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Abstract: Phyllanthus emblica L. fruits (PEFs) were processed by ultra-pressure (UHP) treatment and
then extracted by the ultrasonic-assisted extraction method. The influence of UHP on the phenolic
composition, enzyme inhibitory activity and antioxidant activity of the free, esterified, and bound
phenolic fractions from PEFs were compared. UHP pretreatment of PEFs significantly increased
the total phenolic and flavonoid contents (p < 0.05). A total of 24 chemical compositions were
characterized in normal and UHP-treated PEFs by UHPLC-ESI-HRMS/MS. Compared with normal
PEFs, these three different phenolic fractions had stronger antioxidant activities and inhibitory effects
on the intracellular reactive oxygen species (ROS) production in H2O2-induced HepG2 cells (p < 0.05).
The ROS inhibition might be due to an up-regulation of the expressions of superoxide dismutase
(SOD) and glutathione (GSH) activities. In addition, these three different phenolic fractions also
significantly inhibited the activities of metabolic enzymes, including α-glucosidase, α-amylase and
pancreatic lipase. This work may provide some insights into the potential economics and applications
of PEFs in food and nutraceutical industries.

Keywords: Phyllanthus emblica L. fruits; phenolics; antioxidant; cytoprotective activity; ultra-high-
pressure treatment; UHPLC-ESI-HRMS/MS

1. Introduction

Phyllanthus emblica L., belonging to the Euphorbiaceae family, is a perennial plant that
is widely distributed in China, India, Thailand, Malaysia and other countries in Southeast
Asia [1]. It is an important economic crop in China [2]. Its fruits have been widely processed
as juice, beverages, jam, and cosmetics due to their special taste, nutrients and bioactive
phytochemicals [3]. In addition, the fruits and roots have traditionally been used as herbal
medicine for treating eczema, cough and sore throat in China [4]. Many studies reported
that P. emblica fruits (PEFs) had significant anti-inflammatory, antibacterial, neuroprotective,
hepatoprotective, antihyperglycemic and antihyperlipidemic effects [5–8]. In addition,
phytochemical investigations of PEFs reported a series of phenolic acids, flavonoids, and
tannins, and these phenolic compounds exist in bound form [9].

Phenolic compounds can be classified into the free, esterified and bound forms based
on their extractability and interaction with cell wall components [5]. The free and esterified
phenolics localized in the vacuoles of plant cells could be easily extracted by different
organic solvents [10]. The bound phenolics mostly bind to macromolecules in the cell wall
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matrix, such as cellulose, hemicellulose, lignin, pectin and proteins, thereby the extraction
yield is low. Therefore, the research on the chemical composition and biological activity
of bound phenolics is limited [11]. In the past decade, the issue of how to improve the
extract yield and illustrate the chemical constituents of bound phenolics has attracted
increasing attention.

Recently, many modern non-thermal techniques, such as ultra-high-pressure homoge-
nization, thin-film short-wave ultraviolet radiation, and high hydrostatic pressure, have
been established to improve the potential in terms of the bioaccessibility and bioavailability
of bound phenolics [12–14]. Ultra-high hydrostatic pressure (UHP) could damage the cell
walls and the chemical hydrogen, ester, disulfide and carbon–carbon bonds between the
bound components and the plant cell matrix. Some studies had found evidence that UHP
treatment could increase the extraction yield of polysaccharides [15], flavonoids [16] and
carotenoids [17] in a short time and at a low temperature [18].

In this study, the UHP processing method were used to extract the free, esterified, and
bound phenolics in PEFs. Furthermore, the chemical compositions and the antioxidant
activities, cytoprotective effects and enzyme inhibitory activities of different phenolic
fractions were determined.

2. Results and Discussion
2.1. Characterization of Phenolic Compounds in Different Fractions of PEFs

The phenolic compounds in the free, esterified and bound forms of PEFs were analyzed
by ultra-high-performance liquid chromatography–high-resolution mass spectrometry
(UHPLC-HRMS/MS). The total ion current chromatograms of the three different phenolic
forms are presented in Figure 1.
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Figure 1. The total ion chromatograms of different phenolic fractions of PEFs in negative mode. FP, EP,
and BP were obtained from normal PEFs. UFP, UEP, and UBP were obtained from UHP-treated PEFs.

The characterization of each compound was performed by comparing the mass-related
data with those of the corresponding authentic standards or with mass information avail-
able in the literature or the Human Metabolome Database (https://hmdb.ca/structures/
search/metabolites/structure, accessed on 31 May 2024). A total of 24 constituents were
identified. The distribution of the chemical components in each group is shown in Figure 2.
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Figure 2. Chemical composition of the PEF distribution Venn diagram.

The specific information, including the retention time, molecular formula, mass and
MS/MS ion data, and delta ppm, are summarized in Table 1.

Table 1. Chemical profiling of P. emblica fruits by UHPLC-ESI-HRMS/MS in negative mode.

