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Abstract: The delivery of therapeutic agents faces significant hurdles posed by the endo-lysosomal
pathway, a bottleneck that hampers clinical effectiveness. This comprehensive review addresses the
urgent need to enhance cellular delivery mechanisms to overcome these obstacles. It focuses on the
potential of smart nanomaterials, delving into their unique characteristics and mechanisms in detail.
Special attention is given to their ability to strategically evade endosomal entrapment, thereby en-
hancing therapeutic efficacy. The manuscript thoroughly examines assays crucial for understanding
endosomal escape and cellular uptake dynamics. By analyzing various assessment methods, we offer
nuanced insights into these investigative approaches’ multifaceted aspects. We meticulously analyze
the use of smart nanocarriers, exploring diverse mechanisms such as pore formation, proton sponge
effects, membrane destabilization, photochemical disruption, and the strategic use of endosomal
escape agents. Each mechanism’s effectiveness and potential application in mitigating endosomal
entrapment are scrutinized. This paper provides a critical overview of the current landscape, em-
phasizing the need for advanced delivery systems to navigate the complexities of cellular uptake.
Importantly, it underscores the transformative role of smart nanomaterials in revolutionizing cellular
delivery strategies, leading to a paradigm shift towards improved therapeutic outcomes.

Keywords: endosomal escape; nanoparticles; cellular delivery; smart nanomaterials; biomolecule
delivery; nanomedicine

1. Introduction

The advancement of therapeutic approaches has progressed beyond traditional small-
molecule drugs towards a diverse array of innovative approaches such as proteins, pep-
tides, monoclonal antibodies, nucleic acids, and live cells [1–9]. Accordingly, corresponding
advancements in drug delivery technologies have emerged to address the distinct require-
ments of these novel therapeutics [10]. This extends to gene delivery, where innovative
systems such as viral vectors, nanoparticles, and targeted strategies are vital for effective
delivery of nucleic acid therapeutics to target cells and tissues, enabling precision interven-
tions aligned with individual genetic characteristics. While viral vectors have traditionally
been favored for gene delivery due to their high transfection efficiency, their utilization also
carries the inherent risk of eliciting immune responses and inducing aberrant insertional
mutagenesis. Consequently, there has been a notable expansion in research exploring
alternative non-viral methods for gene delivery [11]. Nanoparticles hold great promise for
improving therapeutic delivery by protecting contents, targeting specific cells or tissues,
and regulating content release within desired cellular regions [12–22]. They are particularly
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important for delivering biological therapeutics like DNA, RNA, or proteins, which face
stability issues when administered alone. Precision cell-based therapies and fundamental
biomedical research often require delivering therapeutics to specific intracellular com-
partments. Despite advancements in encapsulation and release, there are still hurdles to
achieving efficient intracellular delivery. The majority of nanoparticle delivery systems are
internalized into cells through the endocytosis pathway [23].

Given that most drug delivery systems traverse the endosome–lysosome pathway
upon cellular uptake, the efficient delivery of therapeutic drugs relies heavily on the
ability of drug delivery systems to escape the endosome-lysosome pathway post-cellular-
uptake [24,25]. Most intracellular transport pathways involve several stages, including
internalization into an endocytic vesicle, fusion with the early endosome (EE), maturation
into a late endosome (LE), and eventual accumulation in the lysosome (Figure 1). Through-
out this process, the pH gradually decreases from approximately 7.4 to around 5.0 within
the lysosome, which contains various degradative enzymes. Failure to escape rapidly
from lysosomes can lead to entrapment and potential degradation of therapeutic drugs,
rendering the delivery unsuccessful. Furthermore, many nanocarriers face lysosomal degra-
dation after internalization by endothelial cells via endocytosis, thus failing to penetrate the
blood–brain barrier (BBB) through transcytosis [24]. Overcoming the endosomal/lysosomal
barrier is essential for successful nanodrug delivery in the treatment of various diseases.
This article outlines the significance of endosomal entrapment, emphasizing its role as a
barrier to drug/biomolecule delivery and the need for “smart” nanosystems to overcome it.
Assays to study endosomal escape/cellular uptake including leakage assays, complementa-
tion assays, cytosolic-activation assays, pharmacologic/genetic screens, and co-localization
studies have also been presented.

Understanding the mechanisms that regulate endosomal escape is essential for the
rational design of efficient and nontoxic delivery systems. Various strategies have been ex-
plored to achieve rapid drug release into the cytoplasm, aiming to address these challenges.
This review highlights strategies based on biological mechanisms such as pore formation,
the proton sponge effect, membrane destabilization, photochemical disruption, and the use
of endosomal escape agents. By incorporating these strategies, novel and comprehensive
approaches can be developed to overcome endosomal/lysosomal barriers and enhance the
efficiency of nanotherapeutic delivery. Smart nanosystems present a promising strategy to
the challenge of endosomal entrapment in drug delivery, employing engineered nanocarri-
ers designed to respond to the cellular environment and facilitate escape from endosomes.
Further, this review examines the challenges encountered by smart nanosystems as they
advance towards clinical approval, with the goal of providing guidance for the informed
design of next-generation nanomedicines for clinical utilization.



Molecules 2024, 29, 3131 3 of 28Molecules 2024, 29, x FOR PEER REVIEW 3 of 29 
 

 

 
Figure 1. Mechanisms of endosomal escape mediated by the nanovesicular system. (A) The “proton 
sponge” effect occurs when pH-responsive polymersomes (or other polymeric nanocarriers) buffer 
ions, triggering a rise in osmotic pressure and endosome/lysosome membrane breach. (B) Disas-
sembly of pH/reduction-responsive polymersomes into amphiphilic unimers disrupts the endo-
some/lysosome membrane. (C) Swelling of pH-responsive nanocarriers, such as nanoparticles, 
causes mechanical stress on the membrane. Swelling may also be caused by osmotic rupture or the 
ʺproton spongeʺ effect. (D) Fusion of the nanocarrier, usually liposomes, with the endosome/lyso-
some membrane. (A,B) are the most often used strategies for polymersome protein delivery. Repro-
duced with permission from Reference [26]. 

2. Significance of Endosomal Entrapment 
The plasma membrane of a cell functions dynamically as a barrier, managing the flow 

of biomolecules between its interior and exterior. Integral membrane proteins like chan-
nels and pumps facilitate the passage of small molecules such as sugars and ions. How-
ever, larger macromolecules necessitate internalization via primary endocytic vesicles 
(PEVs), which form through invaginations of the plasma membrane. These vesicles deliver 
their contents to EEs in the peripheral cytoplasm. The process of uptake and transporting 
extracellular material within membrane-bound vesicles is collectively referred to as endo-
cytosis. Endosomes and lysosomes are essential membrane-bound organelles vital for the 
proper functioning of eukaryotic cells. The specifics of endocytic pathways vary depend-
ing on the size of the particles being internalized and the scale of the invaginations they 
form. For instance, micropinocytosis encompasses invaginations smaller than 200 nm and 
involves both clathrin-mediated (CME) and non-clathrin-mediated endocytosis (NCE) 
pathways. In CME, clathrin-coated vesicles form to internalize receptor–ligand complexes 
from the plasma membrane. Molecules taken up through CME include hormones, trans-
ferrin, and low-density lipoprotein, along with their respective receptors. NCE encom-
passes various pathways, such as clathrin-independent fluid-phase endocytosis, used for 
sampling the extracellular environment, and caveolar endocytosis, which is implicated in 
the uptake of certain viruses and sphingolipids. Particles larger than 500 nm, such as bac-
terial pathogens and apoptotic cell debris, are typically engulfed through phagocytosis, a 

Figure 1. Mechanisms of endosomal escape mediated by the nanovesicular system. (A) The “proton
sponge” effect occurs when pH-responsive polymersomes (or other polymeric nanocarriers) buffer
ions, triggering a rise in osmotic pressure and endosome/lysosome membrane breach. (B) Disas-
sembly of pH/reduction-responsive polymersomes into amphiphilic unimers disrupts the endo-
some/lysosome membrane. (C) Swelling of pH-responsive nanocarriers, such as nanoparticles, causes
mechanical stress on the membrane. Swelling may also be caused by osmotic rupture or the “proton
sponge” effect. (D) Fusion of the nanocarrier, usually liposomes, with the endosome/lysosome
membrane. (A,B) are the most often used strategies for polymersome protein delivery. Reproduced
with permission from Reference [26].

