Synthesis and Performance of Deep-Red Phosphorescent Iridium Complexes with Pyrone as an Auxiliary Ligand
Abstract
:1. Introduction
2. Results and Discussion
2.1. Thermal Stability and Crystalline Structures
2.2. Photophysical Properties
2.3. Theoretical Calculations
2.4. Electrochemical Properties
2.5. Electroluminescence Devices
3. Materials and Methods
3.1. General Information
3.2. Device Fabrication and Measurement
3.3. Compound Synthesis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pope, M.; Kallmann, H.P.; Magnante, P. Electroluminescence in Organic Crystals. J. Chem. Phys. 1963, 38, 2042–2043. [Google Scholar] [CrossRef]
- Gu, G.; Shen, Z.; Burrows, P.E.; Forrest, S.R. Transparent Flexible Organic Light-Emitting Devices. Adv. Mater. 1997, 9, 725–728. [Google Scholar] [CrossRef]
- Axtell, J.C.; Kirlikovali, K.O.; Djurovich, P.I.; Jung, D.; Nguyen, V.T.; Munekiyo, B.; Royappa, A.T.; Rheingold, A.L.; Spokoyny, A.M. Blue Phosphorescent Zwitterionic Iridium(III) Complexes Featuring Weakly Coordinating Nido-Carborane-Based Ligands. J. Am. Chem. Soc. 2016, 138, 15758–15765. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Xin, L.; Hou, J.; Duan, L.; Wang, R.; Wei, Y.; Qiao, J. Homoleptic Facial Ir(III) Complexes via Facile Synthesis for High-Efficiency and Low-Roll-Off Near-Infrared Organic Light-Emitting Diodes over 750 Nm. Chem. Mater. 2017, 29, 4775–4782. [Google Scholar] [CrossRef]
- Santander-Nelli, M.; Boza, B.; Salas, F.; Zambrano, D.; Rosales, L.; Dreyse, P. Theoretical Approach for the Luminescent Properties of Ir(III) Complexes to Produce Red–Green–Blue LEC Devices. Molecules 2022, 27, 2623. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zuo, L.; Li, A.; Sheng, R.; Duan, Y.; Zhao, Y.; Chen, P. High-Efficiency Orange and White Phosphorescent Organic Light-Emitting Diodes Based on Homojunction Structure. Org. Electron. 2017, 44, 183–188. [Google Scholar] [CrossRef]
- Wei, W.; Ma, J.; Schaab, J.; Brooks, J.; Kang, S.; Whited, M.T.; Djurovich, P.I.; Thompson, M.E. A Comparison between Triphenylmethyl and Triphenylsilyl Spirobifluorenyl Hosts: Synthesis, Photophysics and Performance in Phosphorescent Organic Light-Emitting Diodes. Molecules 2023, 28, 5241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Guo, S.; Zhang, K.; Yu, C.; Zhou, H.; Wang, Q.; Zhang, Z.; Huang, J.; Wang, H.; Wei, B. Highly Efficient Red and Green Phosphorescent OLEDs Based on Benzonitrile and Carbazole as Bipolar Host Materials. Dyes Pigments 2024, 222, 111874. [Google Scholar] [CrossRef]
- Blazevicius, D.; Tavgeniene, D.; Sutkuviene, S.; Zaleckas, E.; Jiang, M.-R.; Swayamprabha, S.S.; Yadav, R.A.K.; Jou, J.-H.; Grigalevicius, S. Pyridinyl-Carbazole Fragments Containing Host Materials for Efficient Green and Blue Phosphorescent OLEDs. Molecules 2021, 26, 4615. [Google Scholar] [CrossRef]