Peak RT [M-H]-

(m/z)
Molecular
Formula

Error
ppm MS/MS Compound Reference

1 1.14 209.0302 C6H8O7 0.251 191.0126 Mucic acid Standard
2 1.21 355.0317 C12H22O11 3.214 151.0394, 336.7523 Chebulic acid Standard
3 1.76 331.0680 C13H16O10 6.183 169.0136 Gallic acid glycoside [19]
4 2.41 169.0137 C12H22O11 5.332 125.0333 Gallic acid Standard

5 3.19 343.0316 C13H12O11 5.838 123.0088, 169.0143 5-O-galloyl-1,4-
galactarolactone HMDB

6 8.92 183.0295 C8H5O5 6.754 169.0.24, 124.0153 Methyl gallate Standard
7 9.39 483.0793 C20H20O14 2.163 151.0037, 169.0137, 331.0574 Digalloylglucose [6]
8 9.42 321.0261 C14H10O9 0.458 125.0235, 169.0138 Digallic acid Standard
9 9.78 291.0156 C13H8O8 1.768 191.0347, 219.0300, 247.0253 Brevifolin carboxylic acid [20]

10 10.00 635.0914 C27H24O18 5.365 169.0137, 313.0574, 465.0690 Trigalloylglucose [6]
11 10.10 633.0775 C27H22O18 6.423 301.0135, 463.1024 Galloyl-HHDP-glucose [6,21]
12 10.26 635.0914 C27H24O18 3.431 169.0137, 313.0574, 465.0690 Trigalloylglucose (isomer) [6]
13 10.96 197.0453 C9H10O5 6.258 69.0335, 125.0325, 162.8386 Gallic acid ethyl ester [22]

14 11.07 357.0479 C14H14O11 3.925 169.0132 Mucic acid lactone
methyl ester gallate [6,23]

15 11.61 300.9998 C14H6O8 4.856 257.0099, 283.9971 Ellagic acid Standard
16 11.45 447.0926 C21H20O11 5.894 283.1923, 301.2865 Quercitrin [24,25]
17 11.89 187.0973 C9H16O4 4.553 125.0964, 169.0864 Azelaic acid [26]
18 12.48 303.2186 C15H10O7 2.305 127.3785; 153.0151 Tricetin [25]
19 12.67 399.0943 C17H18O11 5.443 125.0235, 169.0137 Unknown -
20 14.13 301.2030 C15H9O7 4.594 125.0961, 243.0125 Quercetin Standard
21 14.39 287.2235 C16H32O4 6.455 207.1757, 251.1664 Dihydroxyhexadecanoic acid [27]
22 15.05 285.2080 C15H10O6 1.025 151.0031, 267.0293 Kaempferol Standard

23 18.54 329.2343 C18H34O5 4.562 171.1018, 211.1348, Trihydroxy-10-trans-
octadecenoic acid [28]

24 19.31 433.2608 C25H38O6 6.258 163.0395, 287.2235 Unknown -
25 20.04 433.2607 C25H38O6 6.843 163.0395, 287.2237 Unknown -
26 22.37 277.1452 C16H22O4 6.583 121.0284, 147.0082 Mono-octyl phthalate [29]

27 23.02 311.2238 C18H32O4 6.268 183.0118 Hydroperoxy-
octadecadienoic acid [28]
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2.1.1. Phenolic Acids

Mucic acid (1) was detected with [M-H]- ion at m/z 209.0302, which was consistent with
the MS/MS of the standard. Chebulic acid (2) was identified based on its fragmentation
pattern with ions at m/z 355.0317 [M-H]- and 336.7523 [M-H-H2O]- [6,30]. Compound 3 was
assigned the molecular formula of C13H16O10 by the [M-H]- ion at m/z 331.0680. The neutral
loss of a 162 Da part (C6H10O5) corresponding to a glucosyl moiety was readily observed
in the MS2 experiment. Thus, this peak was determined to be gallic acid glycoside [19], and
the fragment pathway is exhibited in Figure 3a.
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Galic acid (4) had an [M-H]- ion at m/z 169.0137 and an [M-COOH]- ion at m/z
125.0333 [6]. Compounds 5 and 14 also exhibited a same fragment ion at m/z 169.01,
which was characterized as a gallic acid derivative [31]. Methyl gallate (6) had an [M-H]-

ion at m/z 183.0295 (C8H7O5
−), and a fragment ion at m/z 169.0124 was yielded via suc-

cessive elimination of the CH2 (14 Da) moiety from the precursor ion, and the fragment
ion m/z 124.0153 was observed, consistent with the standard data [32]. Compound 7 was
identified as digalloylglucose based on the [M-H]- ion at m/z 453.0793, with the molecular
formula of C20H20O11 determined by losing a galloyl (152 DA) unit to produce an MS/MS
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fragment ion at m/z 331.0574 [6]. The possible fragment pathway of compound 7 is exhib-
ited in Figure 3b. Digallic acid (8) was identified based on an [M-H]- ion at m/z 321.2106
(C14H10O9) with an MS/MS fragment ion at m/z 125.0235 [M-H-196]- [33]. The [M-H]- ion
at m/z 291.015 and the MS/MS fragment ions at m/z 247.0253 [M-H-COOH]- and 191.0347
(C10H7O4) indicated that compound 9 was brevifolin carboxylic acid [20]. Gallic acid ethyl
ester (13) was identified by the typical loss of CO2 [M-H-44 DA]- [22]. Ellagic acid (15) had
a precursor ion [M-H]- ion at m/z 300.9971 with the molecular formula of C14H6O8. The
fragment ions at m/z 283.9963 and m/z 257.0099 were yielded by the loss of the H2O (18
Da) unit and CO2 (44 Da). Hence, compound 15 was further identified as ellagic acid by
comparison with its commercial standard [25]. Azelaic acid (17) had an [M-H]- ion at m/z
187.0973 and an MS/MS fragment ion at m/z 169.0864 [M-H-H2O]- [26].