2. Significance of Endosomal Entrapment

The plasma membrane of a cell functions dynamically as a barrier, managing the flow
of biomolecules between its interior and exterior. Integral membrane proteins like channels
and pumps facilitate the passage of small molecules such as sugars and ions. However,
larger macromolecules necessitate internalization via primary endocytic vesicles (PEVs),
which form through invaginations of the plasma membrane. These vesicles deliver their
contents to EEs in the peripheral cytoplasm. The process of uptake and transporting extra-
cellular material within membrane-bound vesicles is collectively referred to as endocytosis.
Endosomes and lysosomes are essential membrane-bound organelles vital for the proper
functioning of eukaryotic cells. The specifics of endocytic pathways vary depending on the
size of the particles being internalized and the scale of the invaginations they form. For
instance, micropinocytosis encompasses invaginations smaller than 200 nm and involves
both clathrin-mediated (CME) and non-clathrin-mediated endocytosis (NCE) pathways.
In CME, clathrin-coated vesicles form to internalize receptor–ligand complexes from the
plasma membrane. Molecules taken up through CME include hormones, transferrin, and
low-density lipoprotein, along with their respective receptors. NCE encompasses various
pathways, such as clathrin-independent fluid-phase endocytosis, used for sampling the
extracellular environment, and caveolar endocytosis, which is implicated in the uptake of
certain viruses and sphingolipids. Particles larger than 500 nm, such as bacterial pathogens
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and apoptotic cell debris, are typically engulfed through phagocytosis, a process occur-
ring in specialized cells of the innate immune system. Particles sized between 200 and
500 nm are internalized through macropinocytosis, a mechanism involving large-scale
rearrangements of the plasma membrane [27–29].

Upon internalization, the molecules are conveyed to EEs, serving as the principal
sorting center within the endocytic pathway. Biological cargoes internalized through
various endocytic pathways are initially directed to the EE, where the interior pH maintains
slightly acidic level, around 6.3. As this EE matures into the LE, there is a subsequent decline
in pH to around 5.5. Ultimately, fusion occurs between the LE and the lysosome, which
boasts a pH of approximately 4.7. This leads to the degradation of the cargoes, facilitated
by hydrolytic enzymes. Some receptors and specific proteins have the capability of being
recycled back to the plasma membrane, while other molecules—including downregulated
receptors—are transported to late endosomes and lysosomes for degradation [30].

Endosomal entrapment serves as a natural mechanism within cells for regulating
intracellular trafficking and controlling the fate of internalized materials. It plays a pivotal
role in sorting and directing molecules to their appropriate destinations within the cell,
such as recycling back to the cell surface, degradation within lysosomes, or transport to
other intracellular compartments. This inherent mechanism ensures proper cellular func-
tion and homeostasis. However, from a therapeutic perspective, endosomal entrapment
poses a significant challenge. Many therapeutic agents, including drugs, proteins, and
nucleic acids, are internalized by cells through endocytosis but become sequestered within
endosomes. This entrapment restricts their bioavailability and efficacy, preventing them
from reaching their intended intracellular targets. Thus, while endosomal entrapment is an
essential physiological process for cellular function, overcoming it, or achieving endosomal
escape, becomes crucial for enhancing the intracellular delivery of therapeutic agents and
maximizing their therapeutic potential. This necessitates the development of innovative
drug delivery systems that can navigate through endosomal barriers and efficiently release
cargo into the cytoplasm, where it can exert its desired effects.

Smart nanomaterial-based delivery systems have gained considerable attention to
efficiently deliver cargo in a targeted manner and surpass the biological barriers upon
administration [4,7–9,19,31]. These nanosystems comprise two main components: a nano-
material support or carrier and a functionalizing biomolecule [32]. Smart nanocarriers are
engineered with unique properties that enable them to respond to the cellular environment
and facilitate escape from endosomes [33].

Smart nanoparticles can modify their form, structure, surface charge, solubility, self-
association, or dissociation behaviors in response to internal and external stimuli. This
dynamic adaptability enables them to improve endosomal escape, promote cellular uptake,
and induce payload release [34]. Various nanosystems responsive to stimuli have been
developed to exploit pathological differences for targeting and delivering cargoes within
the cytoplasm [35]. One approach involves pH-responsive nanocarriers, taking advantage
of the acidic pH environment within organelles (such as lysosomes and endosomes) of
cancer cells and in the tumor microenvironment. Typically, the pH in the cytoplasm, blood,
and normal tissues hovers around pH 7.0 to 7.4, whereas it drops to approximately pH
6 to 4 in endosomal/lysosomal organelles and pH 6.5 to 6.8 in the tumor microenviron-
ment. Consequently, pH-responsive systems in the tumor microenvironment can be used
for controlled drug release or prodrug activation while maintaining the stealth effect of
nanocarriers in normal regions (e.g., in the bloodstream) to prevent cargo leakage. This
approach reduces the risk of exposing normal organs (e.g., the heart) to toxic cargoes
(e.g., doxorubicin) and specifically delivers them to tumors, thereby enhancing therapeutic
efficacy. Additionally, several pH-sensitive polymers have been synthesized for construct-
ing nanocarriers with pH responsiveness [36]. Another approach focuses on leveraging
photothermal activation to induce endosomal escape, utilizing light-responsive materials,
photoactivatable molecules, or nanocarriers equipped with photothermal or photodynamic
agents. For instance, a photothermally triggered system has been developed for targeted
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delivery of siRNA into the cytoplasm using ultrasmall melanin nanoparticles triggered
by near-infrared (NIR) irradiation. The nanoparticles consist of a melanin-poly-L-lysine
(M-PLL) polymer, where melanin serves as a photothermal sensitizer, and PLL condenses
siRNA through electrostatic interactions, enabling “on-demand” endosomal escape and
controlled release of siRNA, thus enhancing therapeutic efficacy [37].

Functionalized nanoparticles are integral to smart nanosystems, especially in ad-
dressing the challenge of endosomal escape for efficient intracellular delivery. By in-
corporating peptides such as cell-penetrating peptides (CPPs) or lysosomal sorting pep-
tides, nanoparticles achieve precise cellular targeting [38–40]. Additionally, nanocarriers
equipped with specific antibodies offer an approach to reaching desired cellular destina-
tions [41]. The inclusion of fusogenic lipids and peptides further enhances nanoparticle
functionality by facilitating membrane translocation and enhanced endosomal escape [42].
An illustrative example of this is the demonstration that pH-sensitive fusogenic GALA
peptides promote endosomal escape from a bio-nanocapsule through an endocytic up-
take pathway [43,44]. Furthermore, functionalizing the surface of nanoparticles using
various polymers presents an advantageous approach capable not only of manipulating
the nanoparticles’ characteristics—including size, shape, charge, smoothness, hydrophilic-
ity/hydrophobicity, homogeneity, and stability—but also of serving as a driving force for
enhancing cellular internalization, facilitating endosomal escape, and optimizing the drug
release profile, ultimately aiming to achieve subtle therapeutic effects [45]. This strategic
integration of various functional components highlights the potential of functionalized
nanoparticles in optimizing intracellular delivery mechanisms within smart nanosystems.

3. Assays to Study Endosomal Escape/Cellular Uptake

Evaluating endosomal escape and uptake mechanisms is imperative for compre-
hending the effectiveness of drug delivery systems and articulating strategies to enhance
intracellular delivery. As explained previously, endosomal escape initiates with membrane
destabilization, followed by pore formation, endosomal rupture, or membrane fusion [46].
Typically, investigations into endosomal escape mechanisms focus on assessing the in-
tegrity of the endosomal membrane. The development of nanocarriers demonstrating
escape activity encounters formidable challenges due to the lack of efficient techniques for
detecting/quantifying endosomal escape events. This impedes the delineation of material
attributes fostering escape capability and the identification of potential modifications to
enhance it [47]. It is worth noting that there is no standardized technique for elucidating
intracellular trafficking or endosomal escape mechanisms. Rather, researchers rely on vari-
ous experimental methodologies (or a combination thereof) to shed light on distinct facets
of the process. At present, methods for evaluating endosomal escape can be categorized
into the following groups: leakage assays, complementation assays, cytosolic-activation
assays, and pharmacological/genetic screens.

