of the ion pair, VH
0,IP, in order

to derive the aggregation number (N±).
Estimating VH

0,IP is not straightforward, and relying on the van der Waals and crys-
tallographic volume of the species is unreliable, particularly when aromatic groups are
present [71]. By choosing the experimental conditions properly to avoid any ion-pairing
process (for example, performing PGSE measurements in a polar solvent at a low concen-
tration [72]), it is possible to measure VH

0,IP as the sum of the VH
0,− (the hydrodynamic

volume of the free anion) and VH
0,+ (the hydrodynamic volume of the free cation) [72].

If N± are both equal or smaller than 1, the amount of ion triples or quadruples of higher
aggregates can be considered small, and ion pairing might be assumed as the only process
active in the solution. In such a case, it is useful to define the dissociation degree (α) by
Equation (3) in order to quantify the relative concentration of free ions and ion pairs:

VH
− = α (VH

0,−) + (1 − α) VH
0,IP (3)

Before carrying out the measurements under pseudo-catalysis conditions, diffusion
measurements on compounds 1OTf, 1OTs, 1(TME)BF4, 1(TME)BARF, and TME (which we
will use as an internal standard in the pseudo-catalytic measurements) were performed.
The obtained values of Dt, rH, and VH are given in the Supporting Information. The
hydrodynamic volumes ranged from 732 Å3 to 840 Å3 for compounds 1OTf and 1OTs,
in line with the literature data for compound 1Cl (752 Å3). With regard to compound
1(TME)BF4, the values are 800 Å3 and 850 Å3 for the anion and the cation, respectively, in
line with those obtained for 1(4-Me-styrene)BF4 in CD2Cl2. In addition, a Dt (CDCl3)/Dt
(TME) ratio of 0.9 was obtained, together with a value of VH of 100 Å3 for TME (considering
CDCl3 as the internal standard). At this point, we started the measurements under pseudo-
catalytic conditions in CDCl3 (400 µL of CDCl3, 142 µL of CD3OD, and 105 µL of TME). We
began by measuring the catalytic mixture with precursor 1Cl, which is inactive in catalysis
(Table 1). The Dt (CDCl3)/Dt (TME) is now equal to 0.88 but very close to 0.90. This means
that we can apply the methodology known in the literature, even if a mixture of solvents is
used. We, therefore chose TME as an internal standard and rsolv of CDCl3 (Equation (2)) for
the treatment of diffusion measurements and thus calculated the hydrodynamic radii and
volumes of the gold catalyst.

The value obtained for 1Cl was 937 Å3. This VH was taken as the reference volume of
the cation 1+ (NHC-Au+) [73]. We have calculated the VH

0,IP of 1(TME)X while considering
the additive volumes (1+, TME and anion) and the literature VH

0,− values [74], where the
results are 1152 Å3 (X− = OTf−), 1245 Å3(X− = OTs−), 1089 Å3 (X− = BF4

−), and 1927 Å3

(X− = BARF−). These data were used to obtain the values of the aggregation numbers
and α, as described above. Since VH

− is always much larger than VH
0,−, VH

− is a more
sensitive probe than VH

+ to quantitatively assess the ion pairing in a solution, whereas
values of N± larger than 1 indicate the presence of higher aggregates [74]. The experimental
error on VH

±, N±, and α is estimated as 10% [70].
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Table 1 shows the results of the diffusion NMR measurements conducted under the
same pseudo-catalytic conditions for the gold complexes as a function of the counterion.
The values of the hydrodynamic radii of the cations rH

+ vary from 6.2 Å (entry 3, Table 1) to
6.9 Å (entry 4, Table 1), corresponding to volumes between 998 Å3 and 1346 Å3. These hy-
drodynamic volumes (VH

+) are about equal to those of the ion pair (VH
0,IP) for compounds

1(TME)OTs (entry 2, Table 1) and 1(TME)OTf (entry 3, Table 1) while the value for complex
1(TME)BF4 (entry 4, Table 1) is slightly higher and the VH

+ of complex 1(TME)BARF is
lower. As far as the VH

− is concerned, the values range from 720 Å3 to 1596 Å3 (rH
− from

5.6 Å to 7.3 Å, respectively) and are less than the respective VH
0,IP. Analysis of the anion ag-

gregation number (N−) shows that the values are close to 1 for complexes 1(TME)OTs and
1(TME)OTf, while the values are less than 1 for complexes 1(TME)BF4 and 1(TME)BARF.
It can be stated with confidence that complexes 1(TME)OTs and 1(TME)OTf have a greater
tendency to form ion pairs than complexes 1(TME)BF4 and 1(TME)BARF. This is in line
with what has already been observed in the literature for organometallic complexes and
organic salts.