2.1.2. Tannins

Galloyl-HHDP-glucose (11) had an [M-H]- ion at m/z 633.0775 (C27H22O18) and
MS/MS fragment ions at m/z 463.1024 [M-H-galloyl-H2O]- and 301.0135 [M-H-galloyl-
H2O-Hex]-, which was inconsistent with the previously reported data [6,21]. Compounds
10 and 12 had the same [M-H]- ions at m/z 635.091 and MS/MS fragment ions at m/z 313.0574
[M-H-galloyl-galloyl]-, which was consistent with the data reported in the literature [6].
The possible fragment pathway is exhibited in Figure 3c.

2.1.3. Flavonoids

Tricetin (18) was identified by comparison with the data reported in the literature [25].
Quercetin (20) had an [M-H]- ion at m/z 301.2030 with the molecular formula of C15H9O7.
It was further identified by comparison to the retention time of the standard. Quercitrin
(16) exhibited an [M-H]- ion at m/z 447.0926 with the molecular formula of C21H20O11,
and it had a fragment ion at m/z 283.1923 for [M-2H-162] [34] (Figure 3d). Compound 22
displayed an [M-H]- ion at m/z 285.2080 with the molecular formula of C15H10O6, and it
had a main MS/MS fragment ion at m/z 153.0175. Thus, compound 22 was identified as
kaempferol [6,24].

2.1.4. Others

Trihydroxy-10-trans-octadecenoic acid (23) displayed an [M-H]- ion at m/z 329.2343,
with the molecular formula C18H34O5, and MS/MS fragment ions at 171.1018 and 211.1348,
which was consistent with the literature [28]. Compound 26 displayed an [M-H]-ion at
m/z 277.1452, in agreement with the molecular formula C16H22O4, which was identified
as mono-octyl phthalate [29]. Hydroperoxy-octadecadienoic acid (27) was identified by
the [M-H]- ion at m/z 311.2283 (C8H32O4) and the MS/MS fragment ions at m/z 183.0118
and 311.169 [28]. Compounds 24 and 25 had the same [M-H]- ion at m/z 433.260, indicating
that the molecular formula was C25H38O6. Compound 19 exhibited an [M-H]- ion at m/z
399.0943, and the molecular formula was predicted to be C17H18O11.

2.2. Determination of Total Phenolic, Total Flavonoid and Total Tannin Contents

The total phenolic content (TPC), total flavonoid content (TFC) and total tannin content
(TTC) of the three phenolic fractions from normal and UHP-treated PEFs were determined.

As shown in Figure 4, the normal and UHP-treated PEFs were rich in phenolics,
especially free phenolics, which was consistent with a previous report [35]. Among the three
phenolic fractions of normal PEFs, the esterified phenolic fraction (EP) possessed the highest
TPC, TFC, and TTC values, with 423.12 ± 12.63 mg GAE/g extract, 164.76 ± 7.89 mg RE/g
extract and 164.76 ± 7.89 mg RE/g extract (p < 0.05), followed by the free phenolic fraction
(FP). The bound phenolic fraction (BP) had the lowest TPC with 223.12 ± 10.63 mg GAE/g
extract, the lowest TFC with 134.76 ± 7.89 mg RE/g extract and the lowest TTC with
24.76 ± 8.89 mg RE/g extract (p < 0.05), respectively. The UHP preprocessing treatment
significantly enhanced the TPC values in the FP and BP fractions to 1.30 and 1.34 times
higher than those in the normal PEFs (p < 0.05). After UHP treatment, the TFC values
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increased approximately 1.25, 1.86, and 1.34 times. For the tannins, the variation trend
was similar to the phenolics, where the TTC values in the FP and BP fractions were
7.0 and 3.80 times increased compared to those in the normal PEFs, except for the EP
fraction, respectively.
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According to the TPC, TFC and TTC results of the different phenolic fractions, UHP
treatment is an effective method for enhancing the extractive phenolic compounds in PEFs,
especially for the flavonoids and tannins [36]. It is possible that some esterified phenolic
fractions are converted into free phenolics due to the ultra-high-pressure pretreatment. In
addition, the bonds between the hydroxyl groups in the flavonoids and tannins and the cell
wall components change the membrane permeability, and some phenolics and flavonoids
in the membrane are easy to extract in the subsequent process [37].