- Hwang, J.; Ji, S.-B.; Cheon, H.; Yook, K.S.; Kwon, S.-K.; Kim, Y.-H. Orange Electrophosphorescence Based on Bis(3,5-Dimethylphenyl)Pyridine Iridium (III) Complexes for Non-Halogenated Solution Processable Phosphorescent Organic Light-Emitting Diodes. Dyes Pigments 2018, 149, 719–727. [Google Scholar] [CrossRef]
- Kanbe, A.; Yokoi, K.; Yamada, Y.; Tsurui, M.; Kitagawa, Y.; Hasegawa, Y.; Ogata, D.; Yuasa, J.; Aoki, S. Optical Resolution of Carboxylic Acid Derivatives of Homoleptic Cyclometalated Iridium(III) Complexes via Diastereomers Formed with Chiral Auxiliaries. Inorg. Chem. 2023, 62, 11325–11341. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Kumar Gupta, A.; Yoshida, K.; Gong, J.; Hall, D.; Cordes, D.B.; Slawin, A.M.Z.; Samuel, I.D.W.; Zysman-Colman, E. Highly Efficient Green and Red Narrowband Emissive Organic Light-Emitting Diodes Employing Multi-Resonant Thermally Activated Delayed Fluorescence Emitters. Angew. Chem. Int. Ed. 2022, 61, e202213697. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, H.; Zhou, W.; Zeng, Q.; Zhang, Z.; Jiang, J.; Gong, Y.; Miao, Y.; Guo, S.; Liu, Y. Two Novel Neutral Cyclometalated Iridium(III) Complexes Based on 10,11,12,13-Tetrahydrodibenzo[a,c]Phenazine for Efficient Red Electroluminescence. Molecules 2023, 28, 4865. [Google Scholar] [CrossRef] [PubMed]
- Han, H.-B.; Wu, Z.-G.; Zheng, Y.-X. Efficient Bluish Green Electroluminescence of Iridium Complexes with Good Electron Mobility. New J. Chem. 2018, 42, 13351–13357. [Google Scholar] [CrossRef]
- Tao, P.; Lv, Z.; Zhao, F.-Q.; Zheng, X.-K.; Jiang, H.; Li, W.; Deng, Y.; Liu, S.; Xie, G.; Wong, W.-Y.; et al. One-Pot Synthesis of Acetylacetonate-Based Isomeric Phosphorescent Cyclometalated Iridium(III) Complexes via Random Cyclometalation: A Strategy for Excited-State Manipulation. Inorg. Chem. 2023, 62, 1202–1209. [Google Scholar] [CrossRef]
- Seo, J.-A.; Gong, M.-S.; Lee, J.Y. High Efficiency Yellowish Green Phosphorescent Emitter Derived from Phenylbenzothienopyridine Ligand. Org. Electron. 2014, 15, 2068–2072. [Google Scholar] [CrossRef]
- Graf, M.; Sünkel, K. First Cyclometalated Iridium(III) Complex Containing Methyl 2-Amino-2-Deoxy-β-d-Glucopyranoside as N,O-Chelate. Inorganica Chim. Acta 2012, 387, 81–85. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Zhao, Q.; Wu, H.; Huang, K.; Li, F. Phosphorescent Iridium(III) Complex with an N∧O Ligand as a Hg2+-Selective Chemodosimeter and Logic Gate. Inorg. Chem. 2011, 50, 5969–5977. [Google Scholar] [CrossRef] [PubMed]
- Burlov, A.S.; Vlasenko, V.G.; Garnovskii, D.A.; Uraev, A.I.; Koshchienko, Y.V.; Mal’tsev, E.I.; Lypenko, D.A.; Dmitriev, A.V. Luminescence Properties of the Iridium(III) Complexes. Russ. J. Coord. Chem. 2023, 49, S68–S87. [Google Scholar] [CrossRef]
