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Abstract: With the rapid development of industry, the discharge of heavy metal-containing wastewa-
ter poses a significant threat to aquatic and terrestrial environments as well as human health. This
paper provides a brief introduction to the basic principles of ion-imprinted polymer preparation and
focuses on the interaction between template ions and functional monomers. We summarized the
current research status on typical heavy metal ions, such as Cu(II), Ni(II), Cd(II), Hg(II), Pb(II), and
Cr(VI), as well as metalloid metal ions of the As and Sb classes. Furthermore, it discusses recent
advances in multi-ion-imprinted polymers. Finally, the paper addresses the challenges faced by
ion-imprinted technology and explores its prospects for application.
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1. Introduction

In recent decades, rapid industrialization, agricultural expansion, and urban develop-
ment have led to the discharge of wastewater containing various hazardous substances [1–3].
Among these substances, heavy metal pollutants pose significant threats to human health,
ecological stability, and environmental sustainability [4–6]. Heavy metal ion pollutants include
metal cations, like copper, lead, mercury, and nickel, as well as metal oxygenate anions, such
as chromate and arsenate [7]. Heavy metal ions are primarily released during industrial
production processes such as mining and metallurgy, electronics, chemicals, and machinery
manufacturing. These ions pose environmental and biological risks in water, the atmosphere,
and soil [8,9]. The recycling and treatment of heavy metals in wastewater, transforming them
into valuable resources, can enhance resource utilization efficiency and promote sustainable
resource management [10–12].

Presently, the primary methods for treating heavy metal wastewater include chemical
precipitation [13,14], ion exchange [15–17], electrolysis [18,19], membrane filtration [20,21],
and adsorption [22–26]. However, these conventional treatment methods suffer from low
efficiency and selectivity, making the efficient removal of heavy metal ions challenging.
Adsorption is an efficient method of treating pollutants that relies heavily on solid adsor-
bents to capture and remove pollutants. Among these methods, the ion blotting technique
stands out for its high selectivity and specificity in the effective removal of specific heavy
metal ions. Ion-imprinting technology can rapidly treat heavy metal ions in wastewater,
improve the efficiency and quality of wastewater treatment, and also facilitate the recovery
of heavy metal resources in wastewater and promote resource recycling. As a result, it
effectively reduces the heavy metal content in wastewater, reduces environmental pres-
sure, and offers the advantages of simplicity, low energy consumption, and easy recycling.
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These properties are in line with the requirements of a circular economy and sustainable
development, which makes ion blotting technology the most promising water treatment
method [27,28]. The principle of heavy metal ion-imprinting is primarily based on ion-
imprinting technology, which has evolved from molecular-imprinting technology [29].
In heavy metal ion wastewater treatment, heavy metal ions serve as templates, forming
chelates with functional monomers through electrostatic and ligand interactions. This
process enables the adsorption and chelation of specific heavy metal ions [30], leading to
a reduction in the heavy metal content in wastewater and achieving harmless treatment.
The ion-imprinted adsorption method is a type of adsorption method known for its high
selectivity and good recycling performance. It can be synthesized in various ways to take
advantage of its current research direction [27–35]. Table 1 lists the studies of other materi-
als used for adsorption to remove heavy metal ions. The adsorption capacity of modified
carbon materials (e.g., activated carbon, etc.), zeolites, membrane materials, etc., although
extensive, usually lacks a highly specific adsorption capacity for specific heavy metal ions,
and the ion-imprinting technology can significantly improve the adsorption capacity and
efficiency of adsorbents through precise molecular design and imprinting processes to
realize the adsorption capacity and efficiency of adsorbents for low concentrations of heavy
metal ions.

Table 1. Comparison of heavy metal ion adsorption performance of different materials.

Material Type Pollutant
Maximum Adsorption

Capacity
(mg/g)

Adsorption
Efficiency

(%)
Ref.

Magnetism COF Pb(II) 411.80 95.64 [36]
Biomass Charcoal Composites

MgO@ZnO@BC Cu(II) 50.63 93.25 [37]

Zr-MOFs Cu(II) 9.78 97.80 [38]
PDA/MgAl-LDH Cr(VI) 87 93.37 [39]

PPM-PVAm Cr(VI) 208.3 90.6 [40]
shrub biological agent Pb(II) 63.77 92 [41]

Y-type zeolite Cd(II) 53.58 80 [42]
Iron-modified zeolite

nanocellulose membrane Ni(II) 7.46 85 [43]

Bacterial cellulose membrane Ni(II) 28.18 92.95 [44]
Magnetic microcrystalline

cellulose/MoS2/Fe3O4
Hg(II) 469.48 95.64 [45]

UiO-66-NH2 Pb(II) 200.17 92.31 [46]
chitosan Ni(II) 87.45 94 [47]

This paper provides a review of the synthesis principles and preparation methods of
ion-imprinted polymer (IIP) adsorbents, with a specific focus on the preparation of IIPs for
classical heavy and toxic metals, including Pb(II), Hg(II), Cd(II), Cr(VI), Cu(II), and Ni(II). The
practical applications and their effects are also discussed. Finally, the potential application of
ion-imprinted polymers in the safe treatment of heavy metal wastewater is discussed.

2. Principles of Ion-Imprinting Technology

Molecular imprinting is a terminology that is characteristic for polymers, where a
molecularly imprinted polymer (MIP) is a polymer in which molecular recognition sites for
a specific target molecule have been created, aiming to obtain robust materials with high
selectivity for that particular target molecule [48]. In other words, the physicochemical
interactions between the functional moieties of the polymeric matrix and the functional
groups of the target molecule (or the target molecule analogue) are memorized during
molecular imprinting, are further cemented during structure stabilization, and are subse-
quently activated by the extraction of the target molecule. The resulting robust polymer
with molecular cavities of a specific shape and electronic environment is an MIP with
molecular recognition properties for that particular target molecule.
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Ion-imprinting technology, a significant division of molecular-imprinting technology,
operates on comparable principles [49]. In Figure 1, the target ion being processed acts as a
template and is connected to the ligand through coordination, chelation, or electrostatic
interaction. Following the process of cross-linking polymerization, the template ion is
removed, resulting in the formation of three-dimensional cavities that contain specific
arranged groups and have sizes and shapes that match the target ion [50]. In future
practical applications, the desired ion can be specifically identified and captured. Because
of its benefits of pre-determined and precise recognition, IIP is also commonly employed for
removing heavy metal ions from wastewater or for detecting trace and ultra-trace amounts
of ions [51].
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Functional monomers are responsible for providing functional groups that can bind
to template ions through covalent or non-covalent bonds, as well as end groups that can
connect to cross-linking agents [52]. The choice of functional monomers typically relies on
the configuration of template ions and the bond formed between functional monomers and
template ions. The intensity of this bond and the proportion of functional monomers to
template ions in the preparation phase are crucial factors affecting the ions’ affinity and preci-
sion [53]. In general, the selected functional monomers should have stable chemical properties
and contain unsaturated double bonds and functional groups, such as -COOH, -CHO, -OH,
-CONH-, -NH2, -SH, etc. Commonly used functional monomers include acrylamide [54],
acrylic acid [55], hydroxyethyl methacrylate [56,57], 4-vinylpyridine [58,59], etc.

Certain functional monomers may not be suitable for imprinting or may lack sufficient
binding strength, necessitating the use of ligands for assistance. Ligands containing electron-
rich heteroatoms, like N, P, S, and O, can engage with unoccupied orbitals in the outer shell
of metal ions that have more lone pair electrons. This interaction leads to the formation of
chelates, which strengthen the bond between the imprinted polymer (IIP) and template
ions. This process enhances the selectivity and precision of adsorption [60]. While ligands
are commonly employed in the synthesis of IIPs, there is a significant potential for ligand
leakage from the polymer matrix when removing template ions [61]. Common ligands
include 2-mercaptobenzothiazole [62], dithizone [63], etc.

In the polymerization process, the cross-linking agent combines with other monomers
to create copolymers, which establish a three-dimensional structure and reinforce the bind-
ing cavity [64]. The primary purpose of the cross-linking agent in IIP is to stabilize the
three-dimensional arrangement of template ions and functional monomers. The type and
amount of cross-linking agent used greatly influences the adsorption capabilities of IIP. The
cross-linking agents in use are typically categorized into two groups according to their cross-
linking mechanisms: One type can interact with functional monomers, like ethylene glycol
dimethylacrylate(EGDMA) [54,65,66], N,N′-methylenediamine acrylamide(MBAA) [59,67];
Another category of substances that do not participate in the reaction undergo polymerization
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by cross-linking in a linear or hyperbranching manner, like glutaraldehyde [14], epichlorohy-
drin(ECH) [68,69]. In the polymerization process, the cross-linking agent combines with other
monomers to create copolymers, which establish a three-dimensional structure and reinforce
the binding cavity [64]. Inadequate amounts of cross-linking agent can result in reduced me-
chanical properties of IIP, an unstable structure of recognition sites, and diminished selectivity.
Conversely, an excessive amount can lead to a decline in mass transfer performance and
effective recognition sites of IIP, impacting its adsorption capacity and rate [28]. Experimental
and computer simulation methods can be used to determine the appropriate cross-linking
agents and their ratio to functional monomers for optimization.