2.3. Antioxidant Activities

In this study, the antioxidant activities of all the phenolic fractions from normal and
UHP-treated PEFs were evaluated in terms of the scavenging abilities of 2,2-diphenyl-1-
picryhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS),
as were the ferric-reducing antioxidant power (FRAP), the inhibitory effect on intracellular
reactive oxygen species (ROS) generation and the intracellular antioxidant enzyme activities.

2.3.1. DPPH Radical-Scavenging Activity

As shown in Figure 5a, all the phenolic fractions from the normal PEFs exhibited a
high DPPH radical-scavenging capacity with a dose-dependent relationship. These three
phenolic fractions presented numerous phytoconstituents, such as gallic acid, ellagic acid
and different tannins [1]. The median inhibitory concentration (IC50) values of the esterified,
free and bound phenolic fractions of normal PEFs were 15.71 ± 1.01, 18.81 ± 0.89, and
22.14 ± 0.98 µg/mL, respectively. The esterified fraction had the strongest DPPH radical-
scavenging activity in comparison with the FP and BP (p < 0.05). After UHP treatment, the
IC50 values of the free, esterified and bound phenolic fractions were 5.14 ± 0.71, 2.52 ± 0.56,
and 11.38 ± 0.49 µg/mL, respectively. Similarly, the free fraction had the strongest DPPH
radical-scavenging activity among the three different fractions. The IC50 values of all the
fractions clearly suggested that UHP treatment could dramatically enhance the DPPH
radical-scavenging activities of the free, esterified, and bound phenolic fractions of PEFs
(p < 0.05). This may be related to the increase in the phenolic numbers and contents after
UHP treatment. Moreover, based on the TFC values and DPPH radical-scavenging activities
of the six fractions from the normal and UHP-treated PEFs, a positive correlation can be
observed (r = 0.702, p < 0.05). These findings revealed that the TPC or TFC values are
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positively related to the antioxidant capacity. This finding is consistent with the results of
previous studies [36].

2.3.2. ABTS Radical-Scavenging Capacity

The ABTS radical-scavenging capacities of all the tested samples are illustrated in
Figure 5b. All the fractions exhibited good ABTS radical-scavenging capacities with a dose-
dependent relationship. The IC50 values of the esterified, free, and bound phenolic fractions
from normal PEFs were 9.46± 0.48, 23.30± 0.58, and 26.07± 0.29 µg/mL, respectively. The
esterified phenolic fraction also exhibited the strongest ABTS radical-scavenging capacity,
followed by the free phenolic fraction. The esterified phenolic fraction contained a large
amount of gallic acid, which has a very strong antioxidant capacity [38]. The IC50 values
of the esterified, free, and bound phenolic fractions from the UHP-treated PEFs were
15.99 ± 0. 65, 12.40 ± 0.47, and 24.43 ± 0.13 µg/mL, respectively. Thus, UHP treatment
enhanced the ABTS radical-scavenging capacities of two different phenolic fractions from
PEFs. Similar to the findings of the DPPH radical-scavenging assay, the ABTS radical-
scavenging activity had positive correlations with the TPC, TFC and TTC values.
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2.3.3. FRAP Evaluation

The FRAP values of the free, esterified, and bound phenolic fractions extracted from
the non-treated and UHP-treated PEFs are presented in Figure 5c. The FRAP values of all
the samples increased with increasing concentrations. The antioxidant properties were
measured by the ferric-reducing antioxidant power (FRAP) [39], and the result showed that
the esterified phenolic fraction from normal samples had the highest FRAP value, followed
by free phenolic fraction, whereas the bound phenolic fraction possessed the lowest FRAP
value. In addition, the FRAP values of the esterified, free, and bound phenolic fractions
from the UHP-treated PEFs were all significantly higher than those of their counterparts
from the normal PEFs at all the tested concentrations (p < 0.05).

2.4. Protective Effect on H2O2-Induced Oxidative Stress in HepG2 Cells In Vitro

Phenolics can protect cells from oxidative damage by inhibiting the production of
excessive ROS [40]. In this study, tests to determine whether the different phenolic fractions
of PEFs had the capacity to inhibit ROS generation were performed in H2O2-induced
HepG2 cells.
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2.4.1. Cytotoxic Activities

The HepG2 cell viabilities were measured after co-incubation with the different phe-
nolic fractions from PEFs with or without UHP pretreatment by the methylthiazol-2-yl-2,5-
diphenyl tetrazolium bromide (MTT) method [41]. As shown in Figure 6, the cell viability
after all the samples were treated was greater than 90%, and there was no significant
difference compared to the control group. Hence, all of the samples were non-toxic to
HepG2 cells at the concentration of 100 µg/mL.
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2.4.2. Effect of Different Phenolic Fractions from PEFs on Intracellular Antioxidant
Enzyme Activities

The endogenous antioxidant enzyme systems, including superoxide dismutase (SOD)
and glutathione (GSH), play an indispensable role in preventing oxidative stress-related
damage [40,41]. SOD is an active substance derived from organisms and plays an important
role in the active oxygen-scavenging system in organisms [42]. SOD can specifically remove
harmful free radicals from the body and reduce the damage to the body caused by free
radical oxidation [43].