3.1. Leakage Assays

Leakage assays represent straightforward techniques utilized to identify disruptions
within endosomal membranes, relying on the detection of fluorescent dyes or other dis-
cernible molecules outside of the enclosed compartment. A seminal investigation in this
domain was conducted by Manganiello et al. [48], who employed an in vitro hemolysis
assay to elucidate the membrane-disruptive potential of a diblock copolymer micelle. In
this study, free polymer entities were incubated with erythrocytes in buffers with varying
pH levels to simulate the acidic milieu of the endosome. The quantification of hemoglobin
released, assessed through absorbance measurements, served as a metric for evaluating the
extent of membrane disruption. Similarly, another leakage-based strategy entailed the use
of formulated vesicles, mimicking endosomal composition, as an alternative to erythrocytes
to closely replicate escape dynamics [49]. Nonetheless, these methodologies may fall short
in adequately replicating the intricate environment of the acidifying endosome within the
cellular context, potentially yielding results that diverge from actual cellular processes [50].
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To circumvent this limitation, researchers have devised more physiologically relevant
approaches to leakage-based assays within cell culture settings. For instance, Su et al. [51]
developed a study wherein the calcein was co-incubated with lipid-enveloped poly(β-
amino ester) nanoparticles. Calcein, a membrane-impermeable fluorescent dye, is passively
macropinocytosed by cells and transported into endosomes and lysosomes. Within these
acidic compartments, calcein undergoes self-quenching at high concentrations and low
pH levels, resulting in punctate fluorescence with diminished intensity when entrapped
within endocytic vesicles. Conversely, upon membrane compromise, calcein diffuses into
the cytosol, leading to augmented fluorescence. Flow cytometry enables the differentiation
of distinct cell populations based on fluorescence intensity [52]. While leakage assays
employing small molecules such as calcein offer a means to surmount the intrinsic low
signal-to-noise ratio associated with detecting minimal release induced by nanoparticles,
akin to most leakage assays, this method is constrained by the potential for dye leakage
without the release of nanoparticles or cargo [53]. Additionally, this mode of escape
assessment remains qualitative, merely ascertaining the occurrence of escape rather than
quantifying its efficiency [54].

3.2. Complementation Assays

This method entails utilizing cytosol-expressed proteins to elicit a response upon
interaction with the escaped cargo [55]. An illustrative case involves the glucocorticoid
receptor (GR), which complexes with heat shock protein 90 (hsp90) within the cytosol.
Upon exposure to the agonist dexamethasone (Dex), hsp90 disengages, facilitating receptor
translocation to the nucleus [56]. This phenomenon has been leveraged to interrogate
the cell-penetrating attributes of peptides and miniature cationic proteins. In a study by
Appelbaum et al. [57], cells were genetically modified to express a GR-green fluorescent
protein (GFP) fusion construct, yielding a diffuse GFP signal throughout the cytosol and
nucleus. Prospective escape candidates were conjugated with Dex and co-incubated with
the transfected cells. Successful cytosolic ingress prompted nuclear translocation and
concomitant augmentation of GFP fluorescence within this compartment. Utilizing fluores-
cence microscopy, the nuclear-to-cytosolic GFP signal ratio served as a relative metric of
escape proficiency. Nonetheless, the GFP in this assay invariably emits fluorescence and
merely undergoes relocation, confining its applicability to microscopy (low-throughput).

To surmount this limitation, an assay where a signal manifests solely post-escape
proves advantageous, exemplified by the split-complementation assay. Herein, reporter
proteins are bifurcated into two non-functional fragments, generating a detectable output
exclusively upon their reconstitution. Primarily employed to probe protein–protein inter-
actions, subcellular protein localization, and protein assembly, this assay paradigm offers
versatility [58]. Milech et al. [59] devised a tailored split GFP complementation assay to
quantify the endosomal escape of a library of cell-penetrating peptides (CPPs) fused to
cargo proteins. Initially, cells were transfected with one half of the GFP protein, ensuring
stable expression of the inert fragment in the cytosol. Subsequently, the other GFP moiety
was affixed to the cargo-CPP fusion. Upon CPP-mediated endosomal escape, the two GFP
fragments coalesced, generating a fluorescent signal. This assay boasts minimal background
noise and furnishes a direct readout independent of enzymatic processes. Moreover, its
protocol lends itself to relatively high-throughput implementation facilitated by automated
microscopy, flow cytometry, or plate readers. Analogous protein complementation assays
have been extended to assess the escape of alternative carriers, including cationic lipids
and polyplexes [60].

A variant of the GFP complementation assay directly quantifies endosomal disruption.
Kilchrist et al. [61] devised two split-luciferase assays predicated on galectin 8 (Gal8)
protein interactions recruited to compromised endosomes and lysosomes. In one assay,
Gal8 is fused to an N-terminal luciferase fragment, while CALCOCO2 binds to the C-
terminal fragment. Following endosomal disruption, Gal8 relocates intracellularly and
recruits CALCOCO2, reuniting the luciferase fragments to form a functional enzyme with
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luminescent output. The second assay exploits Gal8 dimerization to juxtapose the luciferase
fragments. This methodology was validated for liposomal- and polymer-based delivery
systems, albeit limited sensitivity curtailed its in vivo applicability. While this approach
offers rapid, quantitative assessment sans the need for carrier or cargo labeling, it solely
discerns endosomal disruption and does not ascertain cargo escape.

3.3. Cytosolic Activation Assays

These assays exploit the principle of utilizing pro-drug substrates, pH-sensitive probes,
or inactive enzymes encapsulated within nanoparticles. Upon successful endosomal escape
and subsequent release into the cytosol, these entities undergo activation, thereby eliciting
discernible cellular responses [62]. For instance, certain fluorescent probes exploit the
disparity in pH levels between the acidic endosomal environment and the neutral cytosol
as an indicator of successful escape. These probes may be co-incubated with the carrier
vehicles or directly conjugated to polymeric or micellar carriers [63,64].

Jiang et al. [65] pioneered the use of a deglycosylation-dependent Renilla luciferase
(ddRLuc) probe engineered with crucial amino acid substitutions rendering it enzymatically
inert. This probe can be encapsulated within the investigated carrier vehicle, and upon
successful endosomal escape, the cytosolic enzyme N-glycanase-1 (NGLY1) activates the
luciferase. In instances in which the vehicle was loaded with mRNA, this release assay
demonstrated a direct correlation with in vitro mRNA transfection efficiency. Another
iteration of the cytosolic activation concept, closely mimicking gene delivery mechanisms,
is the splicing reporter system developed by Guterstam et al. Here, a HeLa cell line
was stably transfected with a non-functional luciferase harboring an aberrant splice-site.
Subsequently, a complementary oligonucleotide capable of masking the splice-site was
delivered, facilitating the production of functional luciferase. The activity of the produced
luciferase was quantifiable using a luminometer, providing valuable insights into the
efficiency of endosomal escape and subsequent cytosolic activation [66].

Figure 2 provides a schematic overview of the above-discussed assays that can be
implemented to assess endosomal escape.
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(B) Complementation assays. A split GFP complementation assay presents an adaptable method for
quantifying the endosomal escape of CPPs. This technique involves the fusion of the CPP with a
GFP fragment. Successful endosomal escape leads to the reconstitution of a functional GFP reporter.
(C) Cytosolic activation assays. Upon intracellular delivery, a deactivated ddRLuc probe is introduced
into the cellular milieu. Subsequent release into the cytosol prompts the NGLY1 enzyme to catalyze
the reconstitution of the functional luciferase, culminating in the manifestation of a luminescent
signal. Adapted with permission from [28], copyright Elsevier 2021.

3.4. Pharmacologic/Genetic Screens

Pharmacological/genetic screens involve deliberately applying pharmacological agents
or genetic manipulations to modulate specific pathways or molecular targets associated
with intracellular trafficking and endosomal escape. Through careful observation of the
resulting effects on cellular uptake and intracellular distribution of nanoparticles, these
screens offer invaluable insights into the molecular mechanisms governing these pro-
cesses [67,68]. Pharmacological inhibitors have historically served as fundamental tools
in elucidating endocytosis and intracellular trafficking mechanisms. By selectively dis-
rupting particular pathways, researchers can discern which processes and molecules are
indispensable for efficient intracellular delivery [69,70].

