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Abstract: Oleanolic acid (OA) is a vegetable chemical that is present naturally in a number of edible
and medicinal botanicals. It has been extensively studied by medicinal chemists and scientific
researchers due to its biological activity against a wide range of diseases. A significant number
of researchers have synthesized a variety of analogues of OA by modifying its structure with the
intention of creating more potent biological agents and improving its pharmaceutical properties. In
recent years, chemical and enzymatic techniques have been employed extensively to investigate and
modify the chemical structure of OA. This review presents recent advancements in medical chemistry
for the structural modification of OA, with a special focus on the biotransformation, semi-synthesis
and relationship between the modified structures and their biopharmaceutical properties.

Keywords: oleanolic acid; triterpenoids; medicinal chemistry; biotransformation; biological activities;
anticancer activity; pharmaceutical properties

1. Introduction

Plants have been a vital source of nourishment and medicinal substances for mankind
for a long time [1]. This source is characterized by a diversity of molecules with a variety
of bioactive properties [2]. Therefore, natural products have several notable advantages,
including biodegradability, wide availability from diverse sources, and low susceptibility to
drug resistance [3]. Nature has been used since ancient times to combat various illnesses [4].
Per the World Health Organization (WHO), 80% of developing countries’ populations rely
on the use of effective traditional medical practices as their principal form of health care [5].
Chemists worldwide have shown great interest in natural source products due to their
potential to provide new chemical varieties for drug discovery [6,7]. Almost one half of
the new medicines launched in the last three out decades are either naturally occurring
products or their derivatives.

According to the WHO, many countries, including Germany (77%), France (49%),
Belgium (31%), Australia (48%), and Canada (70%), have adopted traditional herbal treat-
ment systems [8]. Additionally, traditional Chinese herbal medicine has been used to treat
COVID-19 [9]. Triterpenoids are a valuable benchmark for drug discovery programs be-
cause of their wide diversity of activities. To date, more than 20,000 triterpenoids have been
discovered [10,11]. Triterpenoid compounds are a type of secondary metabolite [12] with a
diverse range of biopharmaceutical activities, among them anti-inflammatory [13], antiviral
activity against HIV [14], antidiabetic, neuropharmacological [15] and antihyperuricemic
properties [16]. Pentacyclic triterpenoids, such as lupane, oleanane, and ursane [17], exhibit
bioactivity [18]. Among these, Oleanolic acid (OA) has received more attention from re-
searchers due to its abundance in medicinal herbs and foods [19]. Discovered in the 1970s,
this molecule is chemically known as 3β-hydroxyolean-12-en-28-oic acid [20,21] and is also
known as angelic acid, caryophellin and oleanol [22]. It is derived from the oleanane family
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of pentacyclic triterpenoids [23,24] and is extracted from over 2000 plants [25], including
numerous food and medicinal herbs [26]. For example, the following plants have been iden-
tified as containing this compound: Corni Fructus [27], Salvia [28], Olea europea [29], Pistacia
lentiscus [30], Apples [31], Viscum album L. [32], Aralia elata [33], Couepia polyandra, Perilla
frutescens, and Glechoma hederaceae [34]. Naturally, OA can be present as a free acid. It is also
found as an aglycone precursor of the triterpenoid saponins, where it can be associated
with sugar or sugar chains [20]. For instance, numerous oleanolic acid saponins are derived
from the Viguiera decurrens plant, including 15a-angeloyloxy-ent-kaur-16-en19-oic acid,
oleanolic acid-3-O-methylb-D-glucuronopyranosiduronoate, etc. These compounds exhibit
intriguing anti-cancer properties [35]. Additionally, 3-O-α-L-arabinosyl oleanolic acid can
be isolated from Schumacheria castaneifolia and has interesting anticancer activity [36]. OA
has been used in traditional medicines for centuries; it is an ingredient in traditional Chinese
medicine (TCM) and has been clinically used for 20 years to treat hepatitis [37]. It is also
widely used in India as a medicinal compound with natural properties [38]. Today, many
medicines are derived from plants, underlining the importance of traditional remedies in
modern medicine. The therapeutic potential of Ocimum sanctum L. is well documented,
particularly as an anti-asthmatic and antikaphytic medicine [39]. Azadirachta Indica A. Juss,
or neem, is a popular medicinal plant in Asia and Africa, and has been used since ancient
times for a variety of purposes [40]. Tribulus terrestris is also used to treat urinary disorders,
hyperuricaemia and impotence, as well as being a diuretic [41].

In a pharmacological context, the anti-apoptotic [42] and antioxidant [43] properties
of oleanolic acid (OA) could well explain its various therapeutic effects. By protecting
cells and reducing oxidative stress, these mechanisms can reduce hypoglycemic [44], anti-
inflammatory [45], anti-cancer, anti-microbial [42] and anti-influenza [46] effects. These
properties, along with its traditional medicinal use, have led researchers to consider this
compound to have therapeutic potential for the prevention and control of many illnesses,
including diabetes, cancer, AIDS and many other diseases [47]. Despite being widely used
in various fields, the efficacy of OA has not been fully revealed as its poor solubility in
water and the permeability of the cell membrane limit its use [48]. This has prompted
scientific researchers to devote more attention to improving its use. Several reviews
have been published on this acid, focusing on its beneficial properties and its derivatives.
Yang et al. [49] analyzed recent research on semi-synthetic derivatives, with their study
focusing on the advances made in understanding the biological characteristics of OA and
its derivatives. However, comprehensive evaluations are lacking due to the numerous
articles published each year, which presents obstacles for future research. Therefore, we
have provided an update to address this issue.