Of course, the initiator is also essential in the ion imprinting process. It can not only
promote the smooth progress of the polymerization reaction, but also optimize the perfor-
mance of the imprinted polymer by regulating the polymerization process, so as to ensure
that the ion-imprinting technology has the best effect in the treatment of heavy metal
wastewater and other applications [64]. Initiators are substances that can initiate a polymer-
ization reaction under certain conditions [70]. Peroxides and azo compounds are commonly
used initiators [52]. The proportion of initiators in the polymerization composition is very
small, usually determined by the type of polymerization. Since propriety polymerization
is characterized by the absence of solvent, the oil-soluble initiator can be dissolved in the
monomer and initiate the polymerization. In suspension polymerization, the oil-soluble
initiators can be dissolved in organic solvents or oil phases to initiate polymerization and
form polymers because the reaction medium is a coexisting system of aqueous and oily
phases. benzoyl peroxide (BPO) [55] and azoisobu-tyronitrile (AIBN) [56,57] are commonly
used oil-soluble initiators. Water-soluble initiators like persulfate are appropriate for poly-
merizing lotions and aqueous solutions [71,72]. Furthermore, there are processes such as
photoinitiated polymerization, electrically initiated polymerization, and others.

In ion-imprinting techniques, it is critical to select the appropriate solvent to en-
sure the morphology of the ion-imprinted polymer and the formation of the internal
three-dimensional cavity structure. The choice of solvent directly affects the solubility of
functional monomers and template ions, which in turn affects the adsorption properties
of ion-imprinted polymers. Commonly used solvents include N,N-dimethylformamide
(DMF), methanol, acetonitrile, dimethyl sulfoxide, and toluene. These solvents not only
help the interaction between functional monomers and template ions but also promote
the formation of cavity structures inside the ion-imprinted polymers, thus realizing the
efficient adsorption of target heavy metal ions. At the same time, in order to ensure that the
ion-imprinted polymers achieve the best adsorption performance during the adsorption
process, the solvents used in adsorption should be consistent with those used in polymer-
ization. This can avoid the possible structural changes of the ion-imprinted polymer during
solvent replacement, thus maintaining its good adsorption performance.

3. Typical Heavy Metal Ion-Imprinted Polymer
3.1. Cu(II)-Imprinted Polymers

Cu(II) ions are among the common heavy metal pollutants found in industrial wastew-
ater. Excessive Cu(II) ions not only contribute significantly to environmental pollution
and impair water self-purification abilities [73,74], but also pose serious health risks to
humans, including harmful effects on the liver and kidneys, increased blood pressure, and
respiratory rate [75,76].

At present, in the preparation process of Cu(II) ion-imprinted adsorbent, specific sites
are formed by the elution of the amino group and Cu(II) after bonding. The Cu(II) ion can
interact with the electron clouds of functional monomers to create a cavity with specific
groups. Therefore, functional monomers containing amine groups are commonly employed
in the synthesis of Cu(II)-imprinted adsorbents (as illustrated in Table 2). Kong et al. [54]
used functional graphene oxide as the carrier, which was modified by 3-(Trimethoxysilyl)
propyl methacrylate, acrylamide as the functional monomer, as shown in Figure 2A, and
-CONH2 was complexed with Cu(II); the maximum adsorption capacity of GO-IIP was
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up to 132.77 mg/g. Li et al. [77] used N-isopropylacrylamide as the functional monomer,
acrylamide as the cross-linking agent, -CONH2 and Cu(II) complexation, and tetram-
ethylethylenediamine catalyzed the generation of free radicals from ammonium persulfate
to accelerate the polymerization of acrylamide, and finally synthesized the Cu(II)-imprinted
polymers (Cu(II)-IIPs) with the maximal adsorption capacity of up to 35.55 mg/g. Fatty
amine functional monomers typically exhibit a stronger affinity for binding with Cu(II)
ions. This is due to the ability of lone pair electrons in the nitrogen atom of aliphatic amines
to form coordination bonds with Cu(II), enabling effective recognition and binding. In
contrast, the binding capacity of functional monomers in amine polymers may be weaker,
as they often necessitate chelation with Cu(II) through multiple amine groups., and this
chelation may be affected by factors such as steric hindrance and flexibility of the polymer
chain. About the effect of chain length of fatty amine functional monomer on the adsorption
effect of material, Othman et al. [78] used ethylenediamine, diethylene triamine, triethy-
lene tetramine, and tetraethylene pentamine as the functional monomer complexed with
complexed, also cross-linked by γ radiation. The results show that short-chain aliphatic
amines are more selective, because the complex structural coordination of longer fat chains
inhibits the diffusion of Cu(II) in the template cavity.

Table 2. Composition and properties of Cu ion-imprinted polymers.

Carrier Ligand Functional
Monomers Group Regeneration

Frequencies
Maximum Adsorption

Capacity (mg/g) Ref.

modified palygorskite NA NIAM -CONH-
-COOH 6 35.55 [77]

carbon encapsulated Fe3O4
nanospheres NA NIAM -CONH-

-COOH 5 45.46 [72]

Fe3O4-graphene@mesoporous SiO2 NA TPEMP R-N 6 195.3 [79]

Montmorillonite NA 4-VP; MA C≡N
-COOH 8 23.6 [80]

carboxylation CoFe2O4 NA POPD R-N 5 114.198 [81]
poly (glycidyl

methacrylate-co-polyethylene glycol
dimethacrylate)

DPC MA R-N 5 85.6 [82]

NA NA Cuphen(VBA)2H2O C≡N
-COOH NA 287.45 [83]

epoxy resin NA PEPA -OH
-NH 5 91.58 [84]

NA NA aloe vera extract -COOH
-OH 8 338.73 [85]

NA CA PEI; CMP -NH2 6 87.69 [86]

NA EDTA 4-VP; MA C≡N
-COOH 2.163 [87]

NA NA hydrazine
hydrate

C-N
C=O 5 312.5 [88]

NA NA 4-VP; MA C≡N
-COOH 10 26.9 [89]

NA NA G; HQ -OH
R-N 10 111.81 [92]

NA NA isatin;
CTS

R-N
-CONH- 5 143 [69]

NA NA AAPTMS -NH2
-NH 5 39.82 [93]

nanofiber nonwoven fabric NA BC -OH 10 152.2 [94]

Abbreviations: AM—acrylamide; MA—methacrylic acid; 4-VP—4-vinylpyridine; POPD—polyo-phenylenediamine;
OCASBG—Schiff base; PEI—polyethylenimine; DPC—diphenylsemicarbazide; CTS—chitosan; BC—bacterial
cellulose; PEPA—polyethylene polyamine; CA—citric acid; PEI—polyethyleneimine; CMP—chloromethylated
polystyrene; NIAM—N-isopropylacrylamide; EDTA—ethylenediaminetetraacetic acid disodium salt dihydrate;
SA—sodium alginate; HEA—2-hydroxyethyl acrylate; HQ—8-hydroxyquinoline; G—gelatin.



Molecules 2024, 29, 3160 6 of 33Molecules 2024, 29, x FOR PEER REVIEW 7 of 35 
 

 

 

Figure 2. (A) Scheme for the synthesis of GO-IIP, adapted with permission from Ref. [54] Copyright 
2017 Elsevier; (B) Scheme for the synthesis of RM-CIIP-3, adapted with permission from Ref. [95]. 
Copyright 2022 Elsevier. 

3.2. Ni(II)-Imprinted Polymers 
Ni(II) is a prevalent toxic heavy metal that can enter the human body through skin 

contact or inhalation, leading to tissue damage and potential risks of nerve poisoning, 

Figure 2. (A) Scheme for the synthesis of GO-IIP, adapted with permission from Ref. [54] Copyright
2017 Elsevier; (B) Scheme for the synthesis of RM-CIIP-3, adapted with permission from Ref. [95].
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Recently, there has been a growing interest in utilization of ammonium salts as func-
tional monomers. Additionally, researchers have been exploring the modification of ligands
to enhance the adsorption capacity and selectivity of Schiff bases, which contain numerous
imines or methylimines. This approach also offers insights for the further advancement of
Cu(II) ion-imprinting techniques. Ren et al. [93] used N-[3-(2-aminoethylamino) propyl]
tri-methoxy-silane as the functional monomer and tetraethyl orthosilicate as the cross-
linker; the maximum adsorption capacity of ion-imprinted polymer was 39.82 mg/g
and could be reused several times without significant loss of adsorption capacity. As
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shown in Figure 2B, Gao et al. [95] synthesized the Schiff base OCASBG by mixing [3-(2-
Aminoethyl)aminopropyl]trimethoxysilane with 2-aminobenzaldehyde. This functional
monomer not only contained imide groups that exhibited improved complexation with
Cu(II), but also cross-linked through a dehydration condensation reaction on the surface of
the RH@MCM-41 carrier. As a result, the maximum adsorption capacity of RM-CIIP-3 for
Cu(II) increased to 91.4 mg/g without the need for additional cross-linking agents.