Chlorpromazine, hypertonic sucrose, and potassium depletors are among the com-
mon inhibitors of clathrin-mediated endocytosis (CME), whereas cholesterol depletors like
statins or methyl-β-cyclodextrin inhibit caveolae-mediated endocytosis [71]. Researchers
have also employed inhibitors to investigate specific hypotheses regarding endosomal
escape mechanisms. For instance, Kichler et al. [72] tested the proton sponge hypothesis
for PEI-mediated delivery by using proton pump inhibitors, bafilomycin A1, and con-
canamycin A, to assess any reduction in endosomal escape. The inhibition strategy lends
itself well to high-throughput studies, exemplified by Sahay et al.’s screening of a library
of small molecule inhibitors in cell culture, where microscopy was employed to identify
the effectors necessary for lipid nanoparticle cellular entry [73]. However, it is noteworthy
that most inhibitors may exert effects on multiple intracellular processes, thus limiting the
specificity of this approach [74]. Additionally, studies have indicated that the effects of
chemical inhibitors can vary depending on the cell line used, adding a layer of complexity
to their interpretation [75]. Table 1 provides a concise overview of various pharmacological
inhibitors available for facilitating the endosomal escape of nanosystems.

Table 1. Pharmacological inhibitors available for endosomal escape of nanosystems.

Inhibitor Mechanism/Description Limitations Experimental Observations Ref.

Chlorpromazine

• CME inhibition.
• Sequesters clathrin
and AP2 complexes
away from the cell

membrane and directs
them towards

endosomal
compartments.

It can impact
clathrin-independent
cellular pathways and

reduce cellular
viability.

The inclusion of chloroquine resulted in
an enhancement of transfection

efficiency associated with the PEI-based
polyplexes. A notable proportion of the
PEI polyplexes underwent trafficking

via acidifying endosomes to lysosomes.
The buffering effect mediated by

chloroquine synergized vesicular escape
and subsequent transfection mediated

by these polyplexes.

[76]
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Table 1. Cont.

Inhibitor Mechanism/Description Limitations Experimental Observations Ref.

Methyl-β-cyclodextrin
(MβCD)

• Caveolae-mediated
inhibition.

• Forms complexes
with cholesterol within

the cell membrane,
leading to its depletion.

Influences/alters CME
and various other

endocytic pathways.

The internalization pathway of
CPP-functionalized iron oxide

nanoparticles was probed using sodium
azide/2-deoxy-D-glucose, known as

energy inhibitors, dynasore (a dynamin
inhibitor), and MβCD. Across all

treatment groups, a notable decrease in
nanoparticle uptake was observed,

implicating the involvement of clathrin-
and caveolae-mediated endocytosis
pathways. However, treatment with
Pitstop 2, a clathrin inhibitor, did not

yield a significant impact on
nanoparticle uptake. This discrepancy

suggests potential non-specific effects of
chemical inhibitors

[77]

Bafilomycin A1

• Endosome
maturation inhibition.
• Blocking of vacuolar

proton ATPases.

Can induce
cytoplasmic

acidification through
proton accumulation.

The dynamics and mechanisms of
PEI-mediated plasmid delivery were

evaluated using Bafilomycin A1.
Pre-treatment decreased transfection
30-fold, whereas the addition of the

Bafilomycin A1 4 h after PEI treatment
only decreased transfection efficiency by

33%, suggesting that the majority of
endosomal escape occurs before 4 h.

[72]

On the genetic front, advanced techniques like RNA interference (RNAi) or CRISPR/
Cas9-mediated gene knockout offer powerful tools for selectively manipulating genes
implicated in endosomal trafficking and membrane dynamics [78,79]. Panarella et al. [80]
devised two siRNA libraries targeting pertinent cytoskeletal and endosomal genes. Em-
ploying an automated high-throughput microscopy protocol, they assessed the impact on
nanoparticle delivery. Similarly, Ross-Thriepland et al. [81] conducted a screening experi-
ment, employing the CRISPR/Cas9 gene editing platform to investigate lipid nanoparticle-
mediated mRNA delivery. Utilizing a pooled design, they scrutinized 7795 genes, identify-
ing 44 hits that either enhanced or diminished transfection efficiency. Despite the promise of
CRISPR/Cas9-based approaches, the potential for off-target effects necessitates additional
validation steps [82]. Furthermore, certain endosomal proteins participate in multiple
trafficking and cellular processes, complicating the interpretation of results. Like pharma-
cological inhibitor screens, genetic screens cannot unequivocally attribute observed effects
to a single target or pathway [83]. Additionally, gene trapping has emerged as a valuable
technique for elucidating mechanisms of vesicle trafficking and viral infection. However,
its application in the context of non-viral delivery remains largely unexplored [84,85]. Ex-
panding the repertoire of genetic screening methods holds promise for uncovering novel
insights into the intricate processes governing intracellular trafficking and endosomal
escape, thereby advancing the development of more effective drug delivery strategies.

3.5. Other Techniques
3.5.1. Co-Localization Studies

Co-localization studies serve as a fundamental methodology in unraveling the intricate
mechanisms governing intracellular trafficking and endosomal escape within drug delivery
systems. These studies entail the visualization and quantification of the spatial overlap
between nanoparticles and intracellular organelles, particularly endosomes and lysosomes,
leveraging appropriate imaging techniques. By monitoring the temporal progression of co-
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localization events, researchers can discern the rate at which nanoparticles are internalized
by cells, trafficked through the endocytic pathway, and potentially liberated into the
cytoplasm [86].

Immunohistochemistry and fluorescence microscopy are commonly employed in
co-localization studies to enable detailed observations of nanocarrier’s intracellular traf-
ficking [87]. Dyes, akin to those utilized in leakage assays, discern specific intracellular
compartments [88], while immunofluorescence staining labels proteins like EEA1 and
LAMP1, indicative of vesicle stages within the endolysosomal pathway [89]. Employ-
ing these methods alongside secondary dye-conjugated delivery vehicles, labeled nucleic
acid cargo, and/or reporter nucleic acids, researchers systematically trace nanocarriers
throughout intracellular pathways. In an illustrative study, nanoparticles loaded with
coumarin-6 underwent screening for co-localization with approximately 30 Rab GTPase
proteins alongside factors pertinent to clathrin-independent and clathrin-dependent uptake
pathways [90]. Similar methodologies have previously probed the trafficking pathways
of chitosan-based nanosystems [91]. However, while co-localization studies do not di-
rectly quantify endosomal escape or interactions with trafficking markers, the adoption
of 3D laser scanning microscopy and live cell imaging augments spatial and temporal
observations [33,92].

Fluorescence resonance energy transfer (FRET) offers an alternative avenue for visual-
izing molecular interactions between delivery vehicles and cellular constituents. Harness-
ing two fluorophores—a donor in an excited state transferring energy to an acceptor via
long-range dipole coupling, FRET facilitates precise localization of delivery vehicles [93].
For instance, liposomes formulated with FRET labels Rho-PE and NBD-DOPE exhibited
changes in fluorescence intensity ratio indicative of endosomal membrane fusion, enabling
real-time observation of endosomal escape [94]. Use of computational image analysis aids
in quantifying co-localization by correlating fluorescent signals from different channels,
offering insights into nanoparticle distribution and cargo release kinetics [95].

Transmission electron microscopy (TEM) serves as a complementary technique to
optical microscopy owing to its superior resolution. TEM discerns vehicle interactions with
cellular structures, offering insights unattainable via fluorescence microscopy [96]. For
instance, TEM imaging of lipid-nanoparticle-mediated siRNA delivery revealed a minute
fraction of siRNA escaping endosomes, highlighting TEM’s utility in discerning subtle
intracellular events [97]. However, TEM necessitates extensive sample preparation and
electron-dense labels. Atomic force microscopy (AFM) complements TEM by mapping
sample topography, offering insights into vehicle morphology and polyplex structure
variations under cytosolic and endosomal conditions [98].

