Optimizing the Catalytic Performance of Ba1−xCexMnO3 and Ba1−xLaxCu0.3Mn0.7O3 Perovskites for Soot Oxidation in Simulated GDI Exhaust Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalysts Characterization
2.1.1. Ba1−xCexMnO3 (x = 0, 0.1, 0.3, 0.6)
2.1.2. Ba1−xLaxMn0.7Cu0.3O3 (x = 0, 0.1, 0.3, 0.6)
2.2. Soot Oxidation Tests
- (i)
- In the absence of oxygen in the reaction atmosphere (100% He), BMC-La0.1 is the best catalyst, as copper is also able to catalyze the soot oxidation [47].
- (ii)
- If oxygen is present in the reaction atmosphere (1% O2/He), BM-Ce0.1 is the most active catalyst as it presents a higher proportion of Mn(IV) than BMC-La0.1.
3. Materials and Methods
3.1. Synthesis
3.2. Characterization
- ICP-OES to ascertain the actual percentage of elements: To carry out this analysis, 10 mg of sample were dissolved in 5 mL of aqua regia diluted in 10 mL of distilled water. The analysis was performed using an Optimal 4300 DV Perkin-Elmer instrument (Waltham, MA, USA).
- N2 adsorption at −196 °C, employing an Autosorb-6B device from Quanta Chrome (Anton Paar Austria GmbH, Graz, Austria) to measure the BET surface area.
- XRD to determine the crystalline structure: The X-ray patterns were captured using a Bruker D8-Advance device (Billerica, MA, USA) using the Cu Kα radiation (1.4506 Å) and a step rate of 0.4° min−1 between 20° and 80° 2θ angles. On the other hand, the Williamson–Hall method has been employed as it allows for more accuracy in the calculation of the average crystal size because it discards the contribution of the lattice strain to the full width at half maximum (FWHM) of the XRD peaks [22]. Finally, XRD refinement was performed to determine the percentage of the different crystalline phases in the sample [50] by using the HighScore Plus software (Malvern Panalytical B.V. Almelo, The Nertherlands, 4.9 (4.9.0.27512) version).
- XPS to evaluate the surface composition: An Al Kα (1486.7 eV) radiation source and a Thermo-Scientific K-Alpha photoelectron spectrometer (Thermo-Scientific, Waltham, MA, USA) were used, and, to obtain the XPS spectra, the pressure within the analysis chamber was maintained at 5 × 10−10 mbar. The spectrometer’s peak-fit software (Thermo Avantage v5.9929) was used to determine the binding energy (BE) and kinetic energy (KE) values. The C 1s transition was set at 284.6 eV.
- H2-TPR for assessing the reducibility of samples. To develop the tests, 30 mg of sample were heated at 10 °C min−1 from 25 °C to 1000 °C and 40 mL min−1 of a gaseous mixture consisting of 5% H2/Ar were used. A CuO reference sample, which is reduced to Cu0, was employed to quantify the H2 consumption. The tests were carried out in a Pulse Chemisorb 2705 (from Micromeritics, Norcross, GA, USA) outfitted with a Thermal Conductivity Detector (TCD).
- O2-TPD to estimate the oxygen evolved from samples, which informs about the mobility of oxygen. Using a Thermal Gravimetric-Mass Spectrometer equipment (TG-MS, Q-600-TA, and Thermostar from Balzers Instruments, (Balzers, Liechtenstein), 16 mg of sample was heated in a helium gas flow (100 mL min−1) at a rate of 10 °C min−1 to 950 °C. In order to remove the moisture, each sample was heated to 150 °C for one hour before the tests. The 18, 28, 32, and 44 m/z signals were recorded to follow the emission of H2O, CO, O2, and CO2. The quantification of the amount of oxygen evolved was performed also using a CuO reference sample, which is reduced to Cu2O.