From Table 2, we can understand that in recent years, Cu(II) ion-imprinted materials
based on carboxyl and amine groups have attracted much attention because they are
functional groups capable of interacting well with Cu(II) ions, and short-chained aliphatic
amines form stable complexes or ligands with Cu(II) ions through their specific chemical
properties and structures, which improves the adsorption selectivity of Cu(II) ions. In
addition, to improve their adsorption properties, mechanical properties, and recovery from
wastewater, different inorganic particles (Fe3O4, SiO2, GO, etc.), have been used to fabricate
Cu(II)-IIP-based composites. The Cu(II) ion-imprinted polymer systems have diverse
potentials, and researchers have explored the use of a variety of functional monomers,
cross-linkers, and additives to enhance the imprinting effects. The aim is to develop a novel
Cu(II) ion-imprinted system that addresses the challenges of limited recognition and low
adsorption capacity.

3.2. Ni(II)-Imprinted Polymers

Ni(II) is a prevalent toxic heavy metal that can enter the human body through skin
contact or inhalation, leading to tissue damage and potential risks of nerve poisoning,
kidney toxicity, pulmonary fibrosis, heart damage, and cancer [90,96]. The retrieval of Ni(II)
is crucial for diminishing the overall Ni(II) levels, thus enhancing environmental safety.

In recent years, chitosan has become the most common functional monomer in the
preparation of Ni(II) ion-imprinted adsorbent materials. Chitosan features abundant
hydroxyl and amino groups on its molecular chain, making it particularly effective at
chelating the transition metal nickel. Liu et al. [97] utilized chitosan as the functional
monomer and epichlorohydrin as the cross-linker to synthesize a nickel ion-imprinted
adsorbent with an adsorption capacity approaching 20.0 mg/g. He et al. [67] used magnetic
multi-walled carbon nanotubes as the carrier, N, N-methylbisacrylamide as the cross-
linker, crylic acid and chitosan as the functional monomer, through carboxy and amino
complexed with Ni(II) and obtained carbon nanotube-based imprinted polymers (IIPs).
The preparation process is shown in Figure 3A, the maximum adsorption capacity of the
obtained ion-imprinted sorbent was up to 19.86 mg/g. In the above studies using chitosan
as functional monomer, the final adsorption capacity of IIPs was about 20 mg/g, which
was generally low. It is evident that chitosan, as a cost-effective and readily available green
material, still holds significant application.

In addition to the complexation of amino and hydroxyl groups with Ni(II) in chitosan,
imine ligands are also common in Ni(II)-imprinted adsorption materials.

Emel Tamahkar et al. [98] used N-methacryloyl-histidine methyl ester as the functional
monomer. They complexed it with Ni(II) ions through its imines and synthesized ion-imprinted
poly(hydroxyethyl methacrylate)-based supermacroporous cryogels. The maximum adsorption
capacity was up to 5.54 mg/g. As shown in Figure 3B, Ameet Kumar et al. [55] complexed
Ni(II) ions with the imines of the ligand 4-vinyl and the carboxylic groups of the methacrylic
acid (MA) functional monomer. They used ethylene dimethacrylate as a cross-linker. The
maximum adsorption capacity of the resulting ion-imprinted sorbent was up to 125 mg/g. Sagar
Kumar et al. [66] also employed 4-vinylpyridine as a ligand, MA as the functional monomer in
conjunction with Ni(II), and amino-functionalized Fe3O4@SiO2 as the carrier. The maximum
adsorption capacity of the synthesized ion-imprinted polymers (IIPs) in a Ni(II) solution with
an initial concentration of 20 mg/L can reach 158.73 mg/g. The adsorption capacity of IIPs
prepared using a single imide functional monomer is slightly lower. However, good results can
be achieved by coordinating imide with carboxyl or oxime groups with Ni(II). In addition, He
et al. [99,100] used a 2-acrylamido-2-methyl-1-propanesulfonic acid containing sulfonic acid
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group as the functional monomer, and complexation with Ni(II) by the sulfonic acid group.
This functional monomer was complexed with Ni(II) ions through the sulfonic acid group.
The authors employed SG-N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane as a carrier and
prepared two types of ion-imprinted polymers (IIPs) using two different cross-linkers, namely
ethylene dimeth acrylate and N,N-methylbisacrylamide. The maximum adsorption capacity for
Ni(II) ions in a solution with an initial concentration of 100 mg/L was found to be 66.22 mg/g
and 20.3 mg/g, respectively, for the two types of IIPs. Remarkably, the adsorption capacity did
not exhibit a significant decrease even after six cycles of repeated use.
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From Table 3, during the preparation of Ni(II) ion-imprinted adsorption materials,
Ni(II) is typically complexed with N atoms in amino and imide groups, as well as O atoms
in carboxyl and hydroxyl groups in the functional monomers. The adsorption material
obtained by combining imide groups with carboxyl and hydroxyl groups demonstrates su-
perior performance, with an adsorption capacity exceeding 100 mg/g. Moreover, chitosan,
a green material, holds great potential in the field of ion-imprinting adsorption, offering
ample opportunities for further development.

Table 3. Composition and properties of nickel ion-imprinted polymers.

Carrier Ligand Functional
Monomers Group Regeneration

Frequencies

Maximum
Adsorption Capacity

(mg/g)
Ref.

CoFe2O4@MPS NA AM; SA -CONH2 4 41.95 [101]
silica-coated magnetic

Fe3O4@SiO2
4-VP MA C≡N

-CO-OH 10 158.73 [66]

Fe3O4@GO NA AMPS -N-C=O 10 35.31 [102]
Fe3O4@SiO2 NA AMPS -N-C=O 6 44.64 [103]

NA NA NDTEA -NH 4 5387 [104]

NA NA
N-(2-

hydroxyphenyl)
acrylamide

-NH
-OH 6 38 [105]

inorganic mesoporous silica BIDA NA C≡N
-COOH 7 167.55 [106]

NA 4-VP MA C≡N
-COOH 10 125 [55]

Fe3O4 NA CTS -NH2
-OH 15 18.5 [107]

NA NA CTS -NH2
-OH 5 20 [97]

magnetic carbon nanotubes NA AA; CTS -NH2
-COOH 5 19.86 [67]

OS NA CMC -NH2
-COOH 6 69.1 [108]

NA NA CTS -NH2 5 69.93 [109]

silica gel NA AAAPTS -NH2
-NH 10 14.93 [110]

CoFe2O4/Bentonite NA VETOS -OH 5 16.51 [111]
CoFe2O4/Bentonite NA PVA -OH 5 11.77 [112]

SG-PMS NA AMPS -SOOOH 6 20.3 [100]

Abbreviations: AM—acrylamide; MA—methacrylic acid; BIDA—2,2′-Biquinoline-4,4′-dicarboxylic acid;
4-VP—4-vinylpyridine; PVA—polyvinyl alcohol; VETOS—triethoxysilane; AMPS—2-Acryloyl-2-methylpropionic
acid; NDTEA—N-(1-(2,4-difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethyl)acrylamide; CTS—chitosan; OS—oyster
shell; CMC—carboxymethyl chitosan; AAAPTS—3-[2-(2-aminoethylamino) ethylamino]propyl-trimethoxysilane;
AA—acrylic acid; HEMA—hydroxyethyl methacrylate; SG-PMA—N-propylmaleamic acid-functionalized silica
gel; SA—sodium acrylate; DMO—Diacetyl monoxime.

3.3. Cd(II)-Imprinted Polymers

Cd(II) is a highly toxic and non-biodegradable heavy metal. Upon ingestion through
the food chain, Cd(II) accumulates in various organs, particularly the kidneys, liver, lungs,
bones, and blood, resulting in adverse health effects [113]. Unlike essential elements
such as copper and zinc, cadmium poses a threat to human health even at very low
concentrations [114]. The International Agency for Research on Cancer (IARC) has classified
cadmium as a level 1 carcinogen, while the World Health Organization (WHO) recommends
a maximum concentration of 3 µg/L for Cd(II) in drinking water [115,116]. Consequently,
the detection of trace amounts of cadmium in water bodies is crucial for effective water
pollution management.