3.5.2. Biologically Relevant Artificial Membranes

Artificial membranes, designed to mimic the complexities of the endosomal membrane,
serve as pivotal tools in ex cellulo assays for assessing endosomal escape dynamics within
a controlled environment [99]. The principal constituents of the endosomal membrane, in-
cluding phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine
(PS), typically constitute 55%, 25%, and 10% of the total lipid content, respectively [100,101].
Although simplistic models often comprise solely PC and occasionally cholesterol, recent
endeavors aim to mirror the endosomal membrane composition more authentically [102].
The significance of lipid composition in membrane interactions has been underscored by
studies such as Berezhna et al., wherein lipid fusion was scrutinized between lipoplexes
and giant unilamellar vesicles of varying PC, PE, PS, and sphingomyelin (SM) compositions.
Intriguingly, the authors delineate that fusion and subsequent nucleic acid release mediated
by cationic lipoplexes predominantly hinge on the presence of negatively charged PS and
PE, while PC and SM exhibit negligible involvement [103].

Similarly, Yang et al. [104] demonstrated the indispensability of the anionic lipid
bis(monoacylglycero) phosphate, abundantly present in the intraluminal vesicles of late
endosomes, for TAT-mediated fusion processes. These findings underscore the critical
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role of lipid composition in ex cellulo assays, emphasizing its pivotal impact on endoso-
mal escape phenomena. Moreover, the endosomal environment’s distinctive acidic pH
necessitates appropriate pH adjustments in artificial endosome resuspension buffers to
replicate physiological conditions accurately. An alternative strategy proposed by Madani
et al. [105] entails the integration of bacteriorhodopsin within artificial large unilamellar
vesicles. Upon illumination, BR functions as a proton-pumping V-type ATPase, effectively
acidifying the vesicles’ interior and mimicking the late endosomal milieu under controlled
conditions. Nevertheless, it is imperative to acknowledge the inherent generalizations of
liposomal models compared to actual endosomal membranes, primarily due to the absence
of proteins and lipid asymmetry [106]. Despite these limitations, artificial membranes
represent invaluable tools for elucidating fundamental aspects of endosomal dynamics and
guiding the rational design of efficacious drug delivery systems.

4. Leveraging Smart Nanocarriers: Mechanism & Case Studies
4.1. Via Pore Formation

Numerous nanoparticles encounter challenges in achieving efficient cytosolic deliv-
ery due to entrapment within lysosomes. A straightforward strategy to facilitate escape
involves co-treatment with or co-delivery of lysosomotropic agents, such as chloroquine
(CQ), aimed at permeabilizing the lysosomal membrane [107]. These agents possess the
ability to freely diffuse into lysosomes, whereupon protonation by the acidic milieu induces
membrane disruption via pore formation [108]. Du Rietz et al. [109] devised a strategy
to augment the transfection efficiency of cholesterol-conjugated siRNA by a remarkable
47-fold through the targeted delivery of CQ. Employing galectin-9 as a sensitive indicator
for membrane disruption, they elucidated the precise mechanism by which chloroquine
mediates endosomal escape. Their findings unequivocally demonstrate that CQ acts upon
late endosomes or lysosomes, thereby facilitating efficient release of the siRNA payload
into the cytoplasm. The process of pore formation by lysosomotropic agents relies on the
intricate interplay between membrane tension, which promotes pore enlargement, and line
tension, which counteracts pore expansion. Notably, certain components, such as peptides,
exhibit a pronounced affinity for the pore rim. The binding of peptides to the pore rim
reduces line tension, thereby stabilizing the pore radius and mitigating fluctuations in
internal membrane tension [110].

Evidence suggests that the binding of molecules like cationic amphiphilic peptides
(AMPs) to the lipid bilayer induces internal stress or membrane tension of sufficient magni-
tude to induce pore formation [111]. Several models, including the barrel-stave pore and
toroidal pore models, have been proposed to elucidate the mechanisms underlying peptide-
induced pore formation [112]. In the barrel-stave pore model, peptides reorient themselves
to form staves, collectively assembling into a barrel-shaped cluster perpendicular to the
lipid bilayer plane, thereby creating the pore [113]. Conversely, the toroidal pore model
implicates peptide aggregates that insert into the membrane in a perpendicular orientation,
inducing inward membrane curvature and ultimately resulting in pore formation, with
peptides lining the pore interior [114,115].

Shao et al. [116] investigated the encapsulation of CQ and doxorubicin (DOX) using
methoxy poly(ethylene glycol)-poly(L-lactic acid) (MPEG-PLA) nanoparticles to enhance
anticancer effects in ovarian cancer. CQ significantly increased the sensitivity of ovarian
cancer cells to chemotherapeutic agents by inhibiting lysosome-mediated drug seques-
tration, thus enhancing cytotoxicity (Figure 3). Through a series of in vitro and in vivo
experiments, the authors demonstrated that pretreatment with CQ effectively reversed the
sequestration of DOX by lysosomes, leading to increased drug accumulation within tumor
cells and subsequent enhancement of cytotoxicity. Furthermore, the co-encapsulation of CQ
and DOX within MPEG-PLA nanoparticles resulted in improved drug delivery efficiency,
as evidenced by enhanced drug accumulation at tumor sites and prolonged circulation
time in vivo. The MPEG-PLA nanoparticles exhibited favorable characteristics, such as
small size (average size of 25 nm), high stability, and low clearance rate, making them
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well-suited for efficient drug delivery in vivo. Importantly, this delivery system showed
superior performance compared to traditional carriers like liposomes, offering enhanced
tumor suppression with reduced systemic toxicity.
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Figure 3. CQ exhibited sensitizing effects on ovarian cancer cells by reversing the sequestration
of chemotherapeutic agents (DOX) within lysosomes. Sub-figure (i) shows two photon confocal
microscope images of A2780 cells that were treated with DOX (4 µM, 4 h) pretreated with or without
CQ (10 µM, 2 h), followed by LAMP2 staining (scale bar: 10 µm). Sub-figure (ii) shows the values
of lysosomal pH values of A2780 cells treated with or without CQ (10 µM) for 2 h along with
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permission from [116], copyright Dove Press Ltd. 2018.

In their study, Lee et al. [117] investigated the efficacy of cancer-specific CPP, specif-
ically BR2, as a delivery vector for vascular endothelial growth factor (VEGF) siRNA in
cancer therapy. By forming stable complexes with siRNA, BR2 demonstrated efficient
penetration into cancer cells without cytotoxicity to normal cells. The study evaluated the
physical parameters of BR2-siRNA complexes, including size, surface charge, and stability,
which are crucial for optimal pharmacokinetics and pharmacodynamics. BR2 significantly
increased siRNA stability in serum and exhibited higher transfection efficiency and gene
silencing in cancer cell lines compared to non-cancer cell lines. The study also compared
BR2 to other CPPs, such as R9 and PEI, demonstrating BR2’s superior performance and
lower toxicity. Notably, BR2 exhibited a higher transfection efficiency into cancer cells
relative to non-cancer cells, affirming its cancer-specificity.

4.2. Via Proton Sponge Effect

The proton sponge effect (also known as the pH-buffering effect) is a widely exploited
phenomenon in drug delivery and nanoparticle design to facilitate endosomal escape and
enhance intracellular delivery of therapeutic agents [118]. It relies on the ability of certain
materials to buffer the acidic pH within endosomes, leading to osmotic swelling, rupture,
and subsequent release of encapsulated cargo into the cytoplasm [119]. This is primarily
attributed to the presence of weakly basic functionalities, such as amines or amidines,
within the structure of the delivery vehicle. These functional groups possess pKa values
close to physiological pH, enabling them to exist predominantly in a protonated state within
the acidic environment of endosomes [120]. As a result, these protonated groups sequester
protons from the surrounding medium, leading to an influx of chloride ions to maintain
electroneutrality, followed by an influx of water molecules due to osmotic imbalance [121].
The accumulation of chloride ions and water molecules within the endosome results
in osmotic swelling and an increase in intraluminal pressure, ultimately leading to the
rupture of the endosomal membrane and the release of the encapsulated cargo into the
cytoplasm [122]. This process is akin to “sponges” absorbing water and expanding, hence
the term “proton sponge.”