3.3. Catalyst Activity
4. Conclusions
- Based on the characterization of samples, the following conclusions can be drawn:
- (i)
- For the BM-Cex series: (i.1) as the percentage of Ce increases, the hexagonal perovskite structure is progressively replaced by CeO2 crystalline phase, which is the main one for BM-Ce0.6; (i.2) Mn(IV) is the main oxidation state on the surface for BM and BM-Ce0.1, but it is Mn(III) for BM-Ce0.3, while for BM-Ce0.6, almost-similar amounts of Mn(III) and Mn(IV) are present; (i.3) Ce(III) and Ce(IV) coexist on the surface of all BM-Cex samples, and a considerable increase in the surface Ce(IV) proportion is detected from BM-Ce0.1 to BM-Ce0.6; (i.4) in the presence of Ce, the reduction of Mn/Ce takes place at lower temperatures due to the synergetic effect between Mn and Ce; and (i.5) the oxygen mobility through the perovskite lattice increases for Ce samples (due to the contribution of Ce(IV)/Ce(III) redox pair), and all of them evolve β-O2, but only BM-Ce0.1 generates a low amount of α′-O2.
- (ii)
- For the BMC-Lax series: (ii.1) as the percentage of lanthanum increases, the intensity of XRD peaks corresponding to the BaMnO3 polytype structure decreases in favor of an increase in the intensity of the peaks corresponding to hexagonal 2H-BaMnO3 and trigonal La0.93MnO3 perovskite structures, with the latter being the main phase for BMC-La0.6; (ii.2) the amount of surface oxygen vacancies seems not to be sensitive to the increase in the La amount in samples; (ii.3) Mn (III) and Mn (IV) coexist on the surface and in the bulk; however, on the surface, Mn(III) increases with the La content; while in the bulk, Mn(IV) is favored as La content increases; (i.4) the accumulation of Cu (II) on the surface increases with the percentage of La; (ii.5) an increase in the reducibility of BMC-La0.3 and BMC-La0.6 samples with respect to BMC and BMC-La0.1 is found; and (ii.6) the oxygen mobility increases with the percentage of La.
- Based on the analysis of the catalytic performance for soot oxidation in the two conditions tested: (i) in the absence of oxygen in the reaction atmosphere (100% He), BMC-La0.1 is the best catalyst as copper is also able to catalyze the soot oxidation; (ii) if oxygen is present in the reaction atmosphere (1% O2/He), BM-Ce0.1 is the most-active catalyst as it presents a higher proportion of Mn(IV) than BMC-La0.1. Thus, the addition of an amount of Ce or La dopant higher than that corresponding to x = 0.1 in Ba1−xCexMnO3 and Ba1−xLaxCu0.3Mn0.7O3 does not allow us to improve the catalytic performance of BM-Ce0.1 and BMC-La0.1 for soot oxidation in the tested conditions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peña, M.A.; Fierro, J.L.G. Chemical Structures and Performance of Perovskite Oxides. Chem. Rev. 2001, 101, 1981–2018. [Google Scholar] [CrossRef] [PubMed]
- Assirey, E.A.R. Perovskite Synthesis, Properties and Their Related Biochemical and Industrial Application. Saudi Pharm. J. 2019, 27, 817–829. [Google Scholar] [CrossRef] [PubMed]