In recent years, (3-mercaptopropyl) trimethoxy silane has become one of the most popular
monomers in the preparation of Cd(II)-imprinted polymers. It forms a Cd–SH bond with
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Cd(II) through the complexation of the lone pair electron of the S atom on the -SH group,
and then produces mercaptan Cd-IIP through a series of steps including cross-linking and
elution, to produce mercaptan Cd-IIP. As shown in Figure 4A, the grafting reaction can be
reflected in Figure 4A(a). The crosslinker plays a role in immobilizing the Cd(II) and the
MPS.The presence of Cd-S bonds can imply strong bonding interactions between Cd(II) and
S atoms. The imprinting process is shown in Figure 4A(b), and the cross-linking reaction
is shown in Figure 4A(c). It shows a good grafting environment on the diatom surface,
forming stable imprinting sites, and the elution is mainly directed to Cd ions.The elution
process of SH/DE-IIP can correspond to Figure 4A(d). Miao et al. [68] used thiol-modified
diatom as carrier, (3-mercaptopropyl) trimethoxy silane as functional monomer, formed a
S–Cd bond with the Cd(II), and took advantage of the surface active structure characteristics
of diatom, and presents a three-dimensional cross-linked structure after cross-linking reaction,
the maximum adsorption capacity of SH/DE-IIP was 4.8 mg/g, the removal rate of Cd(II)
ions in aqueous solution was increased from 24.4% to 97%. Huang et al. [117] used the similar
method synthetized Cd(II) IIP, the maximum adsorption capacity was up to 5.5025 mg/g.
Anais Adauto et al. [65] utilized (3-mercaptopropyl) trimethoxy silane and 1-vinylimidazole
as functional monomers to simultaneously bond Cd capacity of 4.73 mg/g, and the removal
rate of Cd(II) from river water samples exceeded 90%.

According to the data in Table 4, it is evident that the adsorption efficiency of Cd(II) as-
sociated with functional monomers that contain amino, hydroxyl, and other groups is better
than that of thiol groups. The maximum adsorption capacities of IIPs utilizing the afore-
mentioned (3-mercaptopropyl) trimethoxy silane as functional monomers were mentioned
to be relatively low, all below 10 mg/g. Cao et al. [119,120] utilized (3-mercaptopropyl)
trimethoxy silane as the functional monomer, silica nanoparticles, and raspberry-like silica
as the support. The carrier structure effectively increased the specific surface area of the
materials and improved the diffusion kinetics of the polymer, resulting in the maximum
adsorption capacities of these two IIPs achieving 22.6 mg/g and 36.62 mg/g, respectively.
Lu et al. [121] employed sodium pyrrolidone carboxylate as the functional monomer to
fabricate a magnetic mesoporous ion-imprinting adsorbent with a large specific surface
area. Cd(II) was selectively adsorbed by the Cd–S bond, achieving a maximum adsorption
capacity of 154.99 mg/g. Additionally, the presence of sodium pyrrolidone carboxylate
imparted transparency to the materials, and upon contact with tetracycline, it could ef-
fectively degrade tetracycline with a degradation rate of 75.32%. This adsorbent could
simultaneously degrade tetracycline while adsorbing Cd(II), offering a method to optimize
the adsorption effect and multi-effect utilization of ion-imprinted adsorbent materials that
rely on the Cd–S bond to chelate.

In addition to bonding with sulfhydryl groups, amino and hydroxyl groups also play
a huge role in the preparation of Cd(II)-imprinted adsorption materials. These groups con-
tribute to a high adsorption capacity and effective adsorption. Guo et al. [71] synthesized
ion-imprinted polymers by using Fe3O4-g-C3N4 as a carrier and N-isopropylacrylamide
as the functional monomer. The complexation of amino groups with Cd(II) resulted in a
maximum adsorption capacity of 184 mg/g, and the adsorption capacity remained at 84%
after 5 cycles. Zhu et al. [122] achieved a maximum adsorption capacity of 107 mg/g by
bonding amino and hydroxyl groups with Cd(II) using the common functional monomer
acrylamide. Later, Zhu et al. [123] synthesized functional monomers of Schiff bases using
salicylaldehyde and ethylenediamine. These monomers bonded with Cd through amino
and hydroxyl groups, and the final material, with ethylene glycol dimethacrylate as a cross-
linker, exhibited a maximum adsorption capacity of 179.04 mg/g. Kai Huang et al. [118]
used print paper as a carrier and MA and polyethylenimine as the functional monomer.
As shown in Figure 4B, paper-based ion-imprinted polymers were obtained by reversible
addition–fragmentation chain transfer polymerization, the maximum adsorption capacity
was up to 155.2 mg/g, the imprinting factor (the ratio of the adsorption capacity of ion-
imprinted polymers (MIP) for template ions to the adsorption capacity of non-ion-imprinted
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polymers (NIP) for template ions) was more than 3.0 and the limit of detection was
400 mg/mL.

Molecules 2024, 29, x FOR PEER REVIEW 12 of 35 
 

 

 
Figure 4. (A) Scheme for the synthesis of SH/DE-IIP, adapted with permission from Ref. [68] Copy-
right 2021 Elsevier. (B) Scheme for the synthesis of paper—based IIP, adapted with permission from 
Ref. [118]. Copyright 2017 Elsevier. 

According to the data in Table 4, it is evident that the adsorption efficiency of Cd(II) 
associated with functional monomers that contain amino, hydroxyl, and other groups is 
better than that of thiol groups. The maximum adsorption capacities of IIPs utilizing the 
aforementioned (3-mercaptopropyl) trimethoxy silane as functional monomers were men-
tioned to be relatively low, all below 10 mg/g. Cao et al. [119,120] utilized (3-mercapto-
propyl) trimethoxy silane as the functional monomer, silica nanoparticles, and raspberry-
like silica as the support. The carrier structure effectively increased the specific surface 

Figure 4. (A) Scheme for the synthesis of SH/DE-IIP, adapted with permission from Ref. [68]
Copyright 2021 Elsevier. (B) Scheme for the synthesis of paper—based IIP, adapted with permission
from Ref. [118]. Copyright 2017 Elsevier.



Molecules 2024, 29, 3160 12 of 33

Table 4. Composition and properties of Cd ion-imprinted polymer.

Carrier Ligand Functional
Monomers Group Regeneration

Frequencies

Maximum
Adsorption Capacity

(mg/g)
Ref.

CdS/Fe3O4 NA
sodium

pyrrolidone
carboxylate

-SH 10 154.99 [121]

NA 1-VI MPS -SH
-NH 4 4.73 [65]

core-shell mesoporous silica
nanoparticles NA MPS -SH 5 22.6 [119]

activated diatomite NA MPS -SH 5 5.5025 [117]
thiol-modified diatom NA MPS -SH 5 4.8 [68]

Fe3O4@SiO2 NA AECS -NH2 6 26.1 [124]
Fe3O4@SiO2 PBTCA NA -COOH 6 29.82 [125]

NA NA TCCS -SH 5 305 [126]

NA NA maleic
anhydride; AN

C≡N
C=O 10 20.46 [127]

Fe3O4@SiO2 NA beer yeast -NH 10 62.74 [128]
GO NA salecan -COOH 5 412.5 [129]

NA NA AN; PA
-NH2
-OH
C=N

NA 0.018 [130]

R8Si8O12 NA 1-VI; NMA
-C=O
-OH
C≡N

5 80.21 [131]

natural sand NA AM -NH2
-C=O 8 33.84 [132]

NA vim; MA -NH
-COOH 43 [133]

NA MCO MA -COOH 10 62.9 [134]

NA NA β-cyclodextrin;
AM

-NH2
-OH 5 107 [122]

Fe3O4 NA
salicylaldehyde

Schiff base;
MMA

-NH2
-OH 5 179.04 [123]

Abbreviations: PBTCA—2-Phosphonobutane-1,2,4-tricarboxylic acid; TCCS—thiosemicarbazide-chitosan deriva-
tive; AM—acrylamide; MA—methacrylic acid; MPS—(3-mercaptopropyl) trimethoxy silane; GO—graphene oxid;
AN—acrylonitrile; AECS—aminoethyl chitosan; EDA—ethylenediamine; NMA—N-hydroxymethylacrylamide;
vim/1-VI—1-vinylimidazole; NIAM—N-isopropylacrylamide; PEI—polyethylenimine; MMA—methyl methacry-
late; PA—hydroxylamine hydrochloride; MCO—1-mercaptooctane.

3.4. Hg(II)-Imprinted Polymer

Hg(II) is highly neurotoxic, and its compounds can accumulate in organisms, causing
chronic poisoning and health risks [135,136]. In the synthesis of Hg(II) ion-imprinted
polymers, functional groups, like amino, hydroxyl, and thiol groups, are used for chelation.