This study presents an exhaustive analysis of oleanolic acid, encompassing both bi-
ological and chemical aspects. Firstly, the enzymatic method is described, including an
overview of the phenomenon and definitions of the enzymes and fungi used for biocon-
version. Secondly, we offer more detail on semi-synthesis, as almost all the derivatives are
semi-synthetic. A comprehensive presentation of the derivatives is provided, accompa-
nied by detailed diagrams illustrating the chemical reactions, including the reagents and
solvents utilized. Furthermore, we have addressed the biological aspect by elucidating
the phenomenon of biotransformation and enzymatic reactions in general. This approach
has been designed with the intention of facilitating the work of scientific researchers. In
conclusion, this review can serve as a biological and organic reference for future therapeutic
development.

2. Enzymatic Production of Oleanolic Acid Derivatives

The primary objective of life is to maintain optimal health by actively combating
disease, regardless of the means employed, whether simple or complex. Researchers
are continuously working to discover natural molecules or synthesize compounds with
intriguing biological activities. OA (Figure 1) is a pentacyclic triterpenoid that has been
extensively researched and is considered highly important in nature [50].
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Scientists have made significant efforts to improve the activity of organic compounds,
whether enzymatically or chemically. Enzymatic reactions, using microorganisms, are pre-
ferred due to their simplicity, safety, and efficiency in modifying organic compounds [51,52].
Currently, there are few works on the biotransformation of OA. In fact, this review presents
all derivatives of this triterpenoid acid that result from enzymatic transformations (Table 1).

Zhang et al. [53] have described the formation of a new molecule, OA methyl ester
(1). This molecule is characterized by the esterification of the carboxyl group located at
C28. The transformation was accomplished using the bacterium Nocardia sp. NRRL 564.
In a previous work, Choudhary et al. [50] demonstrated that the fungus Fusarium lini can
biotransform our acid by producing two oxidative metabolites (Table 1). These compounds
are distinguished by the insertion of a hydroxyl group at C2 for 2α,3β-dihydroxyolean-12-
en-28-oic acid (2) and at C2 and C11 for 11β-trihydroxyolean-12-en-28-oic acid (3). Both
molecules were tested for their α-glucosidase inhibition properties. The results show that
the enzyme was more strongly inhibited by these two compounds, which exhibited IC50
values of 444 µM and 666 µM, respectively. Furthermore, Liu et al. [52] utilized two types
of fungi to produce nine derivatives of OA. Six products were produced by Alternaria
longipes through biotransformation, while Penicillium adametzi yielded three compounds.
Four of these derivatives demonstrated greater cytotoxicity against cancerous human cell
lines. Martinez et al. [54] used the fungus Rhizomucor miehei to hydroxylate C-1, C-7, and
C-30 (13–15). In addition, Ting et al. [51] carried out a microbiological conversion of OA
using Trichothecium roseum, resulting in the discovery of two new hydroxylated compounds,
15α-hydroxy-3-oxo-olean-12-en-28-oic acid (16), was characterized by modifications at
the C-3 and C-15 carbons, and 7β,15α-dihydroxy-3-oxo-olean-12-en-28-oic acid (17), was
characterized by modifications at the C-3, C-7 and C-15 carbons.

Ludwig et al. [55] identified two molecules through biotransformation of OA using
the bacterium Nocardia iowensis: the methyl ester of OA (18) and the ketone-methyl ester
of OA (19) (Table 1). Circinella muscae AS 3.2695 converted OA at six sites (C-3, C-7, C-12,
C-15, C-21, and C-28), producing hydroxylated and glycosylated molecules (20–28). The
derivatives were assessed for anti-inflammatory activity and found to significantly reduce
NO generation, with IC50 values ranging from 8.28 to 40.74 µM [56]. In a subsequent study,
Luchnikova et al. [57] identified two derivatives resulting from the biotransformation of
OA by the bacterium Rhodococcus rhodochrous. The first molecule has two hydroxyl groups
at positions C-5 and C-22 (29), as well as two carboxyl groups at position C-23. The second
molecule is characterized by a carboxyl group at C-23 (30).
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Table 1. Biotransformation of OA by different enzymes and microorganisms.

Names of the
Micro-Organisms Derivatives Biological Activities References

Nocardia sp. NRRL 5646
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Table 1. Cont.

Names of the
Micro-Organisms Derivatives Biological Activities References
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Table 1. Cont.

Names of the
Micro-Organisms Derivatives Biological Activities References
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3. Semi-Synthesis of OA and Biological Activities of Its Derivatives

The discovery of bioactive molecules through organic synthesis remains a persistent
challenge. The relationship between synthesis and activity is complex, making the search
for compounds with these properties difficult. Therefore, chemists and biologists are
working to develop simplified methods for preparing bioactive compounds.

3.1. Anti-Cancer Activity

Throughout history, fatal illnesses have affected the world, with cancer being one of
the most significant. In 2018, 18 million people worldwide were affected by cancer, which
resulted in 9.6 million deaths [58]. Breast cancer was expected to affect 2.3 million women
worldwide in 2020, killing 685,000 of them [48]. OA is recognized as a valuable resource in
the search for anti-cancer drugs due to its remarkable activity [22]. Since 2000, researchers
have published reports on the synthesis of various derivatives of this acid to combat this
disease.