- Ma, X.-F.; Luo, X.-F.; Yan, Z.-P.; Wu, Z.-G.; Zhao, Y.; Zheng, Y.-X.; Zuo, J.-L. Syntheses, Crystal Structures, and Photoluminescence of a Series of Iridium(III) Complexes Containing the Pentafluorosulfanyl Group. Organometallics 2019, 38, 3553–3559. [Google Scholar] [CrossRef]
- Mei, Q.; Shi, Y.; Hua, Q.; Tong, B. Phosphorescent Chemosensor for Hg2+ Based on an Iridium(III) Complex Coordinated with 4-Phenylquinazoline and Carbazole Dithiocarbamate. RSC Adv. 2015, 5, 74924–74931. [Google Scholar] [CrossRef]
- Mao, M.-X.; Li, F.-L.; Shen, Y.; Liu, Q.-M.; Xing, S.; Luo, X.-F.; Tu, Z.-L.; Wu, X.-J.; Zheng, Y.-X. Simple Synthesis of Red Iridium(III) Complexes with Sulfur-Contained Four-Membered Ancillary Ligands for OLEDs. Molecules 2021, 26, 2599. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Xu, S.; Ru, Y.; Zhang, D.; Pu, S. A Red-Emission Iridium (III) Complex-Based Fluorescent Probe with Schiff Base Structure for Selection Detection HOCl and Its Application in Water Sample. J. Organomet. Chem. 2022, 976, 122351. [Google Scholar] [CrossRef]
- Anjali, S.; Sasidhar, B.S.; Reddy, M.L.P. Phosphorescent Iridium Molecular Materials as Chemosensors for Nitroaromatic Explosives: Recent Advances. Comments Inorg. Chem. 2023, 43, 34–65. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, F.; Li, T.; Li, Y.; Han, H.; Wei, D.; Zhai, B.; Wei, B. Synthesis, Structure and Optoelectronic Properties of Iridium(III) Complexes Bearing a Four-Membered Ir-N-CN Chelate Structure. J. Mol. Struct. 2024, 1301, 137355. [Google Scholar] [CrossRef]
- Takahira, Y.; Murotani, E.; Fukuda, K.; Vohra, V.; Murata, H. Design, Synthesis, and Properties of a Series of Charged Iridium(III) Complexes with a Neutral Bidentate Ligand for Deep-Blue Phosphorescent Emitter. J. Fluor. Chem. 2016, 181, 56–60. [Google Scholar] [CrossRef]
- You, Y.; Nam, W. Photofunctional Triplet Excited States of Cyclometalated Ir(III) Complexes: Beyond Electroluminescence. Chem. Soc. Rev. 2012, 41, 7061–7084. [Google Scholar] [CrossRef] [PubMed]
- Boudreault, P.-L.T.; Borisovich, D.A.; Zenan, L.D.; Scott, J.; Chuanjun, X.; Hitoshi, Y.; Weaver, M.S.; Bert, A.; James, F. Ancillary Ligands for Organometallic Complexes. Patent EP3333174A1, 7 January 2015. [Google Scholar]
- Adachi, C.; Baldo, M.A.; Forrest, S.R.; Lamansky, S.; Thompson, M.E.; Kwong, R.C. High-Efficiency Red Electrophosphorescence Devices. Appl. Phys. Lett. 2001, 78, 1622–1624. [Google Scholar] [CrossRef]
- Su, Y.-J.; Huang, H.-L.; Li, C.-L.; Chien, C.-H.; Tao, Y.-T.; Chou, P.-T.; Datta, S.; Liu, R.-S. Highly Efficient Red Electrophosphorescent Devices Based on Iridium Isoquinoline Complexes: Remarkable External Quantum Efficiency Over a Wide Range of Current. Adv. Mater. 2003, 15, 884–888. [Google Scholar] [CrossRef]