As shown in Figure 7, the activities of SOD and GSH significantly decreased in the
H2O2-treated group when compared to those in the control group (p < 0.05). Figure 7b
illustrates that UHP treatment significantly increased the SOD activity of all the different
phenolic fractions of the PEFs. There was a significant difference between the SOD activity
of the normal and UHP-treated PEFs. Among the three different phenolic fractions obtained
from the normal and UHP-treated PEFs, the FP exhibited the strongest improvement activity
in terms of the SOD expression. By comparison with the control group, the FP increased by
49%, followed by the EP (p < 0.05).

Reduced glutathione (GSH) is a low-molecular-weight scavenger with the physiolog-
ical function of removing O2

-, H2O2 and LOOH [44]. As shown in Figure 7a, the GSH
activity increased by 32%, 34% and 5%, respectively, in the UHP-treated PEFs compared
with the normal PEFs. The GSH activity of the three phenolic fractions showed significant
differences with the control group (p < 0.05). The difference in GSH activity between the
free and bound phenolics was not significant, but there were significant differences between
the three fractions and the control group (p < 0.05). The mechanism may be related to the
fact that phenolics could directly scavenge free radicals or that they increase GSH levels by
promoting the synthesis of glutathione synthase.
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2.4.3. Inhibitory Effect of Different Phenolic Fractions from PEFs on Intracellular
ROS Generation

As shown in Figure 7d, the relative amount of intracellular ROS significantly increased
to 212.33 ± 10.67% after the H2O2 treatment when compared with the control group. After
the treatment of the six fractions from the PEFs with or without UHP pretreatment, the
ROS production effectively decreased in a concentration-dependent manner (p < 0.05). The
FP, EP, and BP from the UHP-treated PEFs had lower values than those from the normal
PEFs (p < 0.05), indicating that UHP treatment could effectively enhance the inhibitory
effect of the three phenolic fractions on intracellular ROS generation. Additionally, the FP
exhibited the strongest intracellular ROS-scavenging activity, whereas the BP showed the
weakest intracellular ROS inhibitory effect in comparison with the other extracts (Figure 7c).
The inhibitory effect of the three phenolic components on intracellular ROS production
might be related to the chemical constituents and contents of phenolics, flavonoids and
tannins [45]. In addition, the synergistic effects between different phenolic compounds
might be another influencing factor [46].

2.5. Enzyme Inhibitory Activity of Different Phenolic Fractions from PEFs

Both α-glycosidase and α-amylase inhibitors are used to prevent diseases such as
obesity, hyperglycemia and diabetes. The inhibitory effects of these phenolic fractions
against α-glucosidase and α-amylase were determined and the results are described in
Table 2. All the phenolic fractions showed significant inhibitory capacity in relation to
α-glucosidase and α-amylase (p < 0.05). The IC50 values of the esterified, free, and bound
phenolic fractions from normal PEFs on α-glycosidase were 312.4 ± 2.21, 19.6 ± 1.01,
and 87.65 ± 3.42 µg/mL, respectively. The free phenolic fraction exhibited the strongest
inhibitory effect, followed by the bound phenolic fraction, whereas the esterified phe-
nolic fraction had the lowest activity (p < 0.05). The findings revealed that the phenolic
compounds had higher IC50 values than that of acarbose, indicating that the phenolic
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compounds had a strong hypoglycemic effect. The pancreatic lipase inhibitory effects of all
the tested samples are illustrated in Table 2.

Table 2. The IC50 value (mg/mL) of three different phenolic forms on the inhibitory activity of
α-amylase, α-glycosidase and pancreatic lipase.

Enzyme Positive
Control &

EP # FP # BP #

N * U * N U N U

Pancreatic
lipase & 46.43 ± 1.3 f 241.25 ± 8.21 c 214.17 ± 9.31 d 62.92 ± 2.34 e 48.73 ± 3.28 f 613.89 ± 9.83 a 439.34 ± 12.25 b

α-glucosidase ˆ 0.89 ± 0.10 f 312.4 ± 2.21 a 19.72 ± 0.81 d 19.68 ± 1.01 d 1.74 ± 0.19 e 87.65 ± 3.42 b 36.82 ± 1.09 c

α-amylase ˆ 2.41 ± 0.19 d 6.74 ± 0.42 a 5.82 ± 0.72 a 4.32 ± 0.29 b 4.09 ± 0.31 b 3.89 ± 0.15 b 3.48 ± 0.27 c

# EP, FP, and BP represent the esterified phenolic, free phenolic and bound phenolic fractions, respectively. * N,
normal PEFs; U, UHP-treated PEFs. The results are expressed as the mean ± SD; different letters in the same
column as superscripts are significantly different (p < 0.05). & Orlistat was used as the positive control. ˆ Acarbose
was used as the positive control.