- Keav, S.; Matam, S.K.; Ferri, D.; Weidenkaff, A. Structured Perovskite-Based Catalysts and Their Application as Three-Way Catalytic Converters—A Review. Catalysts 2014, 4, 226–255. [Google Scholar] [CrossRef]
- Montilla-Verdú, S.; Díaz-Verde, Á.; Torregrosa-Rivero, V.; Illán-Gómez, M.J. Ni-BaMnO3 Perovskite Catalysts for NOx-Assisted Soot Oxidation: Analyzing the Effect of the Nickel Addition Method. Catalysts 2023, 13, 1453. [Google Scholar] [CrossRef]
- Zou, D.; Yi, Y.; Song, Y.; Guan, D.; Xu, M.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. The BaCe0.16Y0.04Fe0.8O3−δ nanocomposite: A new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuel cells operating at reduced temperatures. J. Mater. Chem. A 2022, 10, 5381–5390. [Google Scholar] [CrossRef]
- Díaz, C.; Urán, L.; Santamaria, A. Preparation Method Effect of La0.9K0.1Co0.9Ni0.1O3 Perovskite on Catalytic Soot Oxidation. Fuel 2021, 295, 120605. [Google Scholar] [CrossRef]
- Tsai, W.C. Optimization of operating parameters for stable and high operating performance of a GDI fuel injector system. Energies 2020, 13, 2405. [Google Scholar] [CrossRef]
- Urán, L.; Gallego, J.; Li, W.-Y.; Santamaría, A. Effect of Catalyst Preparation for the Simultaneous Removal of Soot and NOx. Appl. Catal. A Gen. 2019, 569, 157–169. [Google Scholar] [CrossRef]
- Wu, Y.; Li, G.; Chu, B.; Dong, L.; Tong, Z.; He, H.; Zhang, L.; Fan, M.; Li, B.; Dong, L. NO Reduction by CO over Highly Active and Stable Perovskite Oxide Catalysts La0.8Ce0.2M0.25Co0.75O3 (M = Cu, Mn, Fe): Effect of the Role in B Site. Ind. Eng. Chem. Res. 2018, 57, 15670–15682. [Google Scholar] [CrossRef]
- Yu, D.; Wang, L.; Zhang, C.; Peng, C.; Yu, X.; Fan, X.; Liu, B.; Li, K.; Li, Z.; Wei, Y.; et al. Alkali Metals and Cerium-Modified La–Co-Based Perovskite Catalysts: Facile Synthesis, Excellent Catalytic Performance, and Reaction Mechanisms for Soot Combustion. ACS Catal. 2022, 12, 15056–15075. [Google Scholar] [CrossRef]
- Zhang-Steenwinkel, Y.; Beckers, J.; Bliek, A. Surface Properties and Catalytic Performance in CO Oxidation of Cerium Substituted Lanthanum–Manganese Oxides. Appl. Catal. A Gen. 2002, 235, 79–92. [Google Scholar] [CrossRef]
- Levasseur, B.; Kaliaguine, S. Effects of Iron and Cerium in La1−yCeyCo1−xFexO3 Perovskites as Catalysts for VOC Oxidation. Appl. Catal. B Environ. 2009, 88, 305–314. [Google Scholar] [CrossRef]
- Wang, N.; Wang, S.; Yang, J.; Xiao, P.; Zhu, J. Promotion Effect of Ce Doping on Catalytic Performance of LaMnO3 for CO Oxidation. Catalysts 2022, 12, 1409. [Google Scholar] [CrossRef]
- Ansari, A.A.; Adil, S.F.; Alam, M.; Ahmad, N.; Assal, M.E.; Labis, J.P.; Alwarthan, A. Catalytic Performance of the Ce-Doped LaCoO3 Perovskite Nanoparticles. Sci. Rep. 2020, 10, 15012. [Google Scholar] [CrossRef] [PubMed]