In fact, Yan et al. [59] have synthesized two naturally occurring products from OA
and tested their antitumor activity against Hela cells (Table 2). The results indicate that
compound 1a has the highest antitumor activity, with an IC50 value of 2.74 µM. Furthermore,
Gupta et al. [60] synthesized 13 OA derivatives, composed of ester and amide derivatives,
and investigated their antitumor cell growth ability against 9 human tumor cell lines:
IMR-32, HOP-62, HCT-15, A-549, SW-620, IGR-OV-1, SF-295, PC-3, and MCF-7. Table 3
demonstrates that the ester compounds exhibited outstanding anticancer properties against
IGR-OV-1, while the amide compounds demonstrated good efficacy against HOP-62.

Table 2. Evaluation of natural OA derivatives against the HeLa cell line [59].
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potent cytotoxic effects. Compound 7a demonstrated the highest activity (IC50 = 0.39 µM)
against PC3 cells, while compound 8a exhibited the highest potency (IC50 = 0.22 µM)
against A549 cells [62].

Table 3. Evaluation of ester and amide derivatives on two cell lines by inhibition (%) [60].
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Table 4. Evaluation of derivatives against cell viability of various cell lines by inhibition (%) [61].
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8c  
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Ester derivatives of OA were prepared by Mallavadhani et al. [63], who assessed their 
antiproliferative efficacy against several cancer cell lines (Table 6). When compared with 
OA, the in vitro cytotoxic test showed that the majority of the derivatives were effective 
against lung and SiHa cancer cell lines. Uridine–OA hybrid analogs were prepared and 
tested for their anti-cancer effects on various human tumor cell lines, including Hep-G2, 
A549, PC-3, MCF-7 and BGC-823 (Table 7). All synthesized derivatives demonstrated ex-
cellent inhibition of proliferation when compared with OA [64]. Recently, Chouaib et al. 
[65] prepared a series of OA analogues (12a–f) (Table 8) and assessed their anticancer ef-
fects against two cancer lines, SW480 and EMT-6. In addition, they described the cytotox-
icity of two series of OA: 1-phenyl-1H-[1,2,3]triazol-4-ylmethyl esters (13a–f) and 1-phe-
nyl-1H-[1,2,3]triazol-5-ylmethyl esters (14a–f) [66]. Li et al. [67] synthesized a number of 
novel OA compounds that were modified at the C-3 OH position by disulfide, selenium 
ether, or thioether bonds. The antiproliferative effect of these derivatives was assessed on 
different types of human cancer cells (HCT116, L02, BEL-7402 and HepG-2) (Table 9). The 
derivatives containing sulfur ether showed the best antiproliferative effect, especially on 
BEL-7402 cells. Compared with our acid and the positive reference drug, these OA deriv-
atives showed significantly stronger anti-proliferative effects against these types of cancer 
cells. Li et al. [68] created novel analogues that target mitochondria (Table 9) in an effort 
to increase OA’s anticancer properties and therapeutic efficacy. The majority of these an-
alogues were shown to be more powerfully cytotoxic to cancer cells than to normal cells 
when their efficacy on tumor cell lines was assessed. Compound 16b was very interesting, 
as it showed an IC50 in A549 cells of 0.81 µM. In further investigation, Şenol et al. [69,70] 
synthesized two series of new molecules from the natural product OA. The first series 
comprises OA derivatives in the form of fatty acid esters (17a to 17f), while the second 
series (18a to 18e) was synthesized from hydrazides and various aromatic aldehydes (Ta-
ble 10). The cytotoxic properties of the molecules were tested in vitro using the PC3, A549 
and BEAS-2B cell lines. In a subsequent study, Şenol et al. [71] synthesized a novel series 
of OA-derived α-unsaturated ketone derivatives (19a to 19i) with changes in C-2, C-3 and 
C-28. The compounds were evaluated against PC3 (Table 10). Their results indicate that 
these analogues are remarkably less toxic to HUVEC when compared with the reference 
drug doxorubicin. 