In a recent investigation, Kauffman et al. [123] detailed the development of biodegrad-
able poly(amine-co-ester) (PACE) polymers, highlighting their versatile utility in nucleic
acid delivery and biomedical contexts. Employing a methodical synthesis approach, the
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team engineered PACE polymers with customizable attributes, spanning from polyplexes
to solid nanoparticles, each imbued with distinct physicochemical properties critical for
effective cellular uptake and payload release via the proton sponge effect. The synthesized
PACE polyplexes and nanoparticles exhibited advantageous mildly cationic characteris-
tics and nanoscale dimensions, facilitating robust internalization across diverse cell types.
Evidenced by heightened fluorescence uptake levels in HEK293, A549, HDF, and NIH
3T3 cells, these delivery vehicles demonstrated pronounced efficacy in traversing cellular
membranes. Biocompatibility assessments underscored the excellent safety profile of these
delivery vehicles within therapeutic concentration ranges. The PACE polymers were ef-
ficient in transporting various nucleic acids—encompassing plasmid DNA, mRNA, and
siRNA—into target cells. Remarkably, the transfection efficiencies rivaled or exceeded
those of commercial transfection agents (Figure 4A). In nanoparticle form, it facilitated
sustained release kinetics, particularly advantageous for larger nucleic acid cargoes such as
plasmid DNA and mRNA.

Wang et al. [124] introduced a pH-responsive silica–metal–organic framework hybrid
nanoparticle (SMOF NP) engineered to harness the proton sponge effect for efficient
delivery of hydrophilic payloads (encompassing small molecule drugs, nucleic acids,
and CRISPR-Cas9 genome-editing machinery). Synthesized using a water-in-oil emulsion
technique, SMOF NPs exhibited remarkable loading content (>9 wt%) and efficiency (>90%)
across various payloads. Through systematic optimization studies, critical parameters
influencing payload delivery were identified, including feed ratios of payload to SMOF
NP reactants, silica to MOF reactants, and sonication methodologies. Functionalization
of SMOF NPs with targeting ligands, such as all-trans retinoic acid, augmented genome
editing efficiency within murine retinal pigmented epithelium tissue. In vivo investigations
conducted in transgenic mice demonstrated the efficacy of SMOF NPs in facilitating precise
genome editing via subretinal injection, thus highlighting their translational significance in
advancing precision medicine and gene therapy initiatives.

Yang et al. [125] investigated the use of calcium acetate for remote loading of the
weakly acidic drug SN28560 into pH-sensitive liposomes (PSL), offering insights into
augmented cytosolic delivery to cancer cells via the proton sponge effect. Their findings
revealed a nuanced interplay of factors contributing to enhanced drug loading efficiency, in-
cluding the establishment of a pH gradient across liposome membranes and the formation
of drug-Ca2+ complexes. Remarkably, PSL achieved a high drug loading (>30%) and en-
capsulation efficiency (>95%), outperforming non-pH-sensitive liposomes (NPSL). In vitro
studies demonstrated a remarkable decrease in IC50 values for PSL-SN25860 compared
to NPSL-SN25860 and free drug solutions, underscoring the superior cytotoxicity of PSL
formulations. Moreover, tumor accumulation studies revealed substantially higher drug
concentrations in PSL-treated groups compared to free drug solutions, highlighting the
efficacy of calcium-enabled liposomal delivery. Live-cell imaging provided visual evidence
of endosomal disruption induced by calcium-loaded PSL, corroborating the proton sponge
effect mechanism (Figure 4B).
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Figure 4. (A) Customized nucleic acid delivery using PACE polyplexes that exhibit proton sponge
effect. Sub-figure (i) shows the efficiency of EGFP plasmid delivery with PACE (PPMS-10) polyplexes
compared to Lipofectamine 2000 and 3000 (quantified by flow cytometry). Sub-figure (ii) shows
a representative fluorescence image of EGFP expression following pDNA delivery by PPMS-10
polyplexes (nuclei are shown in blue, and actin is shown in red). Sub-figure (iii) shows the efficiency
of EGFP mRNA delivery with different PACE (PPMS-10COOH) polyplexes compared to TransIT
(quantified by flow cytometry). Sub-figure (iv) shows a representative fluorescence image of EGFP
expression following mDNA delivery by PPMS-10COOH polyplexes (nuclei are shown in blue,
and actin is shown in red). X. * p < 0.05, **** p < 0.000. Adapted with permission from [123],
Copyright American Chemical Society 2018. (B) pH-sensitive liposomes for augmented cytosolic
delivery to cancer cells via proton sponge effect. Sub-figure (i) shows the mechanism of calcium-
enabled remote loading into pH-sensitive liposomes. Sub-figure (ii) shows representative images
showing PSL containing 500 mM calcium acetate induces rupture of endo/lysosomes from three
different representative cells. Here, endo/lysosomes of cells were pre-stained with LysoTracker
(green counterstain) and treated with PSL dyed with Rh-PE (red counterstain) and the interaction
was monitored by live cell imaging. Pictures of cells at 5 min show that few endo/lysosomes contain
liposomes (red signal). Adapted with permission from [125], Copyright Springer Nature 2022.

4.3. Via Membrane Fusion

Endosomal escape via membrane fusion represents a pivotal process wherein the
endosomal membrane fuses with the surface of nanoparticles, culminating in the liberation
of encapsulated cargo into the cytoplasm, thereby enabling access to intracellular targets.
This intricate phenomenon is governed by a cascade of events orchestrated by specific
membrane-bound proteins or peptides on the nanoparticle surface, which interact with
complementary receptors or lipids on the endosomal membrane [24,126]. This interaction
initiates a sequence of conformational alterations and structural reconfigurations, ultimately
facilitating the integration of the nanoparticle’s constituents with the endosomal mem-
branes. Notably, endosomal escape via fusion is more prominent in membrane/vesicle-like
systems [127].

One mechanism by which nanosystems facilitate membrane fusion is through the
presentation of fusogenic peptides/proteins on their surface. These fusogenic entities, such
as viral fusion peptides or CPPs, possess the capability to engage with lipid components
of the endosomal membrane, inducing membrane destabilization or fusion [128]. This
phenomenon may be facilitated by variations in pH, alterations in membrane lipid compo-
sition, or the presence of specific cellular receptors [129]. Alternatively, nanosystems can
harness cellular machinery implicated in physiological membrane fusion processes, such
as exocytosis or viral entry pathways [130]. By emulating the mechanisms employed by
viruses or intracellular vesicles to fuse with cellular membranes, nanoparticles opportunis-
tically exploit these pathways to effectuate their own endosomal escape and subsequent
cytoplasmic delivery [131].



Molecules 2024, 29, 3131 15 of 28

For instance, haemagglutinin is widely employed as a fusogenic agent. It is a pep-
tide found in the influenza virus coat that serves as a fusogenic agent that undergoes a
pH-dependent transition from an anionic, hydrophilic coil at pH 7.4 to a hydrophobic
helical conformation at the acidic pH within endosomes [132,133]. This structural alter-
ation facilitates the fusion of the viral membrane with the cellular membrane, thereby
promoting endosomal escape. Alternatively, the incorporation of fusogenic lipids, such
as dioleoylphosphatidylethanolamine (DOPE), is routine in lipid-based nanosystems as
“helpers”. It undergoes conformational change upon acidification and promotes a non-
lamellar lipid phase change, thereby augmenting the nanosystems’ propensity for mem-
brane fusion-mediated endosomal escape [134].