The results showed that all the phenolic fractions from the PEFs, regardless of UHP
treatment, exhibited good inhibitory effects on lipase activity with a dose-dependent rela-
tionship at the tested concentrations. The IC50 values of the esterified, free, and bound phe-
nolic fractions of normal PEFs were 241.25 ± 8.21, 62.92 ± 2.34, and 613.89 ± 9.83 µg/mL,
respectively. The free fraction also exhibited the highest good inhibitory effects on lipase
activity (p < 0.05), followed by the esterified fraction. Interestingly, the IC50 of the bound
phenolic fraction from the UHP-treated PEFs is close to that of the positive control, orlistat.
The results showed that the phenolic compounds contributed significantly to the inhibitory
effect on lipase.

2.6. Multivariate Analysis

The total variation explained was 74.30% with PC1 (51.66%) and PC2 (22.64%) (Figure 8).
PC1 was more closely related to the SOD, GSH enzyme activity, TFC, TPC and TTC. The
scores showed that the UFP-treated PEFs had a higher material content and improved
biological activity. Additionally, PC2 was more closely relate to α-glucosidase, α-amylase,
and the ROS inhibition ratio. The UFP and UBP groups showed a negative correlation with
PC2, indicating that the UFP and UBP PEFs had weak hypoglycemic activity. However, the
EP group showed significant hypoglycemic and inhibition of ROS production activity.
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2.7. Correlation Network

The relationship (positive correlation) between the chemical composition and the
biological activity of PEFs is shown in Figure 9. The scores of the Edge showed that gallic
acid and its derivatives had a significant influence on the biological activity (Table S1). The
ABTS-scavenging activity was closely related to kaempferol (0.65), azelaic acid deoxyhexose
(0.85), dihydroxyhexadecanoic acid (0.85), brevifolin carboxylic acid (0.70) and gallic acid
derivatives [47,48]. The SOD and GSH were more affected by TPC. The UHP-treated
PEFs showed a higher total flavonoid content and also had better potential to increase the
enzyme activities of SOD and GSH. Gallic acid had a great influence on ROS production
(0.60). These results are consistent with previous reports [49,50]. There was a positive
relationship between the TFC value and the inhibition rate of α-amylase activity (0.71),
which was also confirmed by the IC50 value of the UFP (1.74) [51].
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3. Material and Methods
3.1. Chemical and Reagents

LC/MS-grade acetonitrile was purchased from Merck (Darmstadt, Germany). Ultra-
pure water was deionized using a Milli-Q system (Millipore, Bedford, MA, USA). Folin–
Ciocalteu reagent, 1,3,5-tri(2-pyridyl)-2,4,6-triazine (TPTZ), 2,2-diphenyl-1-picryhydrazyl
(DPPH), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), methylthiazol-2-yl-
2,5-diphenyl tetrazolium bromide (MTT), and 2′,7′-dichlorofluorescin diacetate (DCFH-DA)
were purchased from Sigma-Aldrich (Shanghai, China). Superoxide dismutase (SOD), and
glutathione (GSH) were purchased from Sigma-Aldrich (Shanghai, China). Fetal bovine
serum (FBS), streptomycin penicillin and Dulbecco’s modified Eagle’s medium (DMEM)
were obtained from Gibco (Grand Island, NY, USA). The other organic solvents of analytical
grade were purchased from Tianjin Fengchuan Chemical Reagent Co., Ltd. (Tianjin, China).

3.2. Preliminary Treatment

Fresh PEFs were obtained from Pu’er city in the Yunnan Province of China in July
2017 (22◦83′42′′ N, 100◦99′05′′ E). The PEFs were manually picked and then dried using
a vacuum freeze-dryer (Alpha 1–2 LD plus, Christ, Osterode, Germany). Thereafter, the
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powdered PEFs (100.0 g of each group) were treated by UHP equipment (HHP-600, Baotou
KeFa High Pressure Technology Co., Ltd., Baotou, China). The UHP treatment of the PEFs
was performed at 400 MPa for 10 min based on the result of our preliminary experiment.

3.3. Extraction of Different Phenolic Fractions from PEFs

The extraction methods for the free, esterified, and bound phenolics were carried
out according to a reported method with slight modifications [36]. The sample with or
without UHP treatment was firstly degreased with n-hexane at a ratio of 1:5 by the Soxhlet
extraction method. After filtration with filter paper, the degreased sample was obtained
and extracted by 70% methanol at the ratio of material to liquid of 1:10 for 30 min by
ultrasound-assisted extraction (n = 3). The supernatant was collected by centrifugation
(1200× g 10 min 25 ◦C) and evaporated in a vacuum using a rotary evaporator (45 ◦C) to
yield a crude extract (CE). Then, the CE was processed for further fractionation of the free,
esterified, and insoluble phenolic metabolites.