In another work, Sheng et al. [72] reported four targeted hydrogen sulfide donor–OA 
hybrids at position C-3 and tested their biological activity, particularly anticancer activity 
(Table 11). According to the results, a limited number of hybrids showed intermediate 
inhibition against K562 cell growth. Over time, medicinal chemists have concentrated on 
developing compounds derived from OA. In a recently published study, Tang et al. [73] 
synthesized novel OA–dithiocarbamate conjugates and evaluated their biological activity 
(Table 12). Analogue 22e demonstrated the strongest and most comprehensive antiprolif-
erative effects, as demonstrated by the test findings. It exhibited strong activity against 
A549, Hela, Huh-7, Panc1, HT-29, and Hep3B cells. Yu et al. [74] obtained a series of py-
razole-fused analogues of OA (Table 12). These derivatives were based on the pyrazole-
fused derivatives of betulinic acid, which have demonstrated strong therapeutic activity. 
The effects of these molecules were assessed on the RAW264.7 cancer cell line. The strong 
cytotoxicity observed for some of these provides valuable clues for the development of 
new anti-tumor agents. 
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Ester derivatives of OA were prepared by Mallavadhani et al. [63], who assessed their
antiproliferative efficacy against several cancer cell lines (Table 6). When compared with OA,
the in vitro cytotoxic test showed that the majority of the derivatives were effective against
lung and SiHa cancer cell lines. Uridine–OA hybrid analogs were prepared and tested
for their anti-cancer effects on various human tumor cell lines, including Hep-G2, A549,
PC-3, MCF-7 and BGC-823 (Table 7). All synthesized derivatives demonstrated excellent
inhibition of proliferation when compared with OA [64]. Recently, Chouaib et al. [65]
prepared a series of OA analogues (12a–f) (Table 8) and assessed their anticancer effects
against two cancer lines, SW480 and EMT-6. In addition, they described the cytotoxicity
of two series of OA: 1-phenyl-1H-[1,2,3]triazol-4-ylmethyl esters (13a–f) and 1-phenyl-
1H-[1,2,3]triazol-5-ylmethyl esters (14a–f) [66]. Li et al. [67] synthesized a number of
novel OA compounds that were modified at the C-3 OH position by disulfide, selenium
ether, or thioether bonds. The antiproliferative effect of these derivatives was assessed
on different types of human cancer cells (HCT116, L02, BEL-7402 and HepG-2) (Table 9).
The derivatives containing sulfur ether showed the best antiproliferative effect, especially
on BEL-7402 cells. Compared with our acid and the positive reference drug, these OA
derivatives showed significantly stronger anti-proliferative effects against these types of
cancer cells. Li et al. [68] created novel analogues that target mitochondria (Table 9) in an
effort to increase OA’s anticancer properties and therapeutic efficacy. The majority of these
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analogues were shown to be more powerfully cytotoxic to cancer cells than to normal cells
when their efficacy on tumor cell lines was assessed. Compound 16b was very interesting,
as it showed an IC50 in A549 cells of 0.81 µM. In further investigation, Şenol et al. [69,70]
synthesized two series of new molecules from the natural product OA. The first series
comprises OA derivatives in the form of fatty acid esters (17a to 17f), while the second series
(18a to 18e) was synthesized from hydrazides and various aromatic aldehydes (Table 10).
The cytotoxic properties of the molecules were tested in vitro using the PC3, A549 and
BEAS-2B cell lines. In a subsequent study, Şenol et al. [71] synthesized a novel series of
OA-derived α-unsaturated ketone derivatives (19a to 19i) with changes in C-2, C-3 and
C-28. The compounds were evaluated against PC3 (Table 10). Their results indicate that
these analogues are remarkably less toxic to HUVEC when compared with the reference
drug doxorubicin.

In another work, Sheng et al. [72] reported four targeted hydrogen sulfide donor–OA
hybrids at position C-3 and tested their biological activity, particularly anticancer activity
(Table 11). According to the results, a limited number of hybrids showed intermediate
inhibition against K562 cell growth. Over time, medicinal chemists have concentrated on
developing compounds derived from OA. In a recently published study, Tang et al. [73]
synthesized novel OA–dithiocarbamate conjugates and evaluated their biological activity
(Table 12). Analogue 22e demonstrated the strongest and most comprehensive antiprolifer-
ative effects, as demonstrated by the test findings. It exhibited strong activity against A549,
Hela, Huh-7, Panc1, HT-29, and Hep3B cells. Yu et al. [74] obtained a series of pyrazole-
fused analogues of OA (Table 12). These derivatives were based on the pyrazole-fused
derivatives of betulinic acid, which have demonstrated strong therapeutic activity. The
effects of these molecules were assessed on the RAW264.7 cancer cell line. The strong
cytotoxicity observed for some of these provides valuable clues for the development of
new anti-tumor agents.
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Table 10. Evaluation of OA derivatives against BEAS-2B, A549 and PC-3.
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3.2. Anti-Diabetic Activity

It has been scientifically established that the liver centrally regulates the body’s glucose
balance [75]. Controlling diabetes is crucial, due to its increasing prevalence worldwide.
Type 2 diabetes affects a significant proportion of the adult population, estimated to be
around 9% in 2014 [76].

In this context, several studies have shown that OA is effective in treating diabetes
and metabolic syndrome. It is beneficial in improving the response to insulin, which helps
to preserve β-cell functionality and survival. Additionally, it offers protection against the
complications of this chronic disease [77]. Ali et al. [78] conducted one of the earliest studies
to demonstrate the anti-diabetic effects of OA. The study evaluated the ability of five OA
derivatives, which were modified in rings A, C, and D, to inhibit urease, α-glucosidase,
β-lactamase, and acetylcholinesterase. The evaluated products had a significant effect on
α-glucosidase, but no effect on other enzymes. Compound 24c demonstrated the highest
potency as an inhibitor of this particular enzyme, with an IC50 of 7.97 µM. Chen et al. [79]
synthesized various structurally diverse compounds of OA, with modifications at ring A
(C-3 OH) or ring C (C-28 COOH) and assessed their effects on GPa inhibition. Derivative
25b exhibited greater potency against this enzyme, demonstrating an IC50 value of 3.30 µM.
PTP1B is a significant regulator of the insulin pathway, making it a promising target
for diabetes control. Based on this information, Zhang et al. [80] prepared various OA
modifications at the C-3- and C-28- positions and evaluated their impact on PTP1B. The
study found that many of these molecules have a considerable effect on diabetes. The
previous study by Cheng et al. [81] focused mainly on the use of click chemistry. They
prepared a series of novel nucleoside conjugates of OA and assessed their anti-diabetic
activity using the GPa enzyme inhibition assay. They then prepared derivatives of OA
dimers and evaluated them against GPa.