For instance, a metal replaces an active hydrogen in an amine group, forming a chelate
with a metal ion for increased stability. Esmali et al. utilized Hg(II) complexed with
phenylphenanthroline as a template and acrylamide/acrylonitrile as functional monomers.
The amine groups of the ligand and monomer coordinated with Hg(II) to prepare Hg(II)
ion-imprinted polymers via free radical copolymerization [137]. Poly (ether sulfone)-based
ion-imprinted films were prepared through phase conversion. When the concentration
of Hg(II) was 4 mg/L, the maximum adsorption capacity was 432 mg/m2. Velempini
et al. utilized cysteamine as a ligand to form a complex with Hg(II). In this process, the
thiol group of cysteamine interacts with Hg(II) and connects the carboxymethyl cellulose
polymer branch through an amide reaction with epichlorohydrin, resulting in the creation
of Hg(II)-IIP [138]. When the concentration of Hg(II) is 400 mg/L, its maximum adsorption
capacity is 80 mg/g. In the presence of Cu(II), Zn(II), Co(II), Pb(II), and Cd(II), it has high
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selectivity for Hg(II), and the recovery rates for Hg(II) containing wastewater, ground-
water, and tap water are 86.78%, 91.88%, and 99.10%, respectively. Ruddy et al. created
ion-imprinted polymers using 2-mercaptobenzoimidazole and 2-mercaptobenzothiazole
as thiol ligands and acrylic acid as functional monomers. This IIP was designed to ex-
tract methylmercury from water samples [62]. When the starting concentrations were
0.46 mg/g and 0.06 mg/g, the highest adsorption capacities were 0.157 mg/g and 0.457 mg/g,
respectively. This method has effectively been applied for removing methylmercury from
samples of river and tap water. Rahman et al. created Hg(II)-IIP by utilizing Hg(II) as the
template ion, [2-(methacryloxy) ethyl] trimethylcysteine as the ligand, and MAA as the
functional monomer [139]. Simultaneously, the distinctive porous column resembling a
pipette offered by the material addressed the challenges of making IIP suitable for commer-
cial or industrial use. These ion-imprinted polymers, developed in recent years, involve
Hg(II) binding with a single group and form coordination with Hg(II) using N or S ions in
the molecular structure.

To improve the adsorption capability, combinations of amine, thiol, and hydroxyl
groups can be utilized as ligands for metal ions. Hajri et al. created Schiff base ligands
by using 4-amino-3-hydroxybenzoic acid and 2-pyridinecarboxylic aldehyde, and then
connected the resulting modified chitosan polymer ligand with Hg(II) ions via amide
bonds to form the polymer complex illustrated in Figure 5 [140]. The amine and hydroxyl
groups were coordinated with Hg(II) and imprinted through glutaraldehyde cross-linking,
eliminating the bound Hg(II) ions. Thus, the Hg(II)-imprinted adsorbent was ultimately
obtained, with a maximum adsorption capacity of 315 mg/g at an initial concentration
of 90 mg/L. Lins et al. created a sorbent for blotting Hg(II) by utilizing a bulk polymer-
ization technique. They used a Hg(II)-disulfidehydrazone chelate formed from amine,
sulfhydryl, and Hg(II) groups as a template, incorporated MAA as a monomer, and em-
ployed bulk polymerization to design an innovative online pre-enrichment system for
selectively extracting and measuring Hg(II) in natural water samples [141].
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From Table 5, it can be observed that due to the weaker anchoring of Hg(II) ions on the
polymer chain compared to the use of S-based and N-based selective ligands, it is necessary
to form a complex with the ligand before interacting with functional monomers containing
vinyl groups. Due to the specific affinity of Hg(II) for sulfur, monomers containing thiol
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groups can form stable prepolymerization complexes with Hg(II). Reagents containing
N-group functional groups are also prone to interact with Hg(II) through N-Hg N bonds.
This provides us with a good direction on the choice of ligands for the preparation of Hg(II)
ion-imprinted polymers in the future.

Table 5. Composition and properties of mercury ion-imprinted polymers.

Ligand Functional
Monomers Group Regeneration

Frequencies

Maximum Adsorption
Capacity
(mg/g)

Ref.

Phenylphenanthroline AM
-NH

-NH2
C≡N

6 21.6 [137]

Cysteamine NA -SH
-NH2

5 80.0 [138]

NA 4-VP C≡N NA 31 [142]
2-mercaptobenzothiazole AA -SH NA 0.457 [62]

Schiff base NA R-N
S-OH 5 315 [140]

Abbreviations: AA—acrylic acid; AM—acrylamide; 4-VP-4-vinylpyridine.

3.5. Pb(II)-Imprinted Polymers

As a specific pollutant in the aquatic environment, Pb(II) has garnered attention due
to its high toxicity, resistance to biodegradation, and long-term adverse effects on human
health and water systems [143,144].

Li et al. [58] synthesized Pb-IIP by using 4-vinylpyridine as the functional monomer
and 2-(2-aminophenyl)benzimidazole as the ligand to form a magnetic layered graphene
oxide composite. The N–Pb coordination bonding in this composite resulted in a maximum
adsorbed amount of lead(II) of 58.82 mg/g. Similarly, Mohammad Landarani et al. [145]
employed 4-vinylpyridine as the functional monomer and 2,6-diaminopyridine as the ligand
to interact with lead(II), achieving a maximum adsorption capacity of 128 mg/g in their im-
printed polymer. This polymer demonstrated excellent performance in the pre-enrichment of
lead(II) in real water bodies. Javad Gatabi et al. [59] copolymerized chitosan-based Pb-IIP with
4-vinylpyridine as the functional monomer, resulting in a maximum adsorption of Pb(II) ions
in aqueous solution up to 136 mg/g, as shown in Figure 6A. The 4-vinylpyridine molecule pos-
sesses an uninvolved sp2 hybridized orbital on the nitrogen atoms, which is occupied by a pair
of lone electrons. This large electronegativity of the nitrogen atom enables it to form bonds with
metal ions, making 4-vinylpyridine a commonly used functional monomer. Huang et al. [146]
synthesized efficient surface Pb-IIPs based on sandwich graphene oxide composites. The
amide bonds on the composites coordinated with Pb(II) through N and O. They utilized vinyl-
modified graphene oxide with acrylamide as the functional monomer, resulting in a maximum
adsorption capacity of 40.02 mg/g for these Pb-IIPs. Wang et al. [56] employed reverse suspen-
sion polymerization to prepare thermosensitive Pb-IIPs. Their material was based on multi-
walled carbon nanotube composites with chitosan, hydroxyethyl methacrylate, and isopropyl
acrylamide as monomers, which coordinated with Pb(II) through -NH, -NH2, and -COO. This
Pb-IIPs exhibited a maximum adsorption capacity of Pb(II) up to 83.20 mg/g. Radhia Msaadi
et al. [63] prepared ion-imprinted adsorbent/montmorillonite nanocomposites through pho-
topolymerization in dimethyl sulfoxide using acrylamide and N, N′-methylene acrylamide
as functional monomers. The adsorption capacity of these nanocomposites reached up to
301 mg/g through N–Pb bonding. Shen et al. [147] utilized polydopamine-polyethyleneimine-
modified CaCO3 composites and sodium alginate as functional platforms to prepare a Pb-IIP
(shown in Figure 6B) through chelation of -NH2 with Pb(II). This Pb-IIP displayed an ad-
sorption capacity of up to 357.4 mg/g, achieving ultra-efficient and selective capture of Pb(II)
from wastewater. Zhu et al. [148] also employed the ionic surface imprinting technique,
synthesizing a two-dimensional montmorillonite-based surface ion-imprinted adsorbent with
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a maximum adsorption capacity of 201.84 mg/g. They achieved this by bonding the oxime
group in salicyl hydroxamic acid to Pb(II) using montmorillonite as a carrier.
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Combined with Table 6, it can be observed that in the preparation of Pb(II) ion-
imprinted adsorbents, the nitrogen atoms in the functional groups are typically bonded
with Pb(II), creating a specific structure in the IIP cavity that plays a selective role in
the subsequent adsorption process. The commonly used functional monomers include
4-vinylpyridine, acrylamide, and vinylamide. With its double bond, 4-vinylpyridine
allows for various addition and polymerization reactions. It can react with different
functional monomers and cross-linkers to produce polymers with excellent performance.
Its planar structure enables the formation of coordination bonds with Pb(II), resulting in
high specificity and facilitating the highly selective adsorption and separation of target
ions. Moreover, 4-vinylpyridine is relatively easy to synthesize.



Molecules 2024, 29, 3160 16 of 33

Table 6. Composition and properties of lead ion-imprinted polymers.

Carrier Ligand Functional
Monomers Group Regeneration

Frequencies

Maximum
Adsorption Capacity

(mg/g)
Ref.