- Alifanti, M.; Kirchnerova, J.; Delmon, B. Effect of Substitution by Cerium on the Activity of LaMnO3 Perovskite in Methane Combustion. Appl. Catal. A Gen. 2003, 245, 231–244. [Google Scholar] [CrossRef]
- Ghezali, N.; Díaz Verde, Á.; Illán Gómez, M.J. Screening Ba0.9A0.1MnO3 and Ba0.9A0.1Mn0.7Cu0.3O3 (A = Mg, Ca, Sr, Ce, La) Sol-Gel Synthesised Perovskites as GPF Catalysts. Materials 2023, 16, 6899. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Xu, L.; Li, Y.; Xiong, J.; Han, D.; Ma, Y.; Zhang, P.; Guo, H.; Wei, Y. Cerium Doping Effect in 3DOM Perovskite-Type La2−xCexCoNiO6 Catalysts for Boosting Soot Oxidation. Catalysts 2024, 14, 18. [Google Scholar] [CrossRef]
- Royer, S.; Duprez, D.; Can, F.; Courtois, X.; Batiot-Dupeyrat, C.; Laassiri, S.; Alamdari, H. Perovskites as Substitutes of Noble Metals for Heterogeneous Catalysis: Dream or Reality. Chem. Rev. 2014, 114, 10292–10368. [Google Scholar] [CrossRef]
- Zhu, J.; Li, H.; Zhong, L.; Xiao, P.; Xu, X.; Yang, X.; Zhao, Z.; Li, J. Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis. ACS Catal. 2014, 4, 2917–2940. [Google Scholar] [CrossRef]
- Akinlolu, K.; Omolara, B.; Shailendra, T.; Abimbola, A.; Kehinde, O. Synthesis, Characterization and Catalytic Activity of Partially Substituted La1−xBaxCoO3 (x ≥ 0.1 ≤ 0.4) Nano Catalysts for Potential Soot Oxidation in Diesel Particulate Filters in Diesel Engines. Int. Rev. Appl. Sci. Eng. 2020, 11, 52–57. [Google Scholar] [CrossRef]
- Torregrosa-Rivero, V.; Sánchez-Adsuar, M.S.; Illán-Gómez, M.J. Exploring the Effect of Using Carbon Black in the Sol-Gel Synthesis of BaMnO3 and BaMn0.7Cu0.3O3 Perovskite Catalysts for CO Oxidation. Catal. Today 2023, 423, 114028. [Google Scholar] [CrossRef]
- Aarif Ul Islam, S.; Ikram, M. Structural Stability Improvement, Williamson Hall Analysis and Band-Gap Tailoring through A-Site Sr Doping in Rare Earth Based Double Perovskite La2NiMnO6. Rare Met. 2019, 38, 805–813. [Google Scholar] [CrossRef]
- Merino, N.A.; Barbero, B.P.; Eloy, P.; Cadús, L.E. La1−xCaxCoO3 Perovskite-Type Oxides: Identification of the Surface Oxygen Species by XPS. Appl. Surf. Sci. 2006, 253, 1489–1493. [Google Scholar] [CrossRef]
- Tejuca, L.G.; Fierro, J.L.G. XPS and TPD Probe Techniques for the Study of LaNiO3 Perovskite Oxide. Thermochim. Acta 1989, 147, 361–375. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, N.; Hou, L.; Jiao, K.; Wu, W. Effect of Mn on the Performance and Mechanism of Catalysts for the Synthesis of (Ce,La)CO3F. J. Power Energy Eng. 2021, 9, 1–32. [Google Scholar] [CrossRef]
- Khaskheli, A.A.; Xu, L.; Liu, D. Manganese Oxide-Based Catalysts for Soot Oxidation: A Review on the Recent Advances and Future Directions. Energy Fuels 2022, 36, 7362–7381. [Google Scholar] [CrossRef]
- Yoon, J.S.; Lim, Y.-S.; Choi, B.H.; Hwang, H.J. Catalytic Activity of Perovskite-Type Doped La0.08Sr0.92Ti1−xMxO3−δ (M = Mn, Fe, and Co) Oxides for Methane Oxidation. Int. J. Hydrogen Energy 2014, 39, 7955–7962. [Google Scholar] [CrossRef]