- Fang, K.-H.; Wu, L.-L.; Huang, Y.-T.; Yang, C.-H.; Sun, I.-W. Color Tuning of Iridium Complexes—Part I: Substituted Phenylisoquinoline-Based Iridium Complexes as the Triplet Emitter. Inorg. Chim. Acta 2006, 359, 441–450. [Google Scholar] [CrossRef]
- Mishra, A.; Nayak, P.K.; Ray, D.; Patankar, M.P.; Narasimhan, K.L.; Periasamy, N. Synthesis and Characterization of Spin-Coatable Tert-Amine Molecules for Hole-Transport in Organic Light-Emitting Diodes. Tetrahedron Lett. 2006, 47, 4715–4719. [Google Scholar] [CrossRef]
- Xue, L.-W.; Han, Y.-J.; Luo, X.-Q. Synthesis, Crystal Structures and Antimicrobial Activity of Oxidovanadium(V) Complexes with Hydrazone and Pyrone Ligands. Acta Chim. Slov. 2019, 66, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Ugone, V.; Pisanu, F.; Garribba, E. Interaction of Pharmacologically Active Pyrone and Pyridinone Vanadium(IV,V) Complexes with Cytochrome c. J. Inorg. Biochem. 2022, 234, 111876. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Nayak, P.K.; Periasamy, N.; Agarwal, N. Synthesis, Photophysical, Electrochemical and Electroluminescence Studies of Red Emitting Phosphorescent Ir(III) Heteroleptic Complexes. J. Chem. Sci. 2017, 129, 1391–1398. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, D.; Li, J.; Li, H.; Ma, H.; Li, D.; Niu, R. Saturated Red Phosphorescent Iridium(III) Complexes Containing Phenylquinoline Ligands for Efficient Organic Light-Emitting Diodes. Dyes Pigments 2020, 179, 108405. [Google Scholar] [CrossRef]
- Duan, J.P.; Sun, P.P.; Cheng, C.H. New Iridium Complexes as Highly Efficient Orange–Red Emitters in Organic Light-Emitting Diodes. Adv. Mater. 2003, 15, 224–228. [Google Scholar] [CrossRef]
- Rayabarapu, D.K.; Paulose, B.M.J.S.; Duan, J.-P.; Cheng, C.-H. New Iridium Complexes with Cyclometalated Alkenylquinoline Ligands as Highly Efficient Saturated Red-Light Emitters for Organic Light-Emitting Diodes. Adv. Mater. 2005, 17, 349–353. [Google Scholar] [CrossRef]
- Fan, C.-H.; Sun, P.; Su, T.-H.; Cheng, C.-H. Host and Dopant Materials for Idealized Deep-Red Organic Electrophosphorescence Devices. Adv. Mater. 2011, 23, 2981–2985. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Nonoyama, M. Benzo[h]Quinolin-10-Yl-N Iridium(III) Complexes. Bull. Chem. Soc. Jpn. 1974, 47, 767–768. [Google Scholar] [CrossRef]
Complex | Ir-1 | Ir-2 |
---|---|---|
Formula | C36H25IrN2O3 | C37H27IrN2O3 |
Formula weight | 725.78 | 739.80 |
Crystal system | Monoclinic | Monoclinic |
Space group | C2/c | P21/c |
a (Å) | 11.4553 (5) | 10.0394 (4) |
b (Å) | 15.4613 (6) | 21.4133 (8) |
c (Å) | 20.2487 (7) | 14.3292 (6) |
α (⁰) | 90 | 90 |
β (⁰) | 101.138 (2) | 104.506 (2) |
γ (⁰) | 90 | 90 |
V (Å3) | 3518.78 (20) | 2982.2 (2) |
Z | 4 | 4 |
ρcalc (g∙ cm−3) | 1.370 | 1.648 |