NA 4-VP 2,6-DAPy C≡N
-NH2

5 128 [145]

NA APBI 4-VP C≡N
-NH2

5 58.82 [58]

CS NA 4-VP C≡N
-OH 5 136 [59]

Fe3O4 NA 4-VP C≡N 5 123.3 [149]
CaCO3 composite materials NA 4-VP C≡N 5 357.4 [147]

Montmorillonite NA 4-VP -C=N
-OH 6 201.84 [148]

MWCNTs NA 4-VP C=O 6 18.09 [150]

NA NA CTS; serratia
marcescens

-NH2
-CO 5 116.279 [151]

magnetic multi-walled
carbon nanotubes DTZ MAPTMS;

AM
-NH
-C=S 6 80.81 [152]

NA NA CTS; NSB -SH
-NH2

5 300 [153]

Fe3O4 NA ITA C-O 5 26.4 [154]
Diatomaceous earth NA MPTES -SH 6 79.38 [155]

magnetic starch 1,10-
phenanthroline NA C≡N 5 120 [156]

NA Dz AM -NH-S- NA 301 [63]

Abbreviations: 4-VP—4-vinylpyridine; AM—acrylamide; DTZ—Dithizone; MAPTMS—methacryloxypropyl
trimethoxysilane; CTS—chitosan; NSB—3-Nitro-4-sulfanylbenzoic acid; ITA—itaconic acid; MPTES—3-
mercaptopropyltriethoxysilane; Dz—Dithihydrazone; APBI—2-(2-Aminophenyl)-1H-benzizole; 2,6-DAPy—2,6-
Diaminopyridine.

3.6. Cr(VI)-Imprinted Polymers

Cr(VI) is one of the main toxic contaminants that cause environmental pollution
and impact human health. Chromium metal exists in various forms in the environment,
primarily as Cr (III) and Cr(VI) [157], while Cr (III) is a trace element necessary for the
well-being of mammals, hexavalent chromium is known for its high carcinogenicity and
toxicity, as it mutates genes and leads to diseases [158].

Amine polymers currently dominate as the functional monomers for the preparation
of Cr(VI)-imprinted polymers, as illustrated in Figure 7. The imprinting sites are created
by the bonding of amino groups to Cr2O7

2− after elution during the preparation process.
Among these functional monomers, 4-vinylpyridine is the most commonly employed one,
which interacts with Cr2O7

2− through the N atom on its tertiary amine. Zhou et al. [159]
optimized the experimental conditions based on these findings, resulting in an enhanced
adsorption capacity of 201.55 mg/g. Ren et al. [160] investigated the impact of eight
functional monomers with varying acidity and alkalinity, including 4-vinylpyridine, acry-
lamide, methacrylic acid, and hydroxyethyl methacrylate, on the adsorption capacity of
the materials. Among these, the Cr-IIP, prepared using 4-vinylpyridine as the functional
monomer, exhibited the highest adsorption capacity, with a maximum adsorption amount
of 338.73 mg/g. Additionally, it demonstrated good selectivity, reusability, and stability,
which can be attributed to the electrostatic interactions between the Cr(VI) ions and the
protonated N atom on the pyridine functional group of 4-vinylpyridine, thus enhancing
both the adsorption capacity and rate.

In addition, to address the sensitivity of Cr2O7
2− to pH, it is worth considering the ad-

dition of corresponding ligands during the polymerization process. This would allow Cr(VI)
to first form a stable complex, thereby enhancing its stability in a higher pH environment,
before proceeding with the polymerization reaction. Samaneh Hassanpour et al. [161,162]
prepared two types of magnetic Cr(VI) ion-imprinted adsorbents by modifying magnetic
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nanoparticles and magnetic multi-walled carbon nanotubes with 4-vinylpyridine as the
ligand and hydroxyethyl methacrylate as the functional monomer. They also prepared
two magnetic Cr(VI) ion-imprinted adsorbents using ethyl orthosilicate-modified magnetic
nanoparticles and magnetic multi-walled carbon nanotubes, respectively. The maximum
adsorption amounts for these adsorbents were 44.86 mg/g and 56.1 mg/g, which were
relatively low. Liang et al. [163] used Fe3O4@SiO2 as a carrier and introduced graphene
oxide to prevent Fe3O4@SiO2 aggregation and increase the specific surface area. They also
used 4-vinylpyridine and hydroxyethyl methacrylate as ligands and functional monomers.
The resulting ion-imprinted polymer exhibited a maximum adsorption capacity of up to
311.95 mg/g.
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In addition to 4-vinylpyridine, another commonly employed functional monomer, 3-(2-
aminoethyl)aminopropyltrimethoxysilane, is also a viable option. Huang et al. [164] fabricated
Cr-IIP on graphene oxide-mesoporous silica nanosheets using the surface ion blotting tech-
nique, with propyltrimethoxysilane serving as the functional monomer for selective Cr(VI)
adsorption through its amine group. The maximum adsorption amount achieved was 438.1
mg/g, and the material exhibited excellent reusability over five adsorption/desorption cycles.
This approach holds great potential for treating Cr2O7

2− containing wastewater.
As demonstrated in Table 7, the vinyl pyridine monomer, which contains a C≡N group,

has been widely employed as the functional monomer for Cr ion-imprinted polymers in
recent years. This group ensures interaction with Cr, making it a popular choice. Another
suitable option is propyltrimethoxysilane, which contains an -NH2 group. Carriers such
as magnetic silica and carbon nanotubes offer a larger specific surface area for the ion-
imprinted polymers, preventing agglomeration, increasing the number of recognition sites,
and enhancing the adsorption performance of the material.
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Table 7. Composition and properties of Cr ion-imprinted polymers.

Carrier Ligand Functional
Monomers Group Regeneration

Frequencies

Maximum Adsorption
Capacity
(mg/g)

Ref.

NA NA 4-VP C≡N 5 338.73 [160]
NA phen ST; 4-VP C≡N NA 0.41 [165]
NA phen ST C≡N NA 1.18 [165]

APTES NA 4-VP C≡N 5 56.46 [166]
Magnetic nanoparticles 4-VP HEMA C≡N 5 44.86 [161]

MMWCNTS 4-VP HEMA C≡N 5 56.1 [162]

CAB NA PEI -NH
-NH2

6 679.13 [167]

NA

2,2-(azanediylbis
(ethane-2,1-diyl))
bis (isoindoline-

1,3-dione)

MA -CONH- 6 74.65 [168]

PP NA GAM -NH
-NH2

NA 103 [169]

Bisphenol A epoxy resins NA MA; EDA
-NH2

-CONH-
-OH

5 263.15 [170]

MBA-15 NA MA; 4-VP -CONH
C≡N 5 96.32 [171]

nylon-6 NA 4-VP C≡N NA 1.799 [172]
NA NA 4-VP C≡N 10 3.28 [173]

CTS HRAB NA C≡N
-OH 5 293 [174]

Polypropylene fibers NA AM; GMA C=O
-NH2

6 43.2 [175]

Nylon membranes NA ADPD C=O 5 30.35 [176]

NA NA PVA;
SA

-COOH
-OH 3 1.75 [177]

PP NA AA; TETA -NH2 10 167 [178]

PP NA ECH;
DMAEMA

-NH
C=O 5 156.5 [179]

Abbreviations: 4—VP-4-vinylpyridine; HEMA—hydroxyethyl methacrylate; CAB—aluminum-gelled car-
boxymethyl cellulose microspheres; PEI—polyethyleneimine; AA—acrylic acid; TETA—triethylenetetramine;
SA—sodium alginate; PVA—poly(vinyl alcohol); AM—acrylamide; MA—methacrylic acid; GMA—glycidyl
methacrylate; PP—polypropylene fibers; ECH—epichlorohydrin; DMAEMA—2-(dimethylamino)ethyl methacry-
late; SBA-15—mesoporous silicon; CTS—chitosan; HRAB—azo dye; nylon-6—nylon filter membrane;
ADPD—namely 2-allyl-1,3-diphenylpropane-1,3-dione; APTES—(3-aminopropyl) triethoxysilane; phen—1,10-
phenanthroline complex; ST—styrene.

4. Metalloid Ion-Imprinted Polymer

Arsenic, antimony and other metal compounds are usually present in natural water
as oxygenated anions or neutral molecules rather than metal cations. Metalloid elements
are located in the metal-nonmetal border region of the periodic table, and their atomic
radii are inherently larger than those of metal atoms in the same period. When these
metalloid atoms lose electrons to form ions, the electron cloud is relatively loose due to
their small number of valence electrons and their location on higher energy levels, which
makes the radii of the metalloid ions relatively large. This results in a weak electrostatic
effect between the metal-like compound and the functional monomer or ligand. Therefore,
the fabrication of metal-like ion-imprinted adsorbents is challenging and reports in this
regard are limited [180].