Cheng et al. [82] conducted research by synthesizing derivatives of OA dimers and
evaluated their effects against GPa. Their study determined that analogue 30 was the most
effective, showing an IC50 of 2.59 µM. In order to investigate the potential inhibitory effects
of OA derivatives on PTP1B, a series of derivatives were synthesized with modifications
to the carboxyl (C-28) and hydroxyl (C-3) groups. Compound 31f exhibited the strongest
inhibitory activity, with an IC50 value of 3.12 µM. A molecular docking study on this
molecule revealed that the crucial sites for the inhibitory activity of the PTP1B enzyme
are the integrity of the A ring and the 12-ene units. In addition, hydrophilic and acidic
groups play an essential role, as does the distance between the oleanene and these acidic
groups [83]. Nie et al. [84] developed several OA compounds, focusing on modifications
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at the C-3 and C-28 sites of the structure. The objective was to design α-glucosidase
inhibitors that incorporated a piperazine moiety to link the cinnamic acid moiety to OA at
C-28. The majority of these new compounds displayed superior α-glucosidase inhibition
compared with our acid. In particular, compound 33d showed potent inhibitory properties
against this enzyme at an IC50 of 1.90 µM. This is about 50 times lower than our lead
compound (IC50 of 98.50 µM) and 200 times lower than acarbose (IC50 of 388.00 µM).
Zhang et al. [75] demonstrated the anti-diabetic properties of new derivatives of OA,
which are characterized by modifications at the C-3 site. In addition, all of these derivatives
underwent rigorous in vitro biological evaluations using GPa. The results show that several
derivatives exhibited medium to substantial anti-glycogen phosphorylase inhibitory effects.
Compound 34g proved particularly interesting, with notable activity (IC50 = 5.40 µM)
that can be attributed to the presence of the triazole bond and the naphthalene ring. The
research carried out by Liu et al. [85] explored a promising method for improving the
properties of drugs by altering the carbohydrates in aglycones. They created twenty-four
modified versions of OA by adding sugar. The molecules were assessed for their ability
to exhibit inhibitory properties against the enzyme PTP1B. Among these, compounds 35a,
35b, 35c and 35d showed remarkable inhibitory activity against this enzyme. In particular,
compound 35c was the most effective, showing an IC50 value of 0.56 µM. In another work,
Tang et al. [86] prepared a variety of conjugates using OA and chalcone and evaluated their
inhibitory effects. The study indicated that OA derivatives, conjugated with chalcone units
in combination with furan, exhibited significant activity compared with other molecules.
For instance, molecule 36a exhibited the most potent inhibitory effect on α-glucosidase,
showing an IC50 of 3.20 µM.

In previous studies, Zhong et al. [87] focused on triterpenoids, in particular OA,
demonstrating a keen interest in these compounds. Structural changes were made at the
C-2, 3-OH, 28-COOH, C-12 and C-13 positions to synthesize a number of derivative forms
of OA. The derivatives were evaluated for their biological properties in vitro and in vivo,
in particular their efficacy against α-glucosidase. The study of the inhibition of this enzyme
showed that most of the analogues exhibited significant levels of inhibition. The results
highlight that the addition of substituents in the para position on the phenyl ring was
particularly beneficial in enhancing the aglucosidase inhibitory activity of the analogue. In
their search for new treatments for diabetes, Deng et al. [88] selected and prepared various
derivatives of OA oxime esters (38a–38k) to create inhibitors targeting both α-glucosidase
and α-amylase. Their analysis showed that the large number of compounds evaluated had
significant activity against both enzymes. Gao et al. [89] prepared and characterized several
new OA analogues modified at the C-2 and C-3 sites by fusion with pyrazole to evaluate
their potential as selective inhibitors of α-amylase and α-glucosidase. The study showed
that the novel compound 39d exhibited potent inhibitory activity against α-glucosidase,
with an IC50 of 2.64 µM. Until now, researchers have focused on finding solutions for type 2
diabetes. Using OA as a starting point, V. Petrova et al. [90] prepared a range of compounds
and tested their capacity to inhibit α-glucosidase. The derivatives were found to be effective
inhibitors of this enzyme (Table 13).
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3.3. Anti-Inflammatory Activity

Anti-inflammatory activity is of paramount importance in medical research, with
scientists focusing their efforts on how to reduce the body’s inflammatory responses. Nkeh-
Chungag et al. [91] synthesized two derivatives of OA by acetylation and methylation
(Figure 2) and evaluated them for anti-inflammatory activity using testing models that cause
inflammation through fresh egg albums and serotonin in male Wistar rats. The laboratory
also evaluated these compounds for their ability to stabilize erythrocyte membranes in
a hemolysis test model induced by heat and low blood pressure. The tests that were
carried out showed that the derivatives that were synthesized had more promising anti-
inflammatory activity in comparison with the starting molecule.
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Figure 2. OA analogues.