In an investigation, Pozzi et al. [135] explored the mechanisms underlying the height-
ened transfection efficiency observed with cholesterol-containing lipoplexes (CCLs). Through
meticulous structural characterization utilizing techniques such as dynamic light scattering
and synchrotron small angle X-ray scattering, they revealed that the introduction of choles-
terol into lipoplexes led to a reduction in the hydration repulsion between lipid membranes,
facilitating enhanced membrane fusion with both plasma and endosomal membranes.
This fusion mechanism, reminiscent of early stages of viral infection, was found to be
directly correlated with the cholesterol content of lipoplexes, with higher cholesterol levels
resulting in a more pronounced increase in transfection (Figure 5). Moreover, their study
demonstrated that CCLs utilize a cholesterol-dependent macropinocytosis pathway and
a temperature-independent mechanism for cellular entry, with the latter showing height-
ened efficacy with increasing cholesterol content. Additionally, the absence of evidence
suggesting preferential metabolic degradation of lipoplexes with high cholesterol content
underscores the robustness of CCLs as gene delivery vectors.
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Figure 5. Transfection efficiency boost of cholesterol-containing lipoplexes. Sub-figure (i) shows the
transfection efficiency (TE) in RLU per mg of cellular proteins of DC-Chol–DOPE–cholesterol/DNA
lipoplexes as a function of increasing molar fractions of cholesterol (XChol = 0, 0.125, 0.25, 0.375, 0.5).
TE increases over about one magnitude with an increasing molar fraction of cholesterol. Sub-figure
(ii) shows the colocalization of DC-Chol–DOPE/DNA and DC-Chol–cholesterol/DNA signals (red)
with Lysosensor (lysosome marker, green), after 3 h of lipoplex treatment. Both lipoplex formulations
are able to avoid lysosomal entrapment. Sub-figure (iii) shows DC-Chol–cholesterol/DNA-lipoplex-
induced structural features that arise from extensive membrane reorganization. Adapted with
permission from [135], copyright Elsevier 2012.
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A recent study by Gomes et al. [136] represents a significant advancement in cancer
therapy, employing long-circulating and fusogenic liposomes loaded with a glucoeva-
tromonoside derivative (SpHL-GEVPG) to induce a potent antitumor response. SpHL-
GEVPG’s optimal mean diameter enabled its intravenous administration and tumor accu-
mulation via the enhanced permeability and retention effect. The formulation’s near-neutral
zeta potential, facilitated by polyethylene glycol molecules, ensured stability by mitigating
vesicle aggregation. High GEVPG entrapment within the lipid bilayer, coupled with a
sustained release over 30 days, underscored robust interactions between the compound
and liposomal constituents. In vitro cytotoxicity assays against breast and lung cancer cell
lines demonstrated substantial reductions in cell viability, with SpHL-GEVPG exhibiting
tumor-selective activity. Long-term studies revealed inhibition of surviving tumor cell
growth and colony formation, indicative of sustained antitumor efficacy. Importantly,
in vivo evaluation in a human lung cancer xenograft model illustrated potent suppression
of tumor growth, surpassing the efficacy of paclitaxel treatment.

4.4. Via photochemical Disruption

Photochemical disruption exploits principles of photochemistry to induce localized
disruption of endosomal membranes, facilitating the release of encapsulated payloads [137].
This process hinges on the utilization of light-responsive materials, including photoacti-
vatable molecules or nanoparticles equipped with photothermal or photodynamic agents.
Upon exposure to light of specific wavelengths, these photo responsive components
undergo activation, generating reactive species or heat within the endosomal compart-
ment [138,139]. This localized energy release induces structural changes in the endosomal
membrane, ultimately destabilizing or rupturing it [140].

Various strategies have been devised to achieve photochemical disruption. One
approach involves the use of photoactivatable molecules, such as caged compounds or
photocaged peptides, which remain inert until activated by light. Upon irradiation with ap-
propriate wavelength light, these molecules undergo a chemical transformation, releasing
bioactive moieties capable of perturbing endosomal membrane integrity [141]. Alterna-
tively, nanocarriers equipped with photothermal or photodynamic agents can be employed.
Several photosensitizers, including TPPS4-, TPPS2a-, AlPcS2a-, and dendrimer-based pho-
tosensitizers, are primarily localized in the endosomal and lysosomal membranes [142].
Upon light exposure, these photosensitizers induce the formation of reactive singlet oxygen,
which has a short lifespan and disrupts the endosomal/lysosomal membrane while leaving
organelle contents intact, facilitating delivery to the cytosol [143,144].

The precise spatiotemporal control provided by photochemical disruption offers sev-
eral advantages for intracellular drug delivery. Selectively irradiating target cells or tissues
with light allows researchers to trigger endosomal escape with high spatial resolution,
minimizing off-target effects and maximizing therapeutic efficacy [145]. Moreover, the
adjustability of light parameters, including intensity, wavelength, and duration, enables
precise control over the extent and kinetics of endosomal disruption, further enhancing the
adaptability of this approach [146].

Jayakumar et al. [147] introduced a novel approach to augmenting nanoparticle-
mediated gene therapy by leveraging a near-infrared (NIR)-light-based nano-platform.
Through meticulous synthesis and characterization, core-shell upconversion nanoparti-
cles (UCNs) emitting both UV and visible light upon NIR excitation were developed,
enabling simultaneous photocontrolled gene expression and photochemical internalization
(Figure 6A). Detailed analysis, including TEM imaging and fluorescence spectroscopy,
confirmed efficient loading and sustained release of therapeutic molecules, such as the
photosensitizer TPPS2a and photomorpholinos, crucial for gene knockdown. In vitro ex-
periments showcased enhanced endosomal escape and gene knockdown efficacy, while
in vivo studies in a murine melanoma model exhibited significant tumor regression with
negligible toxicity. Further controls, including treatment with UCNs alone, NIR alone,
and UCNs loaded with photomorpholinos but without NIR irradiation, corroborated the



Molecules 2024, 29, 3131 17 of 28

specificity and efficacy of the nano-platform. Moreover, tissue analysis revealed lower
STAT3 levels in treated mice, affirming the therapeutic potential of the approach.
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Figure 6. (A) NIR-based nano-platform to boost endosomal escape. Sub-figure (i) shows a schematic
depiction of NIR-mediated photochemical disruption to facilitate endosomal escape. Sub-figure (ii)
shows a TEM image of the NIR-to-UV/Vis core-shell UCNs. Adapted with permission from [147],
Copyright American Chemical Society 2018. (B) Three-layered polyplex micelle for light-induced
systemic gene transfer. Sub-figure (i) shows super-resolution microscopic images of HeLa cells
incubated with DPc-TPMs for 6 h. White arrows indicate the colocalization of lysosomal membranes
and DPc (scale bar: 2 µm; scale bar for magnified image: 200 nm). Sub-figure (ii) shows a schematic
view of the assumed localization of DPc and pDNA in the lysosomal compartment. Sub-figure (iii)
shows confocal imaging of the subcellular distribution of the micelles 15.5 h after photoirradiation.
Lysosomal membranes were tagged with GFP (green). Cy3-labeled pDNA is shown in red (scale bar:
2 µm). Sub-figure (iv) shows confocal imaging of the subcellular distribution of DPc-TPMs without
photoirradiation (scale bar: 2 µm). Sub-figure (v) shows a schematic diagram and corresponding
quantification of Pearson’s correlation coefficient between lysosomes–GFP and Cy3-labelled pDNA.
Adapted with permission from [148], copyright Springer Nature 2014.

Nomoto et al. [148] presented a breakthrough in light-responsive gene delivery us-
ing a three-layered polyplex micelle (DPc-TPM) nanocarrier platform. By sequentially
assembling plasmid DNA (pDNA) and a dendrimeric photosensitizer (DPc) with triblock
copolymers, the nanocarrier achieved spatially segregated compartments conducive to
efficient gene transduction. Notably, DPc incorporation into the intermediate layer facili-
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tated stable pDNA packaging while preventing oxidative damage during photochemical
internalization (PCI). Morphological analyses revealed the structural stability of DPc-TPMs,
with TEM confirming rod-shaped pDNA structures within the core. Furthermore, in vitro
studies demonstrated multistep DPc and pDNA delivery, with DPc facilitating PCI by
translocating to lysosomal membranes in response to acidic conditions (Figure 6B). In vivo
experiments validated the efficacy of DPc-TPMs in achieving light-selective gene expres-
sion in tumors following systemic administration, showcasing their potential for targeted
gene therapy.

In a recent study, Yang et al. [37] showcased a pioneering method to augment siRNA
delivery efficacy and its subsequent antitumor effects through photothermal activation-
induced endosomal escape. Leveraging melanin as a potent photothermal sensitizer, they
engineered melanin-poly-L-lysine (M-PLL) nanoparticles capable of generating localized
heat upon exposure to NIR irradiation. These nanoparticles efficiently condensed siRNA
via electrostatic interactions, forming stable complexes conducive to intracellular deliv-
ery. Following cellular internalization, NIR irradiation triggered the generation of heat,
prompting the disruption of endosomal membranes and facilitating siRNA release into the
cytoplasm. This photothermally induced endosomal escape significantly enhanced gene
silencing efficiency, as evidenced by robust downregulation of target genes both in vitro
and in vivo. Notably, the M-PLL/siRNA nanoparticles exhibited exceptional biocompati-
bility and minimal cytotoxicity, underscoring their potential as safe and effective vehicles
for therapeutic siRNA delivery.