4.1. As(III)-Imprinted Polymer

Due to its contamination of groundwater sources, arsenic poses a significant health
risk and is a major global concern for countries addressing water-related issues. In natural
water sources, arsenic exists in two main forms: arsenite (AsO3

3−) and arsenate (AsO4
3−),

also known as As(III) and As(V) [181]. Arsenic in the form of As(III) is more harmful and
has carcinogenic properties compared to As(V) [182,183]. Prolonged exposure to water
contaminated with As(III) can result in kidney and nervous system disorders, while even
consuming small quantities of As(III) can be fatal [184,185].
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As(III) binds to a specific type of functional group through chelation and then cre-
ates a polymer by linking with a cross-linking agent. Chi et al. employed As(III) as
the template ion and methacrylic acid as the functional monomer. The methacrylic acid
coordinated with As(III) via its carboxyl group and was subsequently cross-linked to
Fe3O4/graphene oxide using ethylene glycol dimethacrylate to create a novel surface
ion-imprinting adsorbent [186]. When the initial concentration of As(III) was about
80 mg/L, the maximum fitted adsorption capacity of the material was 49.42 mg/g. Yin et al.
created mesoporous imprinted polymers by utilizing As(V) as the template, diethylene-
triamine, and 3-(2-aminoethyl) aminopropyltrimethoxysilane as ligands and functional
monomers. This was achieved through the coordination of amino groups and template
ions [187]. The polymers’ ability to adsorb As(V) reached its maximum at a concentration of
2000 mg/L, with an adsorption capacity of 78.74 mg/g. When applied to real water sam-
ples, the polymers showed recovery rates ranging from 81.8% to 95.4%. Even after six
consecutive uses, the polymers maintained an adsorption capacity of 93.0%.

In order to increase the number of different types of imprinted holes, two ligands or
monomers that chelate with arsenic ions can be combined to form a double-imprinted ion poly-
mer. Samah et al. synthesized As(III)-IIP for arsenic removal from water using As(III) as a tem-
plate and allyl thiourea as the functional monomer, with amine and thiol groups coordinated
with template ions [188]. For an initial concentration of 25 mg/L As(III), the adsorption capac-
ity was 7.255 mg/g. Sadani et al. used As(V) as the template ion, 2-mercaptobenzothiazole as
the ligand, 4-vinylpyridine as the functional monomer, methacrylate as the cross-linking agent,
azodiisobutyronitrile as the initiator, and magnetic silica nanoparticles as the carrier [189].
Amine and thiol groups were coordinated with the template ion to prepare IIP@SiO2@Fe3O4
granule. When the concentration of As(V) is 6.28 mg/L, the adsorption amount can reach
104.7 mg/g, with an adsorption efficiency of 97.46%. IIP is supported by SiO2 nanoparticles
to generate a larger surface area and more adsorption sites. The preparation process is shown
in Figure 8. Jagirani et al. used As(III) as templates, 4-vinylpyridine, and 2-hydroxyethyl
methacrylate as ligands and functional monomers [57]. Amine and hydroxyl groups were
used in coordination with template ions to create an As(III)-IIP through a co-precipitation
technique. At an initial As(III) concentration of 5 mg/L, the highest adsorption capacity of the
IIP was found to be 106.3 mg/g. The effective adsorption rate for As(III) in water samples
was approximately 99%.

As shown in Table 8, for As(III)- or As(V)-imprinted polymers, the O atoms in com-
monly used template ions arsenite and arsenate ions can interact well with reagents con-
taining hydroxyl groups, as well as effectively with N groups in vinyl pyridine monomers.
While the oxygen anion configurations of As(III) and As(V) can effectively bond with
standard bifunctional ethylene monomers, incorporating suitable ligands can enhance the
material’s adsorption capabilities and selectivity to some degree. From the table, it can
be seen which using (3-mercaptopropyl) trimethoxy silane as the functional monomer
and magnetic graphene oxide as the carrier can significantly increase the adsorption
capacity of the synthesized ion-imprinted polymer. Graphene oxide is costly, whereas
(3-mercaptopropyl) trimethoxy silane is less expensive but lacks environmental friendliness.
Therefore, the emphasis can be placed on utilizing cost-effective and eco-friendly materials
like magnetic silica carriers and 4-vinylpyridine monomers to advance the industrial use of
ion-imprinted materials.

Table 8. Composition and properties of arsenic ion-imprinted polymers.

Carrier Ligand Functional
Monomers Group Regeneration

Frequencies

Maximum Adsorption
Capacity
(mg/g)

Ref.

Magnetic graphene oxide NA MA -COOH 5 49.42 [186]
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Table 8. Cont.

Carrier Ligand Functional
Monomers Group Regeneration

Frequencies

Maximum Adsorption
Capacity
(mg/g)

Ref.

NA NA allyl thiourea
C=S
-NH
-NH2

NA 7.255 [188]

NA Diethylenetriamine
[3-(2-

Aminoethyl)aminopropyl]
trimethoxysilane

-NH 6 78.74 [187]

modified hydrophobic Fe3O4
nanoparticles

2-acetyl benzofuran
thiosemicarbazone MA C=S

-NH2
5 37.04 [190]

Vinyl modified magnetic silica 2-
mercaptobenzothiazole 4-VP

C≡N
C=S
-SH

4 104.7 [191]

NA 4-VP 2-HEMA C≡N
-OH 10 106.3 [57]

Abbreviations: MA-methacrylic acid; 4-VP-4-vinylpyridine; HEMA—hydroxyethyl methacrylate.Molecules 2024, 29, x FOR PEER REVIEW 22 of 35 
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4.2. Sb(III)-Imprinted Polymer

Antimony is a toxic metalloid substance that exists at extreme trace levels in the
environment [192]. Antimony compounds in the III oxidation state are more harmful than
those in the V oxidation state, with Sb(III) being ten times more toxic than Sb(V). This is
significant because antimony trioxide is commonly used as a catalyst for polyethylene
terephthalate (PET) in plastic bottles [193], and since PET is widely used for packaging
beverages and water, antimony is often found in bottled water and beverages. Antimony,
like arsenic, is a thiol-based poison that can attach to the thiol groups of specific enzymes
in the body, disrupt tissue metabolism, and harm the heart, liver, kidneys, and nervous
system [194].
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Shakerian et al. created a specialized adsorbent by using antimony (III) as a template,
pyrrolidine dithiocarbamate as a ligand, and styrene as a monomer. This was achieved
by coordinating C–S bonds with antimony (III) [195]. When the initial concentration of
Sb(III) was 20 mg/L, the adsorption capacity was 6.7 mg/g, which can be reused for at least
ten cycles. Jakavula et al. prepared Sb(III)-IIP using magnetic mesoporous silica carbon
fiber(Fe3O4@CNFs@SiO2) nanocomposites as support substrates and surface imprinting
technology based on the above synthesis method [196]. The rationale behind the selection
of carbon nanofibers lies in their extensive surface area, robust interactions with diverse
substances, and strong affinity for metals. Moreover, the integration of magnetic nano-
materials within a carbon nanofiber framework addresses the limitations associated with
inadequate separability and reproducibility when utilizing carbon nanofibers as a sup-
port for ion-imprinted polymers, thereby enhancing separation efficiency and recyclability.
Furthermore, the amalgamation of mesoporous silica with magnetic carbon fibers yields
superior IIP carriers characterized by a substantial surface area and customizable pore size.
For instance, at an initial Sb(III) concentration of 8 mg/L, the saturated adsorption capacity
is measured at 47.8 mg/g. This underscores that the combination of imprinted polymers
with carriers can augment porosity and specific surface area, furnish additional metal
ion binding sites, and consequently elevate adsorption capacity.The absence of practical
functional monomers presents difficulty in creating metalloid imprinting materials. Fang
et al. developed a new positively charged cyclic functional monomer, tetrabromobiphenyl-
4,5-di(methylenebisimidazole) acridine, to be used in the production of Sb-CFM-IIP [180].
The adsorption mechanism is shown in Figure 9. The chemisorption process of Sb(III) on
CFMIIP may be: (a) Sb(OH)3 enters the nanoscale imprinted cavity of CFM-IIP; (b) Sb(OH)3
is hydrolyzed to SbO4

5− when it meets with hydroxyl radicals released from CFM-IIP
under specific microstructural domain restriction conditions (these hydroxyl radicals are
produced by replacing the previous Sb(III) template after base elution), (c) The negatively
charged O of SbO4

5− is rapidly captured by the positively charged N of CFM-IIP. The
nanoscale imprinting cavity of CFM-IIP generates a domain confinement effect, promoting
the hydrolysis of Sb(OH)3 into SbO5−. Due to the strong electrostatic attraction and size
matching of CFM-IIP and SbO5−, SbO5− is then isolated in the imprinting cavity of CFM-IIP.
When the initial concentration of Sb(III) in the solution is 350 mg/L, the maximum adsorp-
tion capacity of CFM-IIP for Sb(III) is 79.1 mg/g, while the adsorption capacity of non-cyclic
functional monomer imprinted polymer(NCFM-IIP) is only 30.9 mg/g. Therefore, CFM
has better performance compared to NCFM-based adsorbents.
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According to the data presented in Table 9, the molecularly imprinted polymer (MIP),
derived from styrene as the functional monomer, exhibits lower selectivity and adsorption
capacity towards Sb(III) compared to imidazole. In contrast, imidazole demonstrates
superior imprinting efficiency and arsenide binding capabilities. The IIP prepared from
tetrabromobiphenyl-4,5-di (methylene bis imidazole) acridine as a functional monomer
has a high selectivity and adsorption capacity for Sb(III), mainly due to the large ring
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effect of CFM, which has a strong affinity for oxygen anions through size matching, and
the electrostatic double effect generated by its positively charged imidazole ring and
appropriate ring size, which also provides ideas for the preparation of oxygen anionic
imprinting materials.