Bednarczyk-Cwynar et al. [92] prepared a methyl-3-octanoyloxyiminoolean-12-en-
28-oate derivative of OA and tested it for anti-inflammatory activity (Scheme 1). The
evaluation of this molecule involved the administration of carrageenan injections, a sub-
stance known to induce significant oedema in the paws of rats. This model is frequently
used to investigate the anti-inflammatory properties of different molecules. The synthesized
compound exhibited maximum activity between 1.5 and 3.0 h after carrageenan injection.
A range of acid derivatives was prepared, characterized by modifications at C-2 and C-3
and leading to the formation of indole-fused derivatives (Scheme 2). These molecules
were tested for their anti-inflammatory effects on LPS-induced nitric oxide formation in
macrophages. Compared with the NOS inhibitor, these compounds showed a significant
impact on NO production, with IC50 values ranging from 2.66 to 25.40 µM. Therefore, the
prepared OA analogues show enhanced inhibitory activity. According to the studies carried
out, the compounds that showed significant activity are characterized by the introduction
of a heterocyclic ring in the A cycle of the oleanane skeleton and the insertion of amide
groups at C-28 [93]. In a previous study, Nelson et al. [94] demonstrated that maslinic acid
and its synthesized derivative exhibit anti-inflammatory activity. This is due to a chemical
structural change at the C-2 position of the OA (Scheme 3). The study evaluated two
molecules for their potential to inhibit the expression of inflammation-related genes in a
mouse model of chemical-induced skin response. Both compounds reduced the expression
of inflammatory genes induced by 12-O-tetradecanoylphorbol-13 acetate in the skin of the
mice. Maslinic acid, though, was stronger than the other compound synthesized.
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Rali et al. [95] achieved a significant breakthrough by enhancing the anti-inflammatory
properties of OA (Scheme 4). They accomplished this by modifying its structure through
methylation at the C-28 level of the E ring and acetylation at the C-3 site of the A ring.
Isoxazole derivatives of OA were synthesized using the microwave-assisted 1,3-dipolar cy-
cloaddition reaction. The anti-inflammatory properties of the majority of these compounds
were studied using PBMCs. This approach allowed for the exploration of the potential
of a series of isoxazole derivatives of OA as anti-inflammatory agents [65]. These results
encouraged Chouaib [66] to continue his work on OA. He succeeded in synthesizing two
series of our acid (Scheme 5). The result of a test using LPS-stimulated PBMCs shows that
molecule 46c has anti-inflammatory activity.
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In the context of inflammation studies, Krajka-Kuźniak et al. [96] developed new
derivatives of OA oxime (Scheme 6) and evaluated their interaction with ASP in modulating
NF-κB expression and activation in HepG2 cells, which serve as a human hepatoma model.
The results suggest that these derivatives, especially when used with aspirin (derivatives
48a–48c), can affect COX-2 expression in HepG2 cells by regulating the NF-κB pathway. In
continuation, Krajka-Kuźniak et al. [97] conducted further research and made structural
modifications to the acid compound by incorporating succinic acid at the C-3 site, yielding
four novel derivatives of OA oxime (Scheme 7). The derivatives were then tested for their
impact on NF-κB and STATs regulation and activation in HepG2 cells. The findings suggest
that SMAM is the most potent regulator of both enzymes among the derivatives.



Molecules 2024, 29, 3091 42 of 63

Molecules 2024, 29, x FOR PEER REVIEW 40 of 62 
 

 

findings suggest that SMAM is the most potent regulator of both enzymes among the de-
rivatives. 

 
Scheme 6. Synthesis of OA–oxime derivatives [96]. 

In another work, Liu et al. [98] synthesized saponin derivatives to enhance the phar-
macokinetic properties of OA, aiming to discover more effective anti-inflammatory agents 
(Scheme 8). In vitro tests have shown that these derivatives greatly inhibit the release of 
pro-inflammatory factors IL-6 and TNF-α in THP1-derived macrophages activated by 
LPS. 

Jin et al. [99] prepared 11 new analogues of oxooleanolic acid (Scheme 9) to improve 
its anti-inflammatory activity. Activity was studied using the BV2 cell model of inflam-
mation induced by LPS. In vivo and Western blot studies showed that two derivatives (51c 
and 51d) significantly inhibited the expression of p-NF-κB, iNOS, p-Akt, p-JNK, p-ERK, 
p-p38 and COX-2 proteins, while enhancing the expression of HO-1 and Nrf2 proteins in 
BV2 cells. Both compounds can also exert their anti-inflammatory effects by inhibiting the 
production of nitric oxide (43.80% and 54.80%), pro-inflammatory cytokines, and chemo-
kines such as MIP-1α, IL-6, TNF-α, IL-12, and IL-1β, while increasing the production of 
anti-inflammatory cytokines such as IL-10. 

Scheme 6. Synthesis of OA–oxime derivatives [96].
Molecules 2024, 29, x FOR PEER REVIEW 41 of 62 
 

 

 
Scheme 7. Synthesis of new derivatives of OA–oxime conjugates [97]. 

 
Scheme 8. Synthesis of saponin derivatives as agents with anti-inflammatory activity [98]. 

 
Scheme 9. Synthesis of 11 oxo-OA derivatives as agents with anti-inflammatory activity [99]. 

Hassan Mir et al. [100] synthesized compounds of OA (Scheme 10) and showed anti-
inflammatory activity against NO, IL-6 and TNF-α. Altering the C-2 locations of OA’s A 
ring resulted in the arylidene derivative. These substances have demonstrated stronger 
anti-inflammatory properties. 

Scheme 7. Synthesis of new derivatives of OA–oxime conjugates [97].



Molecules 2024, 29, 3091 43 of 63

In another work, Liu et al. [98] synthesized saponin derivatives to enhance the phar-
macokinetic properties of OA, aiming to discover more effective anti-inflammatory agents
(Scheme 8). In vitro tests have shown that these derivatives greatly inhibit the release of
pro-inflammatory factors IL-6 and TNF-α in THP1-derived macrophages activated by LPS.
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Jin et al. [99] prepared 11 new analogues of oxooleanolic acid (Scheme 9) to improve its
anti-inflammatory activity. Activity was studied using the BV2 cell model of inflammation
induced by LPS. In vivo and Western blot studies showed that two derivatives (51c and
51d) significantly inhibited the expression of p-NF-κB, iNOS, p-Akt, p-JNK, p-ERK, p-
p38 and COX-2 proteins, while enhancing the expression of HO-1 and Nrf2 proteins in
BV2 cells. Both compounds can also exert their anti-inflammatory effects by inhibiting
the production of nitric oxide (43.80% and 54.80%), pro-inflammatory cytokines, and
chemokines such as MIP-1α, IL-6, TNF-α, IL-12, and IL-1β, while increasing the production
of anti-inflammatory cytokines such as IL-10.
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Hassan Mir et al. [100] synthesized compounds of OA (Scheme 10) and showed anti-
inflammatory activity against NO, IL-6 and TNF-α. Altering the C-2 locations of OA’s A
ring resulted in the arylidene derivative. These substances have demonstrated stronger
anti-inflammatory properties.
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3.4. Antimicrobial Activity

The emergence of antibiotic resistance in bacteria represents a significant challenge to
public health, prompting researchers to explore novel therapeutic strategies. The results of
the literature search reveal that several triterpenoids have been demonstrated to possess
antimicrobial properties [101]. In particular, oleanolic acid has been identified as a notable
example of this phenomenon [102]. The compound has the capacity to inhibit the devel-
opment of resistance mechanisms in bacteria pathogens [103]. This resistance is achieved
through the specific targeting of the bacterial cell envelope [104].