Having values of an aggregation number less than one to better quantify the amount
of ion pairs, we calculated the dissociation degree (α), Equation (3). The (α) values span
from 0.13 for 1(TME)OTs to 0.24 for 1(TME)OTf and have almost the same values of 0.32
and 0.36 for 1(TME)BF4 and 1(TME)BARF, respectively.

In order to be able to analyze the role of the anion during catalysis in major detail, the
trend of the degree of aggregation α against TOF [TOF (h−1) = moles of the product/moles
of the catalyst/time (h)] is shown in Figure 3 (data are also present in Table 1) [49]. From
the analysis of Figure 3, it can be seen that the anion that has the highest TOF value of
300 h−1—1(TME)OTs—is the one with the lower α, i.e., the highest amount of ion pairs.
This is expected because the anion helps during the nucleophilic attack of methanol with
a templating effect (helping the methanol to assume its reactive position and activate the
methanol through a hydrogen bond). This is only possible with ion pairs and is absent
when the catalyst is present in the solution in the form of free ions.
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The combination of the present NMR diffusion results with the previous catalytic and
theoretical data allows us to conclude that the different reactivity between 1(TME)OTs and
1(TME)OTf is given by both factors: anion OTs− have a higher templating power with
respect to OTf−, but on the one hand, 1(TME)OTs is also present in the solution in the form
of an ion pair in higher amounts with respect to 1(TME)OTf.

The higher α values, together with the low TOF values for anions BF4
−, BARF−

176 h−1, and 153 h−1, respectively [49], unequivocally demonstrate that the low activity is
due to the low percentage of ion pairs in catalytic conditions compared with the anions
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OTs− and OTf−. However, it is important to note that the low templating and activating
effect of BF4

− and BARF−, with respect to OTs− (and OTf−), cannot be completely ne-
glected: in these conditions, it has been suggested that a second methanol molecule could
be involved in the mechanism.

This is the first time that experimental and theoretical catalytic data and NMR diffusion
results have been combined for gold catalysis. It allows us to deeply analyze the role of the
anion during the rate-determining step of the alkoxylation of alkynes, i.e., the nucleophilic
attack (Figure 1) in light of the different amounts of ion pairs and different templating and
activating effects of the counterion.

The same methodology (theoretical and experimental kinetic data compared with the
NMR diffusion experiments) is the best way to understand the role of the functional groups
of solvent and additive in gold catalysis. Gold affinity and hydrogen-bond basicity of the
functional groups of additives and solvent are very important topics, being recently the
subject of a review by Xu and collaborators [75]; however, further mechanistic studies and
novel control experiments are needed for a deeper understanding of the additives and
solvent role in gold catalysis.

Table 2 shows the values of the Dt (10−10 m2s−1), rH
± (Å), VH

± (Å3), aggregation
number (N±), and α for complexes 1(TME)OTf in different solvents (p-cymene, chloro-
form, methanol, acetone, γ-valerolactone, and propylene carbonate). The values of the
hydrodynamic radii of the cations rH

+ vary from 6.1 Å (entry 4, Table 2) to 8.4 Å (entry 1,
Table 2), corresponding to volumes between 946 Å3 and 2509 Å3. These hydrodynamic
volumes (VH

+) are about equal to those of the ion pair (VH
0,IP) for compounds 1(TME)OTf

in all solvents except p-cymene (entry 1, Table 2). As for VH
−, the values ranged from

217 Å3 to 1499 Å3 (rH
− from 3.7 Å to 7.1 Å, respectively) and are less than the respective

VH
0,IP, except for the value for p-cymene (entry 1, Table 2)

The values of the aggregation numbers (N±) are all less than 1, with the exception of
p-cymene (entry 1, Table 2). The values of 2.18 and 1.3 for N+ and N−, respectively, indicate
the formation of aggregates greater than the ion pairs. The values for chloroform, already
commented above (entry 3, Table 1), indicate a high presence of ion pairs with respect to
free ions, whereas the very low values of N− for the other solvents indicate a very low
aggregation of ions, as expected due to their high dielectric constant.

Having values of an aggregation number of less than one (entries 2–6, Table 2) to better
quantify the amount of ion pairs, we calculated the dissociation degree (α), Equation (3).
For p-cymene, we can confidently assume that the α value is zero, as the values are greater
than 1 and there are no free ions from the ion-pair/free-ions equilibrium.

The (α) values spanned from 0 for p-cymene to 0.90 for propylene carbonate, and
almost the same higher values of 0.70, 0.74, and 0.80 for methanol, acetone, and γ-
valerolactone, respectively, were obtained.