- Shen, M.; Zhao, Z.; Chen, J.; Su, Y.; Wang, J.; Wang, X. Effects of Calcium Substitute in LaMnO3 Perovskites for NO Catalytic Oxidation. J. Rare Earths 2013, 31, 119–123. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.; Hua, W.; Guo, Y.; Lu, G.; Gil, S.; Giroir-Fendler, A. Relationship between Catalytic Deactivation and Physicochemical Properties of LaMnO3 Perovskite Catalyst during Catalytic Oxidation of Vinyl Chloride. Appl. Catal. B Environ. 2016, 186, 173–183. [Google Scholar] [CrossRef]
- Torregrosa-Rivero, V.; Albaladejo-Fuentes, V.; Sánchez-Adsuar, M.S.; Illán-Gómez, M.J. Copper Doped BaMnO3 Perovskite Catalysts for NO Oxidation and NO2-Assisted Diesel Soot Removal. RSC Adv. 2017, 7, 35228–35238. [Google Scholar] [CrossRef]
- Ponce, S.; Peña, M.A.; Fierro, J.L.G. Surface Properties and Catalytic Performance in Methane Combustion of Sr-Substituted Lanthanum Manganites. Appl. Catal. B Environ. 2000, 24, 193–205. [Google Scholar] [CrossRef]
- Najjar, H.; Lamonier, J.-F.; Mentré, O.; Giraudon, J.-M.; Batis, H. Optimization of the Combustion Synthesis towards Efficient LaMnO3+y Catalysts in Methane Oxidation. Appl. Catal. B Environ. 2011, 106, 149–159. [Google Scholar] [CrossRef]
- Chen, Z.; Li, J.; Yang, P.; Cheng, Z.; Li, J.; Zuo, S. Ce-Modified Mesoporous γ-Al2O3 Supported Pd-Pt Nanoparticle Catalysts and Their Structure-Function Relationship in Complete Benzene Oxidation. Chem. Eng. J. 2019, 356, 255–261. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, Y.; Cui, L.; An, D.; Feng, Y. Removal of Elemental Mercury from Coal Pyrolysis Gas Using Fe–Ce Oxides Supported on Lignite Semi-Coke Modified by the Hydrothermal Impregnation Method. Energy Fuels 2018, 32, 12861–12870. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, S.; Li, J.; Zhu, J.; Ma, L. Novel V2O5–CeO2/TiO2 Catalyst with Low Vanadium Loading for the Selective Catalytic Reduction of NOx by NH3. Appl. Catal. B Environ. 2014, 158–159, 11–19. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, C.; Bian, L. Highly Dispersed Pd Species Supported on CeO2 Catalyst for Lean Methane Combustion: The Effect of the Occurrence State of Surface Pd Species on the Catalytic Activity. Catalysts 2021, 11, 772. [Google Scholar] [CrossRef]
- Kapteijn, F.; Singoredjo, L.; Andreini, A.; Moulijn, J.A. Activity and Selectivity of Pure Manganese Oxides in the Selective Catalytic Reduction of Nitric Oxide with Ammonia. Appl. Catal. B Environ. 1994, 3, 173–189. [Google Scholar] [CrossRef]
- Spezzati, G.; Benavidez, A.D.; DeLaRiva, A.T.; Su, Y.; Hofmann, J.P.; Asahina, S.; Olivier, E.J.; Neethling, J.H.; Miller, J.T.; Datye, A.K.; et al. CO Oxidation by Pd Supported on CeO2(100) and CeO2(111) Facets. Appl. Catal. B Environ. 2019, 243, 36–46. [Google Scholar] [CrossRef]
- Ma, Z.; Lu, Y.; Zhu, L.; Zhang, H.; Luo, Y.; Li, Z. Synergistic Effect of Ce-Mn on Cyclic Redox Reactivity of Pyrite Cinder for Chemical Looping Process. Fuel 2022, 324, 124584. [Google Scholar] [CrossRef]