Hichri et al. [101] prepared several new derivatives of OA, such as amide, phosphorus,
oxidizing and ester compounds (Table 14). The antimicrobial efficacy of these compounds
was evaluated on four bacterial strains. The results indicate that compounds 53a and 53b
showed remarkable efficacy against Salmonella typhimurium, which is the most resistant
strain. Compounds 53b, 53c, 53e, and 53f showed moderate efficacy as inhibitors against
Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Chouaïb et al. [102]
prepared a number of OA esters and tested their antimicrobial efficacy against a variety
of bacteria, such as S. aureus and E. coli (Table 15). The study found that OA esters
containing sulfur and chlorine atoms show potential as antimicrobial agents. Based on the
antimicrobial properties of OA, Blanco-Cabra et al. [103] prepared several amide derivatives
modified at C-28 (Scheme 11). These compounds were studied in vivo and in vitro.
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In a separate study, Khwaza et al. [104] synthesized hybrid compounds based on
OA–4-aminoquinoline and tested their antibacterial efficacy on selected bacterial strains.
The synthesized compounds demonstrated antibacterial efficacy against the tested bacterial
strains (Table 15). A study conducted in vitro examined the antibacterial effects of various
synthesized derivatives of OA against four Staphylococcus species (Table 14). The study
found no significant antibacterial efficacy, however, even at elevated concentrations [105].
Lahmadi et al. [106] prepared a series of novel OA–phthalimidines (Scheme 12) and assessed
their antibacterial effectiveness against various bacteria. The derivatives exhibited greater
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antibacterial efficacy than OA. A molecular docking study highlighted the importance of
hydrogen bonds and hydrophobic interactions for this activity.
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In another work, Boulila et al. [107] prepared a novel series of analogs of OA and
tested their the antibiofilm and antibacterial efficacy in vitro. Their findings indicate that
certain derivatives exhibited significant antibacterial activity (Table 15).
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Table 14. Evaluation of the antibacterial activity of derivatives of OA against several bacteria (MIC and MBC (µM)).
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Table 14. Cont.
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53f  
156/1566 156/1566 156/522 156/1218 - - 
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53g  - - - - - - 

53h  - - - - - - 

53i  >175/- >175/- >175/- >175/- - - 

53j  >152/- >152/- >152/- >152/- - - 

 
53k  - - - - - - 

 53l  - - - - - - 

53m  - - - - - - 

 [105] 

54a  
- - - - >200/- >200/- 

54b  
- - - - >200/- >200/- 

Gatifloxacin     ND ND  
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SA: Staphylococcus aureus, EC: Escherichia coli, PA: Pseudomonas aeruginosa, ST: Salmonella typhi, SE: Staphylococcus epidermidis, MS: Methicillin-resistant Staphylococcus aureus,
MIC: minimum inhibitory concentration, MBC: minimum bacterial concentration, ND: not determined.

Table 15. Antibacterial activity of derivatives expressed in MIC and MBC (µM).
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57a  217 - 54 - 217 - 108 - 

57b  138 - 33.51 - 69.25 - 69.25 - 
57c  65.61 - 32.80 - 65.61 - 65.61 - 
57d  258 - 32.26 - 129 - 32.26 - 
57e  34.62 - 69.25 - 34.62 - 69.25 - 
57f  131.23 - 65.61 - 131.23 - 65.61 - 
57g  64.53 - 32.26 - 64.53 - 64.53 - 
57h  65.61 - 65.61 - 65.61 -- 65.61 - 
57i  254 - 31.87 - 127 - 31.87 - 
57j  243 - 30.38 - 121 - 30.38 - 
57k  133 - 33.29 - 66.59 -- 66.59 - 

SA: Staphylococcus aureus, EC: Escherichia coli, EF: Enterococcus faecalis, MIC: Minimum inhibitory concentration, MBC: minimum bacterial concentration. 
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3.5. Anti-Influenza Activity