For the free phenolic fraction, the CE was firstly dissolved with 6 M hydrochloric
acid to obtain an acidified aqueous solution with a pH of 2, and then fractioned with
ethyl ether (1:1 v/v) three times. Furthermore, the ethyl acetate extraction solution was
combined and evaporated using a rotary evaporator to obtain the free phenolic fraction.
For the esterified phenolic fraction, the aqueous phase was hydrolyzed with 4 M NaOH
(1:1 v/v) for 4 h in the aqueous phase at room temperature and adjusted to a pH of 2 by
6 M hydrochloric acid. Then, the acid-aqueous phase was extracted with ethyl acetate (1:1
v/v). The ethyl acetate layer was collected and evaporated in a vacuum to obtain esterified
phenolic metabolites. For the extraction of the bound phenolic fraction, after the extraction
of the free phenolic fraction and esterified phenolic fraction, the remaining solid residue
was mixed with 4 M NaOH at a ratio of 1:10 (w/v) in a shaking water bath for hydrolysis
for 4 h at room temperature. Then, the hydrolysate was adjusted to a pH of 2 and extracted
with ethyl acetate (1:1 v/v). The combined ethyl acetate layer was evaporated in a vacuum
to obtain the insoluble bound phenolic fraction.

3.4. Determination of Total Phenolics, Flavonoids and Tannins Contents

The total phenolic content (TPC) of the free, esterified, bound phenolic metabolites
in the normal and UHP-treated samples was determined according to our previously de-
scribed Folin–Ciocalteu method [52]. The absorbance was measured at 765 nm by a Spectra
Max M5 microplate reader, and the TPC was expressed as milligrams of gallic acid equiva-
lent (GAE) per gram of extract. The total flavonoids content (TFC) was determined by the
aluminum chloride method [18], and expressed as milligrams of rutin equivalent (RE) per
gram of extract. The total tannins content was measured by modified phosphomolybdium
tungstic acid-casein [53]. The results of the TTC were expressed as milligrams of rutin
equivalent (RE) per gram of extract.

3.5. Identification of Phenolics by UHPLC-ESI-HRMS/MS

The chemical constituents of the free, esterified, bound phenolic metabolites in the nor-
mal and UHP-treated samples were analyzed by ultra-performance liquid chromatography
(Thermo Fisher Scientific, Bremen, Germany) on an Agilent C18 column (2.1 × 100 mm,
1.9 µm, Agilent, Santa Clara, CA, USA) equipped with a Q-Exactive Orbitrap mass spec-
trometer (Thermo Fisher Scientific, Bremen, Germany). The chromatographic separation
was optimized with a good baseline and resolution. The mobile phases were acidified
water (A, 0.1% formic acid) and acetonitrile (0.1% formic acid, solvent B). A gradient
program was carried out as follows: 0–5 min, 5% B; 5–10 min, 5%–40% B 10–20 min,
40%–60% B; 20–30 min, 60%–100% B; 30–32 min, 100% B; 32.01–35 min, 5% B. The flow rate
was 0.2 mL/min, the injection volume was 2 µL, and the column oven temperature was
maintained at 35 ◦C. The HR-ESI-MS/MS data were analyzed on a Q-Exactive Orbitrap
mass spectrometer (Thermo Fisher Scientific, Bremen, Germany). The specific mass pa-
rameters were as follows: resolution, 70,000; auxiliary gas flow, 8 L/min; sheath gas flow
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rate, 32 L/min; sweep gas, 4 L/min; S-lens RF level, 50%; spray voltage, 3.3 kV, capillary
temperature, 320 ◦C; and heater temperature, 350 ◦C. The ions were scanned in a negative
mode with a mass range from m/z 50 to 1000.

3.6. Evaluation of Antioxidant Activity
3.6.1. DPPH Free Radical-Scavenging Assay

The DPPH radical-scavenging activity of the different forms of free, esterified, bound
phenolic metabolites was measured according to a previously reported method [54]. The
absorbance of the mixture was measured by a SpectraMax M5 microplate reader (Molec-
ular Devices, San Jose, CA, USA) at 517 nm. The DPPH radical-scavenging activity (%)
was calculated as [(Acontrol − Asample)/Acontrol] × 100, where Acontrol and Asample are the
absorbance values for the incubation of the DPPH solution in absence and presence of the
test compound.

3.6.2. ABTS Radical-Scavenging Activity

The ABTS radical-scavenging activity of each extract was evaluated according to a
previously reported method [55]. The absorbance of the mixture was measured with a
SpectraMax M5 microplate reader at 745 nm. Similar to the DPPH antioxidant assay, the
ABTS-scavenging activity (%) was calculated.

3.6.3. Ferric-Reducing Antioxidant Power (FRAP) Assay

The FRAP assay was conducted by a previous method with some modifications [36].
Trolox FeSO4·7H2O was used as the standard to calibrate the standard curve, ranging from
0.1 to 0.5 mmol/L. The results were expressed as µmol Trolox/g extract.

3.7. Cytoprotective Effect of Different Phenolic Fractions in H2O2-Induced HepG2 Cells
3.7.1. Cell Culture and Cytotoxic Assay

Human liver cancer cells HepG2 were purchased from the Kunming Cell Bank, Chinese
Academy of Sciences (Kunming, China). The cells were cultured in DMEM with 10% FBS
and 1% antibiotic mixture of penicillin (100 U/mL) and streptomycin (100 mg/mL) in a
humidified atmosphere containing 5% CO2 and 95% air at 37 ◦C.