- Zhang, R.; Villanueva, A.; Alamdari, H.; Kaliaguine, S. SCR of NO by Propene over Nanoscale LaMn1−xCuxO3 Perovskites. Appl. Catal. A Gen. 2006, 307, 85–97. [Google Scholar] [CrossRef]
- Zhang, R.; Villanueva, A.; Alamdari, H.; Kaliaguine, S. Catalytic Reduction of NO by Propene over LaCo1−xCuxO3 Perovskites Synthesized by Reactive Grinding. Appl. Catal. B Environ. 2006, 64, 220–233. [Google Scholar] [CrossRef]
- Buciuman, F.C.; Patcas, F.; Zsakó, J. TPR-Study of Substitution Effects on Reducibility and Oxidative Non-Stoichiometry of La0.8A’0.2MnO3+δ Perovskites. J. Therm. Anal. Calorim. 2000, 61, 819–825. [Google Scholar] [CrossRef]
- Díaz-Verde, Á.; Montilla-Verdú, S.; Torregrosa-Rivero, V.; Illán-Gómez, M.J. Tailoring the Composition of BaxBO3 (B = Fe, Mn) Mixed Oxides as CO or Soot Oxidation Catalysts in Simulated GDI Engine Exhaust Conditions. Molecules 2023, 28, 3327. [Google Scholar] [CrossRef]
- Shen, Q.; Zhou, J.; Ma, C.; Yang, J.; Cao, L.; Yang, J. Development of LnMnO3+σ Perovskite on Low Temperature Hg0 Removal. J. Environ. Sci. 2022, 113, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Machida, M.; Murata, Y.; Kishikawa, K.; Zhang, D.; Ikeue, K. On the Reasons for High Activity of CeO2 Catalyst for Soot Oxidation. Chem. Mater. 2008, 20, 4489–4494. [Google Scholar] [CrossRef]
- Albaladejo-Fuentes, V.; Sánchez-Adsuar, M.S.; Illan-Gomez, M.J. Tolerance and Regeneration versus SO2 of Ba0.9A0.1Ti0.8Cu0.2O3 (A = Sr, Ca, Mg) LNT Catalysts. Appl. Catal. A Gen. 2019, 577, 113–123. [Google Scholar] [CrossRef]
- Moreno-Marcos, C.; Torregrosa-Rivero, V.; Albaladejo-Fuentes, V.; Sánchez-Adsuar, M.S.; Illán-Gómez, M.J. BaFe1−xCuxO3 Perovskites as Soot Oxidation Catalysts for Gasoline Particulate Filters (GPF): A Preliminary Study. Top. Catal. 2019, 62, 413–418. [Google Scholar] [CrossRef]
- Tejuca, L.G.; Fierro, J.L.G. (Eds.) Properties and Applications of Perovskite-Type Oxides; CRC Press: Boca Raton, FL, USA, 2014; ISBN 978-0-429-17931-0. [Google Scholar]
- Guan, D.; Shi, C.; Xu, H.; Gu, Y.; Zhong, J.; Sha, Y.; Hu, Z.; Ni, M.; Shao, Z. Simultaneously mastering operando strain and reconstruction effects via phase-segregation strategy for enhanced oxygen-evolving electrocatalysis. J. Energy Chem. 2023, 82, 572–580. [Google Scholar] [CrossRef]
Nomenclature | Sample | BET (m2 g−1) | Ce (wt%) |
---|---|---|---|
BM | BaMnO3 | 3 | - |
BM-Ce0.1 | Ba0.9Ce0.1MnO3 | 10 | 1.3 |
BM-Ce0.3 | Ba0.7Ce0.3MnO3 | 7 | 3.1 |
BM-Ce0.6 | Ba0.4Ce0.6MnO3 | 3 | 6.0 |
Sample | Hexagonal 2H-BaMnO3 (wt%) | CeO2 (wt%) | MnO2 (wt%) | Intensity (a.u) a | Average Crystal Size (nm) b | BaMnO3 Cell Parameters (Å) c | |
---|---|---|---|---|---|---|---|
a | c | ||||||
BM | 94 | - | 6 | 1154 | 46.0 | 5.7 | 4.9 |
BM-Ce0.1 | 76 | 14 | 10 | 1913 | 22.0 | 5.5 | 5.0 |
BM-Ce0.3 | 53 | 29 | 18 | 720 | 14.4 | 5.7 | 4.8 |
BM-Ce0.6 | 29 | 71 | - | 1708 | 33 | 5.7 | 4.8 |
Sample | BE Max Mn(III) (eV) | BE Max Mn(IV) (eV) | BE Max OL (eV) | BE Max Oads (eV) | (CeO2) 1.8 | ||