In order to be able to establish in greater detail the role of solvent during catalysis, the
trend of α against TOF [54,55] has been analyzed, which is shown in Figure 4 (data are also
present in Table 2).

From the analysis of Figure 4, it can be seen that the p-cymene, in which 1(TME)OTf
has the highest TOF value of 500 h−1, is also the one that has the lowest α of 0, i.e., the
highest amount of ion pairs and higher aggregates. The templating and activating effects
of OTf− during the nucleophilic attack through the formation of a hydrogen bond thus
appear to be increased when aggregates greater than the ion pair (quadruple ions) are
present in the catalytic solution. A similar positive effect in the catalysis of aggregations
above the ion pair has also been recently observed in metallocenium catalysts for polyolefin
synthesis [76].
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Also, in Figure 4, it can be seen that chloroform, methanol, acetone, and γ-valerolactone
have comparable TOFs (values between 280 h−1 and 340 h−1) [54,55] despite the significant
differences of α values (from 0.24 for chloroform to 0.84 for γ-valerolactone). As noted
earlier, the high TOF value in chloroform is related to the low α value, while the high
TOF combined with the high α values for methanol, acetone, and γ-valerolactone can be
explained through a direct role of the solvent during the nucleophilic attack of methanol.

The higher TOF value calculated for the reaction run in methanol, with respect to that
obtained for the reaction run in chloroform, is a direct result of the specific templating and
activating roles of other surrounding molecules of MeOH in the reaction mechanism, as
predicted by the DFT calculations [57]. Furthermore, the coordination ability of MeOH
towards the gold center should be lower than that shown by 3-hexyne [48].

The higher TOF value calculated for the reaction run in acetone and γ-valerolactone,
with respect to that obtained for the reaction run in chloroform, can be attributed to a
specific character of the carbonyl functionality in the reaction mechanism because the O-H
bond may be polarized via specific intramolecular interactions, thus suppressing the anion
effect. Both solvents possess functionalities that resemble those present in the DMF and
DMPU utilized as appropriate ionic neutral additives in order to increase the rate of the
catalytic hydration and alkoxylation of the alkyne reactions [77,78].

These solvents play a fundamental role during the reaction. They do not interact with
the NHC-Au+ fragment, allowing the coordination of 3-hexyne, and can interact with the
MeOH molecule during the nucleophilic attack. These experimental results confirm our
DFT calculations. For the more polar γ-valerolactone, the degree of ion-pair separation
is superior, and thermodynamically more stable species, both as a reactant complex and
transition state, are formed. The transition state stability is additionally enhanced by the
reduced (increased) anion affinity for the cationic fragment (the solvent) in the more polar
solvent, which in turn increases the electrophilic character of the substrate. Conversely,
when free ions are taken into account, cationic transition states are stabilized by more
polar γ-valerolactone, which also induces more polarization of the hydroxyl group of
methanol [54,55].

3. Materials and Methods
3.1. Synthesis and Intramolecular Characterization

TME, silver triflate (AgOTf), silver p-toluenesulfonate (AgOTs), silver tetrafluoroborate
(AgBF4), and AgBARF were purchased from Sigma Aldrich. All the solvents were used as
received without any further purification unless otherwise stated. 1Cl, 1OTf, and 1OTs were
synthesized according to the literature [49]. 1(TME)BF4 and 1(TME)BARF were generated
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in situ by adding the appropriate silver salt to a solution of 1Cl and TME. All compounds
were characterized in solution by 1H, 13C, and 19F NMR spectroscopies. The NMR spectra
were recorded on an Avance 400 III HD spectrometer. Chemical shifts (ppm) were relative
to TMS for both 1H and 13C nuclei, whereas the 31P, 19F, and 15N chemical shifts were
referenced to 85% H3PO4, CCl3F, and CH3NO2, respectively. The complexes were fully
characterized with mono-dimensional (1H and 13C) and bi-dimensional (1H-1H COSY,
1H-1H NOESY, 1H-13C HSQC, 1H-13C HMBC) NMR experiments. All the experimental
details and NMR data are reported in the Supporting Information.

3.2. DOSY Measurements

The DOSY NMR spectra were acquired using a Bruker Avance III HD 400 MHz spectra
equipped with a broadband 5 mm probe (1H/BBF iProbe) with a z-axis gradient (50 G/cm)
at 298 K without sample spinning. The DOSY experiments were carried out using the
double-stimulated echo version with a longitudinal eddy current delay (dstegp3s sequence).
The gradient pulse (P30, δ) was set to 1750 us, while the diffusion time (D20, ∆) was set to
0.1 s, and the eddy current delay (D21) was set to 5 ms. The experiments were acquired
using the “dosy” AU program, collecting a total of 32 points (TD1 entry) following a linear
ramp with a gradient intensity (g) ranging from 95% to 5% (47.187 dB to 0.963 dB). The
number of scans (ns) was set to 64.