For centuries, medicinal plants have been used to combat disease. However, despite
this, human health remains at risk due to the alarming increase in diseases, particularly
viral infections, which account for over 65% of all illnesses worldwide [108,109]. Infections
with the influenza virus pose a significant threat to human health, resulting in numerous
deaths and millions of upper respiratory tract infections each year. It is the most common
respiratory pathogen in the world [110,111]. Shirahata et al. [112] discovered a compound
of OA to demonstrate its efficacy against viral diseases due to the antiviral activity of the
acid (Scheme 13). Their results show that cinnamoyl saponin was an anti-influenza antiviral
adjuvant. Su et al. [113] conducted research on the development of OA and evaluated the
impact of sugar-conjugated derivatives on anti-influenza activity (Scheme 14). The in vitro
studies showed a significant increase in anti-grippal activity of the conjugated compound
OA–glucose, with an IC50 of 5.47 µM. Broad-spectrum efficacy experiments demonstrated
that this compound was effective against both influenza A and B viruses, showing IC50
values in the micromole range. This activity is due to the presence of hydrogen bonds and
the triazole group.
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Meng et al. [114] synthesized derivatives of OA by linking various amino acids to
28-COOH. The aim was to develop molecules that are active against influenza viruses
(Scheme 15). The efficacy of these molecules against the Influenza A/WSN/33 (H1N1)
virus was studied in vitro. Molecule 103e showed potent antiviral activity and a broad
spectrum of activity with low micromolar IC50 values against several influenza variants,
including BX-51B, A/WSN/33, BX-35 and A/Texas/50/2012.
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Previous studies have shown that OA mildly inhibits influenza hemagglutinin (HA). Li
et al. [115] prepared a number of several series of OA derivates with structural modifications
at C-28 and tested their antiviral efficacy against A/WSN/33 (H1N1) in canine Madin–
Darby kidney cells (Scheme 16). Based on the results of the biological assays, compound
105e exhibited the highest anti-influenza efficacy, with an IC50 value of 2.98 µM. This
has a six-carbon chain with a terminal hydroxyl group. Furthermore, a surface plasmon
resonance assay demonstrated that this derivative can impede influenza virus invasion by
significantly interacting with HA protein.
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In a recent study, Shao et al. [116] synthesized nonamer–OA using the CuAAC reaction
(Schemes 17 and 18). The antiviral properties of the prepared compounds were assessed
against antiviruses A and B in vitro. Their test results indicate that compounds 111 and
112a (n = 1) had higher IC50 values, with compound 111 IC50 = 5.23 µM and compound
112a IC50 = 7.93 µM.
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3.6. Hepatitis Activity

Hepatitis is a disease with a long history that remains a significant global health
issue. However, the reason for 10–20% of hepatitis infections is still unknown [117,118]. Li
et al. [119] synthesized OA derivatives through various reactions and assessed their efficacy
in treating hepatitis (Scheme 19). In vitro and in vivo bioassays demonstrated significant
effects, with 113a exhibiting the most significant activity. Therefore, this molecule has the
capability to become a treatment candidate for the hepatitis B virus.
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3.7. Osteoporosis Activity

In the pursuit of new series of molecules, Zhang [120] continued his research on
OA to derive other compounds with pharmaceutical properties. Two new series of OA
compounds were synthesized by him and by his research team (Scheme 20). Both series
were assessed for their capacity to inhibit the formation of MCs produced by vitamin D3
1a,25-dihydroxy. The data suggest that acid derivatives containing phenylalanine and
proline have a higher potential for inhibition than both the control (100%) and the amino
acids used.

Li et al. [121] synthesized a number of heterocyclic compounds of OA and tested their
inhibition of the production of MCs (Scheme 21). Compounds 115a and 117 exhibited
potent inhibition even at 200 nM. The activity was enhanced by introducing a heterocyclic
ring with two nitrogen atoms on the carbonyl group at C-3, according to structure–activity
relationships. Additionally, derivatives substituted with glycine and alanine showed
improved activity.

In another work, Wu et al. [122] prepared several heterocyclic analogues, including
indole, pyrazine, quinoxaline and quinoline, which were modified on the A ring and
C-28 site of our acid (Schemes 22 and 23). They conducted in vitro tests to determine
the anti-bone resorption properties of these derivatives. The screening findings revealed
that the majority of the compounds reduced RANKL-induced osteoclast formation from
RAW264.7 cells. Furthermore, the pyrazole compounds had better inhibitory activity than
the isoxazole compounds.

In response to the growing prevalence of osteoporosis among the elderly, Zhang
et al. [123] investigated a range of compounds with biological activity against the disease
(Scheme 24). They synthesized and tested a range of quinoxaline–OA compounds for their
inhibitory effect on the nuclear factor kB-induced receptor activator of osteoclastogenesis
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(RANKL). Their findings indicate that these chemicals could be used as potential leads in
the search for new anti-osteoporosis drugs.
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4. Conclusions

The incorporation of natural compounds into pharmaceutical research is an essential
and unavoidable part of the drug development process. OA, with its wide range of pharma-
cological activities, is currently the focus of extensive research. It offers promising prospects
for the treatment of various conditions, including diabetes, cancer, hepatitis, Alzheimer’s
disease and viral infections. However, due to the concerning rise in diseases each year
and the importance of this acid, it is imperative to search for derivatives. After identify-
ing it as a pharmacological compound, researchers in chemistry and biology undertook
structural modifications to improve its efficacy, opening up promising new therapeutic
prospects. Previous research has focused mostly on the pharmacological properties and
structure–activity correlations of OA and its derivatives. In our study, we examined the
structural modifications of OA using organic chemistry and enzymatic approaches. We
also evaluated the biological activities of these derivatives and their correlation with their
structure, while addressing aspects of organic synthesis.

Our work therefore consists of producing a summary that integrates the chemical
and biological aspects of these compounds. It was found that the structural modification
of OA primarily focuses on the A, C, and E rings, in conjunction with other bioactive
components. Further exploration of biologically active molecules has led to promising
results for the study of OA and its derivatives, offering potential relief from psychosomatic
diseases. However, our research strategy focuses on broadening the chemical space of
OA derivatives and optimizing their therapeutic potential using two complementary
approaches: organic chemistry and enzymatic chemistry. Hence, our aim is to improve our
understanding of OA and its derivatives, while exploring their potential applications in
various biomedical fields.
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COX-2 Cyclooxygenase-2
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