The cytotoxicity of the test samples on the HepG2 cells was determined by MTT assay
with minor modifications [40]. Briefly, the cells were seeded at 1.0 × 105 cells per well
in 96-well culture plates. The cells were treated with or without different concentrations
of the test sample and incubated for 24 h. Then, the cells were treated with 0.5 mg/mL
MTT solution for 4 h. After removal of the MTT solution, 150 µL dimethyl sulfoxide
(DMSO) was added in order to solubilize the purple formazan crystals. After being
thoroughly dissolved, the absorbance was recorded at 570 nm by a microplate reader. The
cell viability results demonstrated that all the samples were non-toxic to HepG2 cells at the
tested concentrations.

3.7.2. Inhibition of Different Phenolic Fractions on Reactive Oxygen Species (ROS)
Generation in H2O2-Induced HepG2 Cells

The accumulation of intracellular total ROS in HepG2 cells was quantified by DCFH-
DA staining, as described previously [56]. Briefly, the HepG2 cells were seeded in a 6-well
plate at a density of 1 × 105 cells per well for 24 h and exposed to the test sample at
different concentrations of 0, 50, 100, and 200 µg/mL for another 24 h. The medium was
removed, and the collected cells were washed with PBS and treated with 1.0 mM H2O2
for 6 h. Then, the cells were harvested and washed with cold PBS twice. The cells were
incubated in serum-free medium with 10 mM DCFH-DA at 37 ◦C for 20 min in the dark.
After incubation, the cells were washed twice using FBS-free medium and then immediately
detected with flow cytometry (Guava® easyCyte6-2 L, Millipore, Billerica, MA, USA).
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3.7.3. Spectrophotometric Determination of GSH and SOD Levels

The levels of superoxide dismutase (SOD) and glutathione (GSH) in the cultured cells
were detected with a microplate reader using commercial kits (Sigma-Aldrich, Shanghai,
China), following the manufacturer’s recommendations.

3.8. Enzyme Inhibitory Assay
3.8.1. Inhibition Assay of α-Glycosidase Activity

The α-glucosidase inhibition assay was performed as previously described [57]. The
test samples with different concentrations (50 mL) and α-glucosidase (100 µL) were in-
cubated at 37 ◦C for 15 min. Then, 50 µL PNPG (3 mM) was added to the mixture and
incubated for 15 min at 37 ◦C. Then, the reaction was terminated by adding 1 mL Na2CO3
(1 M). The absorbance of each reaction mixture was measured at 405 nm using a microplate
reader. Acarbose was used as the positive control.

3.8.2. Inhibition Assay of α-Amylase Enzyme Activity

The α-amylase inhibition assay of the PEFs was performed according to the previously
reported assay with minor modifications [58]. Briefly, 50 µL of each sample at different
concentrations was added into 50 µL α-amylase enzyme solution and 50 µL of a 1% starch
solution. The reaction was stopped with 100 µL of dinitrosalicylic acid, reacted in a boiling
water bath for 5 min and cooled to room temperature. The absorbance was recorded by a
multi-detection microplate reader at 540 nm.

3.8.3. Pancreatic Lipase Inhibition Assay

The lipase activity was determined according to previous work [59] using 4 mmol/L
p-nitrophenyllaurate in Tris-HCl 0.05 mmol/L, pH 8.0 buffer containing 0.5% Triton-X100
as a substrate. The p-nitrophenol, a product of the lipase action on p-nitrophenyllaurate,
was measured in a spectrophotometer at 410 nm with a microplate reader. Orlistat was
used as the positive control.

3.9. Statistical Analysis

The experimental data were expressed as the mean ± standard deviation (SD). A one-
way ANOVA and Tukey’s test were used to evaluate the significant differences. Statistical
significance was defined as p < 0.05 for all the tests. All the analyses were conducted using
the Origin 10.5 software (OriginLab, Northampton, MA, USA).

4. Conclusions

The free, esterified and bound phenolics were obtained from normal and UHP-treated
PEFs by the acid and alkaline extraction method. UHP pretreatment significantly increased
the TPC, TFC, and TTC values of the free, esterified, and bound phenolic fractions of PEFs
compared to normal PEFs. A total of 24 phytoconstituents were identified in the PEFs. In
addition, the UHP-treated PEFs exhibited better antioxidant activity, cell protective effect
and enzyme inhibitory activity than the normal PEFs. Furthermore, PEFs have potential
hypoglycemic activity via the inhibitory capacity on α-glycosidase. The hypoglycemic
activity and mechanism can be further explored through in vivo and in vitro experiments
to broaden the application range of PEFs. The above findings suggest that UHP treatment
could be used to effectively enhance the extraction yield of phenolics and the bioactivities
of different phenolic fractions obtained from PEFs. This research could promote the
applications and the economic value of PEFs in functional food or the nutraceutical industry.
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SOD (superoxide dismutase), GSH (glutathione), IC50 (half maximal inhibitory concentration), FP
(free phenolic fraction), EP (esterified phenolic fraction), BP (bound phenolic fraction), UBP (UHP-
treated bound phenolic fraction), UFP (UHP-treated free phenolic fraction), UEP (UHP treated
esterified phenolic fraction).
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