---|---|---|---|---|---|---|---|
BM | 641.4 | 642.3 | 528.9 | 530.8 | 1.0 | --- | 1.7 |
BM-Ce0.1 | 641.4 | 642.4 | 529.0 | 530.7 | 1.0 | 1.1 | 1.4 |
BM-Ce0.3 | 641.2 | 642.2 | 528.9 | 530.4 | 1.1 | 1.4 | 0.5 |
BM-Ce0.6 | 641.1 | 642.2 | 528.8 | 530.1 | 1.2 | 1.6 | 0.9 |
Nomenclature | Molecular Formula | S BET (m2 g−1) | Metal Content (wt%) | |
---|---|---|---|---|
La | Cu | |||
BMC | BaMn0.7Cu0.3O3 | 3.0 | - | 8.0 |
BMC-La0.1 | Ba0.9La0.1Mn0.7Cu0.3O3 | 7.0 | 5.4 | 9.8 |
BMC-La0.3 | Ba0.7La0.3Mn0.7Cu0.3O3 | 9.0 | 11.0 | 7.8 |
BMC-La0.6 | Ba0.4La0.6Mn0.7Cu0.3O3 | 4.0 | 24.0 | 7.1 |
Sample | Hexagonal 2H-BaMnO3 (wt%) | Polytype BaMnO3 (wt%) | Trigonal La0.93MnO3 (wt%) | BaMn2O3 (wt%) | Average Crystal Size (nm) a | Lattice Parameters (Å) b | |
---|---|---|---|---|---|---|---|
a | c | ||||||
BMC | - | 100 | - | 30.7 | 5.8 | 4.3 | |
BMC-La0.1 | 4 | 86 | - | 10 | 18.6 | 5.7 | 4.3 |
BMC-La0.3 | 1 | 47 | 52 | - | 21.9 | 5.5 | 13.3 |
BMC-La0.6 | 7 | 12 | 81 | - | 27.6 | 5.5 | 13.3 |
Catalyst | ||||
---|---|---|---|---|
Nominal = 1.5 | Nominal = 0.15 | |||
BMC | 0.8 | 1.3 | 0.09 | 2.2 |
BMC-La0.1 | 0.9 | 1.1 | 0.10 | 4.7 |
BMC-La0.3 | 0.9 | 0.8 | 0.11 | 9.9 |
BMC-La0.6 | 0.9 | 0.7 | 0.13 | 11.9 |
Sample | 1% O2/He | 100% He | ||
---|---|---|---|---|
SCO2 (%) | T50% (°C) | T10% (°C) | T10% (°C) | |
Soot (uncatalyzed) | 44 | 714 | 631 | - |
BM | 73 | 710 | 590 | 813 |
BM-Ce0.1 | 90 | 641 | 548 | 772 |
BM-Ce0.3 | 42 | 712 | 597 | 730 |
BM-Ce0.6 | 32 | 728 | 622 | 730 |
Catalysts | 1% O2/He | 100% He | ||
---|---|---|---|---|
SCO2 (%) | T50% (°C) | T10% (°C) | T10% (°C) | |
Uncatalyzed | 44 | 714 | 631 | - |
BMC | 70 | 709 | 599 | 879 |
BMC-La0.1 | 94 | 671 | 588 | 611 |
BMC-La0.3 | 41 | 689 | 593 | 869 |
BMC-La0.6 | 61 | 671 | 585 | 829 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghezali, N.; Díaz-Verde, Á.; Illán-Gómez, M.J. Optimizing the Catalytic Performance of Ba1−xCexMnO3 and Ba1−xLaxCu0.3Mn0.7O3 Perovskites for Soot Oxidation in Simulated GDI Exhaust Conditions. Molecules 2024, 29, 3190. https://doi.org/10.3390/molecules29133190
Ghezali N, Díaz-Verde Á, Illán-Gómez MJ. Optimizing the Catalytic Performance of Ba1−xCexMnO3 and Ba1−xLaxCu0.3Mn0.7O3 Perovskites for Soot Oxidation in Simulated GDI Exhaust Conditions. Molecules. 2024; 29(13):3190. https://doi.org/10.3390/molecules29133190
Chicago/Turabian StyleGhezali, Nawel, Álvaro Díaz-Verde, and María José Illán-Gómez. 2024. "Optimizing the Catalytic Performance of Ba1−xCexMnO3 and Ba1−xLaxCu0.3Mn0.7O3 Perovskites for Soot Oxidation in Simulated GDI Exhaust Conditions" Molecules 29, no. 13: 3190. https://doi.org/10.3390/molecules29133190
APA StyleGhezali, N., Díaz-Verde, Á., & Illán-Gómez, M. J. (2024). Optimizing the Catalytic Performance of Ba1−xCexMnO3 and Ba1−xLaxCu0.3Mn0.7O3 Perovskites for Soot Oxidation in Simulated GDI Exhaust Conditions. Molecules, 29(13), 3190. https://doi.org/10.3390/molecules29133190