Table 9. Composition and properties of antimony ion-imprinted polymers.

Carrier Ligand Functional Monomers Group Regeneration
Frequencies

Maximum Adsorption
Capacity
(mg/g)

Ref.

NA 1-Pyrrolidinecarbodithioic
acid Styrene C-S 10 6.7 [195]

Magnetic mesoporous silica
carbon fiber

1-Pyrrolidinecarbodithioic
acid Styrene C-S 7 47.8 [196]

SA NA hyperbranched
polyamide

-CONH2
-NH2

8 35.57 [197]

NA NA

Tetrabromobiphenyl-
4,5-di

(methylenebisimida-
zole) acridine

C≡N NA 79.1 [180]

Abbreviations: SA—Sodium alginate; MA—methacrylic acid.

5. Dual/Multi-Ion-Imprinted Polymers

In practice, metal pollution is usually a composite pollution of several metal ions [198,199].
In the analysis of trace metals, the challenges of accurately detecting target ions are com-
pounded by their extremely low concentrations, potential cross-reactions with multiple ions,
and interference from matrix components [200]. Hence, there is a need to create specialized
adsorbents that possess multiple selective recognition capabilities for the purpose of extracting
analytes, purifying samples, and concentrating them prior to analysis.

Mehdi et al. adopted the method of combining hard and soft templates, using N-[(3-
Trimethoxysilyl) propyl] ethylendiamine triacetic acid trisodium salt as Cd(II)’s functional
monomer, methacrylic acid as Pb(II)’s functional monomer, and hierarchical silica-based-
imprinted mesoporous polymers [201]. The polymers demonstrated high recovery rates
for Cd(II) and Pb(II) at 99.48% and 98.03%, respectively. Additionally, the imprinting
factors for Cd(II) and Pb(II) were found to be 11.90 and 12.69, respectively. Ultimately, the
examination of Cd(II) and Pb(II) in river water and fish samples was conducted through
the utilization of polymers. Furthermore, Prasad et al. developed a dual ion-imprinted
polymer incorporated within a sol-gel matrix, with acrylic acid serving as the functional
monomer [200]. It can be used to modify solid sensors to quantitatively detect ultra-trace
amounts of Cd(II) and Cu(II) simultaneously, avoiding the bias caused by the metal–metal
interaction between Cd(II) and Cu(II) in real samples. As shown in Figure 10, Xie et al.
employed magnetic mesoporous Fe3O4@mSiO2 as a carrier and substituted organic amines
with papain as functional monomers. They utilized a surface imprinting technique in
conjunction with a sol-gel process to fabricate an ion-imprinted polymer (DMIIP) specific
for Cd(II) and Pb(II), Cd2+ in purple, Pb2+ in yellow, and dual template ion imprinting
removes both ions simultaneously by adsorption. [202]. Papain exhibits metal binding
capabilities as a result of possessing numerous active binding sites, including -NH2, -OH,
and =CO, thereby contributing to a reduction in the expenses associated with industrial
manufacturing processes. The highest adsorption capacity of DMIIP for Cd(II) was found
to be 41.69 mg/g, while for Pb(II) it was 76.39 mg/g. This facilitated the efficient separation
and concentration of Cd(II) and Pb(II) in environmental and food samples. Hashami et al.
used silica-coated Fe3O4 nanoparticles as a carrier, benzyl bis(thiosemicarbazone) ligand as
the ligand, and obtained a dual-template-imprinted polymer Fe3O4@SBA-15-NH2-IIP [203].
Hossein et al. used 1,10-phenanthroline as the functional monomer, a magnetic graphene
oxide as the carrier, and synthesized a dual-template-imprinted polymer for Cd(II)/Ni(II);
this polymer is used for the pre-enrichment and determination of Cd(II) and Ni(II) in water
samples [204].
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Currently, there is a scarcity of research on multi-element analysis employing im-
printed polymers. The existing studies predominantly focus on dual-ion imprinting,
with limited exploration of adsorbents involving more than two types of ion imprint-
ing [205–209]. Fu et al. first used 3-aminopropyltriethoxysilane as the functional monomer,
tetraethoxysilicane as the cross-linker, dithizone as the chelator, and Hg(II), Ni(II), Cu(II),
and Cd(II) as templates to insert into multi-ion-imprinting adsorbent [210]. It has been used
as a solid phase extraction adsorbent for the preconcentration of trace Hg(II), Ni(II), Cu(II)
and Cd(II) in seawater samples with a high detectability up to 6.0–22.5 ng/L and a recovery
rate of 94.7~110.2%. Jakavula et al. employed the sol-gel technique for the production of a
multi-ion-imprinting adsorbent. This involved utilizing (3-aminopropyl) triethoxysilane as
the functional monomer, tetraethyl orthosilicate as the cross-linker, and ammonium pyrro-
lidine dithiocarbamate as the chelator [211]. It is used as an adsorbent for simultaneous
extraction and enrichment of potentially toxic metal ions Sb(III), Te(IV), Pb(II), and Cd(II)
in the matrix, combined with inductively coupled plasma emission spectroscopy. Under
optimum conditions, the enhancement factors limit of detection and limit of quantification
were 37.7–51.1, 0.04–100 µg/L, 0.011–0.28 µg/L, and 0.037–0.93 µg/L, respectively.

Currently, there is limited literature available on multi-ion-imprinted polymers, with
the predominant use of functional monomers being acrylic and oxy-silane materials, which
are considered overly simplistic. Nevertheless, there will be a competitive environment
among various multi-template ions, with factors such as ion radius and electron configura-
tion influencing the adsorption efficiency of the eventual IIP, thereby exerting a significant
influence. Hence, the careful choice of functional monomers and ligands, the proportion of
target ions, and the sequence of their introduction are crucial factors to consider.

6. Summary and Outlook

In recent decades, with the in-depth research on water treatment technology, the
exploration of multifunctional, efficient, economical, and sustainable methods for heavy
metal ion wastewater purification has increased. Among these methods, ion-imprinting
technology to specifically recognize template ions for an efficient and synergistic recovery of
the ions has been a hot topic. In this work, the research progress on the adsorptive removal
properties of several heavy metal ions and metal-like ions by typical ion-imprinted methods
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has been summarized. The mechanisms, as well as applications of these ion-imprinted
polymers, were discussed in detail.

The most commonly used functional monomers in the preparation of ion-imprinted
adsorbents include 4-vinylpyridine, acrylamide, methacrylic acid, acrylic acid, chitosan,
and (3-mercaptopropyl)trimethoxysilane. These functional monomers are coordinated to
metals via N, O, and S atoms in the amino, hydroxyl, and sulfhydryl groups. However, the
final ion-imprinted adsorption also depends on the type and amount of solvents, cross-
linkers, carriers, and other compositions. Considering the current rate of development and
application of ion blotting technology, future research prospects are as follows:

(1) Multi-template imprinting allows for the simultaneous removal of more types of
contaminants than single-template imprinted polymers. From the perspective of
wastewater resource utilization, a pollutant treatment process with high selectivity is
the most promising strategy.

(2) Currently, low-cost environmentally friendly materials, such as chitosan and corn
stover, are gradually being used in the field of water treatment. Based on this,
we should explore the design of environmentally friendly and green functional
monomers, as well as the introduction of responsive elements such as photosen-
sitivity and thermal sensitivity, to prepare stimulus-responsive “smart” imprinted
materials.

(3) The water samples used in most of the adsorption experiments are ideal solutions
prepared in the laboratory. Interactions between concurrent pollutants in heavy metal
industrial wastewater may affect the adsorption of ion-imprinted polymers through
synergistic effects. Therefore, systematic studies are valuable to provide the necessary
research data for their industrial applications.
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