4.5. Other Endosomal Escape Agents

Scientists have begun to emulate the strategies utilized by viruses and bacteria to
facilitate endosomal escape. To date, numerous endosomal escape agents have been
isolated or synthesized from various sources. Table 2 delineates several such agents that
hold promise for augmenting endosomal escape efficiency.

Table 2. Endosomal escape agents.

Type Agent Mechanism Ref.

Virus-derived proteins/peptides

Poly(L-lysine) Membrane fusion [149]
diINF-7 Membrane fusion [150]

Penton base Pore formation [151]
gp41 Unclear [152]

L2 from Papillomavirus Membrane fusion [153]

Bacteria-derived proteins/peptides

Listeriolysin O toxin Pore formation [154]
Pneumococcal pneumolysin Pore formation [155]

Diphtheria toxin Membrane fusion [156]
Pseudomonas aeruginosa Exotoxin A Pore formation [157]

Mammalian proteins/peptides Melittin Pore formation [158]
Human calcitonin-derived peptide Unclear [159]

Synthetic peptides

Glycoprotein H from herpes simplex Membrane fusion [160]
KALA Membrane fusion [161]
GALA Membrane fusion [162]

Bovine prion protein Pore formation [163]
Poly(L-histidine) Proton sponge effect [164]

Proline-rich peptide Membrane fusion [165]

Chemicals
Ammonium chloride Proton sponge effect [166]

Poly(propylacrylic acid) Proton sponge effect [167]
Poly(amidoamine) Proton sponge effect [168]

5. Challenges and Future Directions

As the field of nanotechnology-based nanosystems for endosomal escape evolves,
several pivotal challenges highlight the complex interplay between innovation and ap-
plication. Addressing these challenges is crucial for advancing the efficacy and safety of
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smart nanocarriers in medical applications as well as expanding their usability in clinical
settings. One of the primary challenges lies in optimizing the efficiency of endosomal
escape across various types of cells and therapeutic agents. Different cell types can exhibit
unique endocytic pathways and intracellular processing mechanics, which can significantly
affect the efficiency of nanocarriers designed for endosomal escape [169]. Furthermore,
therapeutic agents themselves vary in their requirements for release and activity within
the cellular environment. To address this, it is essential to develop a deeper understanding
of cell-specific endocytic pathways and to tailor nanocarrier designs to accommodate the
physicochemical properties of different therapeutic agents. This customization will be
pivotal in enhancing the targeted delivery and efficacy of treatments [170].

The scalability of manufacturing smart nanosystems presents another significant
hurdle. As these systems transition from laboratory research to industrial-scale production,
maintaining consistent quality control, reproducibility, and cost-effectiveness becomes
increasingly challenging [171]. The precision required in fabricating nanocarriers often
involves complex synthesis processes that are difficult to scale without compromising the
functional integrity of the product. Strategies to streamline production, perhaps through
automation and process optimization, are critical. These improvements must ensure that
large-scale production remains economically viable while adhering to stringent quality
standards [172].

Regulatory challenges also play a critical role in the clinical translation of smart
nanosystems. The approval process for new nanomedicines involves extensive safety and
efficacy testing, which can be both time-consuming and costly [173]. Regulatory bodies
often require a comprehensive understanding of a nanocarrier’s behavior in the body,
including its biodistribution, biodegradation, and potential off-target effects. Develop-
ing frameworks for faster regulatory approvals that do not compromise on safety could
accelerate the clinical adoption of innovative nanomedicines [174].

Looking toward future directions, the integration of smart nanocarriers with advanced
imaging techniques offers exciting opportunities to enhance real-time monitoring of drug
delivery and therapeutic responses. This integration could enable clinicians to track the
biodistribution of nanocarriers in the body, assess their therapeutic efficacy, and make
real-time adjustments to treatment protocols [175]. Such capabilities would not only im-
prove patient outcomes but also aid in the detailed study of nanocarrier behavior in vivo.
The combination of endosomal escape systems with other therapeutic modalities like gene
delivery, nanovaccines, and immunotherapy holds substantial promise [176–178]. By facili-
tating efficient intracellular delivery and enhancing cellular uptake, smart nanosystems can
significantly amplify the effectiveness of these therapies. This synergistic approach could
lead to breakthroughs in treating complex diseases, such as cancer, genetic disorders, and
infectious diseases, offering more comprehensive and potent therapeutic solutions [179].

AI and machine learning are poised to transform the design and optimization of
nanocarriers. They can automate the optimization of nanocarrier designs, processing large
datasets to identify optimal configurations that might not be evident through traditional
experimental methods [180]. This includes determining the ideal size, shape, surface
chemistry, and functionalization of nanocarriers to maximize their efficacy and minimize
toxicity [181,182]. Furthermore, AI models can be trained to predict the behavior of nanocar-
riers within different biological environments, accounting for the complexities of human
biology that are often challenging to replicate in lab settings. This predictive capability
is crucial for designing nanocarriers that can effectively navigate the body’s immune re-
sponses and biological barriers to deliver drugs precisely where they are needed [183].
Additionally, ML algorithms can be instrumental in the personalization of therapies. By
analyzing patient-specific data, such as genetic information, disease progression, and previ-
ous treatment responses, AI can help customize nanocarrier systems to individual needs,
potentially increasing the success rates of treatments. This personalized approach not only
enhances therapeutic outcomes but also reduces the risk of adverse effects, paving the way
for more patient-centric therapies [184].
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Advancements in targeting capabilities represent a critical area for future research. De-
veloping smart nanosystems capable of dynamically adjusting their targeting in response
to changes in the cellular environment would mark a significant advancement. For in-
stance, pH-sensitive nanocarriers can be designed to become more permeable or to release
their payload when they enter the more acidic environment of tumor tissues or infected
cells [185]. Similarly, temperature-sensitive materials might allow nanocarriers to release
their cargo in response to the localized heat of inflamed or tumorous tissues [186]. Another
approach could involve the use of molecular recognition elements, such as aptamers or an-
tibodies, that bind selectively to disease-specific markers expressed on the surface of target
cells [187]. Additionally, the development of dual or multi-targeted systems could offer
even greater precision. These systems would utilize a combination of targeting cues, such
as pH sensitivity coupled with a specific receptor-ligand interaction, to ensure delivery only
to the intended site. Such adaptive targeting strategies could improve the selectivity and
efficacy of nanocarriers, minimizing side effects and enhancing therapeutic outcomes [188].

6. Conclusions

This review meticulously examines the evolving landscape of smart nanosystems,
highlighting their critical role in enhancing endosomal escape, thereby augmenting the
delivery and efficacy of therapeutic agents. Through comprehensive analysis of various
mechanisms, such as pore formation, the proton sponge effect, and membrane destabi-
lization, this discussion elucidates how smart nanocarriers can surmount the formidable
challenges posed by the endo-lysosomal pathway. The integration of cutting-edge materials
and pioneering engineering techniques has culminated in the development of nanocarriers
that adeptly navigate cellular environments, consequently boosting therapeutic efficacy and
safety. These advancements are not merely incremental; they signify profound strides in our
capacity to address diseases at the cellular level. Smart nanosystems have demonstrated
their potential across a broad spectrum of applications, from targeted cancer therapies to
the delivery of genetic material, showcasing their versatility and revolutionary impact on
medical treatments.

Nonetheless, the path toward fully harnessing the potential of smart nanosystems
is fraught with challenges. Issues such as scalability of manufacturing, ensuring bio-
compatibility, and achieving precise targeting continue to present substantial obstacles.
Furthermore, the regulatory environment remains complicated, necessitating frameworks
that can adapt to the swift progress in nanotechnology while safeguarding patient safety.
Future research should concentrate on overcoming these hurdles through interdisciplinary
collaboration and innovation. In conclusion, the domain of smart nanosystems for cellu-
lar delivery stands at an exhilarating crossroads. The progress observed not only holds
promise but also reflects the transformative potential of these technologies. With continued
dedication and creativity, smart nanosystems are poised to play an indispensable role in
the future of medicine, offering targeted, efficient, and safer therapeutic alternatives to
patients globally.
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