Reflections collected | 11,912 | 24,146 |
Independent reflections | 3228 | 5855 |
RF, Rw (F2) (all data) | 0.05 | 0.0485 |
RF, Rw (F2) (I > 2σ(I)) | 0.0426 | 0.0436 |
GOF | 1.108 | 1.187 |
Complex | Ir–C | Ir–N | Ir–O | C–Ir–C | N–Ir–N | O–Ir–O | C–Ir–O | N–Ir–O | C–Ir–N |
---|---|---|---|---|---|---|---|---|---|
Ir-1 | 1.971 (7) | 2.040 (5) 2.040 (5) | 2.145 (5) | 87.4 (4) | 175.6 (2) | 78.4 (3) | 174.60 (16) | 96.52 (17) | 80.0 (2) |
1.972 (7) | 2.145 (5) | 174.60 (16) | 96.52 (17) | 80.0 (2) | |||||
97.2 (3) | 86.93 (17) | 96.7 (2) | |||||||
97.2 (3) | 86.93 (17) | 96.7 (2) | |||||||
Ir-2 | 1.971 (6) | 2.022 (5) | 2.173 (4) 2.155 (4) | 89.4 (2) | 175.8 (2) | 78.3 (2) | 169.61 (19) | 92.44 (17) | 80.5 (2) |
1.981 (5) | 2.030 (5) | 175.4 (2) | 86.62 (18) | 96.5 (2) | |||||
93.5 (2) | 90.87 (18) | 97.4 (2) | |||||||
99.14 (19) | 96.62 (18) | 79.5 (2) |
Complex | λabsa (nm) | Λema (nm) | HOMO/LUMO b (eV) | Eg c (eV) | Φp d (%) | Τ a (μs) | Kr e (×105s−1) | Knr e (×105s−1) |
---|---|---|---|---|---|---|---|---|
Ir-1 | 229, 270, 346, 397 | 640 | −4.90/−2.75 | 2.15 | 0.64 | 0.13 | 4.92 | 2.77 |
Ir-2 | 232, 273, 345, 398 | 640 | −4.86/−2.18 | 2.05 | 0.55 | 0.13 | 4.23 | 3.46 |
Devic | Maximum Brightness (cd∙m−2) | Current Efficiency (cd∙A−1) | Lumen Efficiency (lm∙W−1) | Maximum EQE (%) | Maximum Emission Wavelength (nm) | CIEx | CIEy |
---|---|---|---|---|---|---|---|
D1-3 | 11,140 | 9.39 | 12.09 | 13.3 | 636 | 0.69 | 0.31 |
D1-6 | 11,660 | 8.10 | 10.65 | 13.4 | 641 | 0.69 | 0.30 |
D1-12 | 10,130 | 6.74 | 8.98 | 12.4 | 645 | 0.70 | 0.30 |
D2-3 | 11,218 | 8.60 | 10.19 | 12.5 | 633 | 0.69 | 0.31 |
D2-6 | 13,298 | 8.37 | 10.05 | 11.1 | 640 | 0.69 | 0.30 |
D2-12 | 10,653 | 4.70 | 6.61 | 9.2 | 641 | 0.70 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Hou, W.; Yan, C.; Nie, Z.; Chang, Q.; Li, X.; Liu, W. Synthesis and Performance of Deep-Red Phosphorescent Iridium Complexes with Pyrone as an Auxiliary Ligand. Molecules 2024, 29, 3183. https://doi.org/10.3390/molecules29133183
Jiang W, Hou W, Yan C, Nie Z, Chang Q, Li X, Liu W. Synthesis and Performance of Deep-Red Phosphorescent Iridium Complexes with Pyrone as an Auxiliary Ligand. Molecules. 2024; 29(13):3183. https://doi.org/10.3390/molecules29133183
Chicago/Turabian StyleJiang, Wen, Wenming Hou, Caixian Yan, Zhifeng Nie, Qiaowen Chang, Xiangguang Li, and Weiping Liu. 2024. "Synthesis and Performance of Deep-Red Phosphorescent Iridium Complexes with Pyrone as an Auxiliary Ligand" Molecules 29, no. 13: 3183. https://doi.org/10.3390/molecules29133183
APA StyleJiang, W., Hou, W., Yan, C., Nie, Z., Chang, Q., Li, X., & Liu, W. (2024). Synthesis and Performance of Deep-Red Phosphorescent Iridium Complexes with Pyrone as an Auxiliary Ligand. Molecules, 29(13), 3183. https://doi.org/10.3390/molecules29133183