The dependence of the resonance intensity (I) on a constant waiting time and on a
varied gradient strength G is described by the following Equation (4):

ln
I
I0

= −(γδ)2Dt

(
∆ − δ

3

)
G2 (4)

where I is the intensity of the observed spin echo, I0 is the intensity of the spin echo in the
absence of a gradient, Dt is the self-diffusion coefficient, and ∆ is the delay between the
midpoints of the gradients, δ, the length of the gradient pulse, and γ the magnetogyric
ratio. The semilogarithmic plots of ln(I/I0) versus G2 were fitted by using a standard
linear regression algorithm, and a correlation factor better than 0.99 was always obtained
(Figure 5). The self-diffusion coefficient Dt, which is directly proportional to the slope m of
the regression line obtained by plotting ln(I/I0) versus G2, was estimated by evaluating the
proportionality constant for a sample of HDO (5%) in D2O (known diffusion coefficients in
the range 274–318 K) [38] under the exact same conditions as the sample of interest. The
solvent (or 2,3-dimethyl-2-butene, TME) was taken as an internal standard. The Dt data
were treated as described in the literature to derive the hydrodynamic dimensions.
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4. Conclusions

Our research demonstrates that the combination of DOSY NMR diffusion experiments
and kinetic measurements of gold catalyst activity is a reliable methodology for under-
standing the behavior of gold catalysts for the alkoxylation of unsaturated hydrocarbon
and disclosing the role of ion pairs (the amount of free ions, ion pairs, and higher aggre-
gates), the nature of anions (coordination ability, basicity, and hydrogen bond acceptor
properties), and solvent (polarity, gold affinity, and the hydrogen-bond basicity of peculiar
functional groups).

We have successfully applied this methodology to the investigation of gold complexes
[(NHC)AuX] and [(NHC)Au(TME)X] [NHC 1,3-bis(2,6-di-isopropylphenyl)-imidazol-2-
ylidene; TME = tetramethylethylene (2,3-bis methyl-butene)], which change in the nature
of the counterion [Cl−, BF4

−, OTf−; OTs− BArF4
− (ArF = 3,5-(CF3)2C6H3)] in different

catalytic solvents (p-cymene, chloroform, methanol, acetone, γ-valerolactone, and propy-
lene carbonate).

The 1H and 19F DOSY NMR measurements conducted in catalytic conditions in
chloroform indicate that α (quantity of free ions) depends on the nature of the counterion.
While the compounds containing OTs− and OTf− as counterions gave a low α, the catalysts
containing BF4

− and BArF4
− recorded a higher α. Analyzing the trend of α against TOF

(Figure 3), it can be seen that the TOF is inversely proportional to α. This is because the
anion helps with a templating effect during the nucleophilic attack of methanol, which
is only possible with ion pairs and absent when the catalyst is present in the solution
in the form of free ions. However, the difference in reactivity between 1(TME)OTs and
1(TME)OTf is likely due to a higher templating power of OTs− with respect to OTf−, as
suggested by previous DFT calculations [58].

Furthermore, α increases as the dielectric constant increases, as expected. However,
there are additional considerations that can be made when α data are considered in con-
junction with TOF(Figure 4). The DOSY measurements conducted in p-cymene show the
formation of quadrupole species. These conditions allow the anion to better exercise its
‘template’ and ‘activating’ roles, resulting in higher TOFs than in chloroform. Chloro-
form and γ-valerolactone have comparable TOFs (Figure 4) despite there being significant
differences in the α. A high TOF, combined with the high α values for γ-valerolactone,
experimentally confirms the direct role of the solvent during the nucleophilic attack of
methanol, as previously suggested by the DFT calculations [54,55].

In conclusion, for the first time in the literature, we focused on gold catalysis. The
combination of experimental (and theoretical) catalytic data and NMR diffusion results
allows us to analyze the outcomes in-depth and quantitatively as follows: (1) the role of the
anion during the nucleophilic attack (Figure 1) disentangles the ion-pairing and different
templating and activating effects of the counterion (hydrogen bond acceptor property), and
(2) the role of the solvent during gold catalysis disentangles the polarity effect (related to
ion pairing) and activating effect due to the presence of specific functionalities (hydrogen-
bond basicity).

Supplementary Materials: The following supporting information can be downloaded at: https://
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