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Abstract: The composite photocatalyst FeOOH/g-C3N4 was prepared through thermal polycon-
densation and co-precipitation methods, followed by XRD, SEM and UV-vis characterization. The
stability of FeOOH/g-C3N4 was explored by the recycling test. The active species in the reaction
system were investigated by the capture experiment. The results indicated that the optimal prepara-
tion condition for g-C3N4 involved calcination at 600 ◦C for 4 h. XRD analysis revealed that g-C3N4

exhibits a high-purity phase, and Fe in FeOOH/g-C3N4 exists in a highly dispersed amorphous state.
SEM analysis showed that FeOOH/g-C3N4 has a rough surface with an irregular layered structure.
Element composition analysis confirmed that the content of elements in the prepared catalyst is
consistent with the theoretical calculation. FeOOH/g-C3N4 possesses the largest specific surface area
of 143.2 m2/g and a suitable pore distribution. UV-vis DRS analysis showed that the absorption
intensity of FeOOH/g-C3N4 is stronger than that of g-C3N4. When the catalyst dosage was 1.0 g/L,
the H2O2 dosage was 4 mmol/L, the PNP initial concentration was 10 mg/L and the initial pH value
was 5, the PNP removal could reach 92% in 120 min. Even after 5 cycles, the efficiency of PNP removal
by FeOOH/g-C3N4 remains nearly 80%. The capture experiment indicated that both •OH and •O2

−

play roles in the photocatalytic degradation of PNP, with •OH being more significant. These find-
ings affirm that FeOOH has been successfully incorporated into g-C3N4, resulting in a conspicuous
catalytic effect on the degradation of PNP in the visible light-assisted Fenton-like reaction.

Keywords: FeOOH/g-C3N4; photo-Fenton-like; visible light; PNP

1. Introduction

Advanced oxidation processes (AOPs) have valuable practical applications because of
their strong mineralization ability, fast reaction speed, easy operation and simple process
and equipment [1]. What is more, Fenton-like advanced oxidation processes have been
widely used due to their advantages of high natural abundance, cost-effectiveness, low
toxicity and environmental friendliness [2–5]. This process has been proven to be efficient
in the degradation of organics with iron-based multiphase catalysts such as Fe3O4 and α-
FeOOH in wastewater [6,7]. Among them, hydroxyl iron oxide (FeOOH) has the advantages
of stable chemical properties, high specific surface area, wide pH range and controllable
iron solution, which has been reported in many studies [8–12].

Traditional semiconductor photocatalysts, such as TiO2- [13,14] and ZnO-based [15,16]
catalytic materials, have high photocatalytic activity. However, they have a low utilization
ratio of sunlight in the reaction process because they had wide band gaps and can only
respond to UV energy, which is less than 5% of the total energy of sunlight. As a metal-
free semiconductor with a layered structure, g-C3N4 has a band gap of about 2.7 eV and
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a strong visible light-absorption capacity [17]. Since its discovery in 2009, g-C3N4 has
gradually become a research hotspot [18]. However, g-C3N4 has a narrow band gap and
photogenerated electron–hole pairs are easy to recombine, which limits its application in
the field of photocatalysis [19,20]. Introducing element doping [21,22] and heterojunction
construction [23,24] can make the catalyst structure form defects, which can act as a trap
for photogenerated electrons and promote the separation of photoexcited carriers [25].
Simultaneously, impurity energy levels can be generated in the energy gap to change the
band gap structure of semiconductor materials, so as to improve the redox ability of the
valence band (VB) and conduction band (CB), making the band gap structure more suitable
for photocatalytic reaction [26,27]. FeOOH, with the advantages of a narrow band gap and
a broad visible absorption region, has been used for coupling with other semiconductors for
applications such as direct photocatalytic degradation of organic matter [28]. In addition,
the band gap of amorphous FeOOH is much smaller than that of the corresponding
crystalline materials, which results in a broader visible absorption region and excellent
photocatalytic performance [29]. However, there are few reports on amorphous FeOOH as
a photocatalyst modifier.

P-nitrophenol (PNP) usually exists in sewage, natural water bodies and soil. It can
enter the human body through oral, respiratory and skin contact. Additionally, PNP has the
potential to accumulate in animal and human bodies through the food chain. PNP structure
is relatively stable and widely used as a raw chemical material, such as medicine, dyes
and pesticides [30]. Due to the presence of nitro in its molecular structure, it is difficult to
biodegrade in nature, so it is extremely stable in the environment [31]. Prolonged exposure
to drinking water contaminated with PNP may lead to adverse health effects, including
dizziness, memory loss and neurological diseases [32]. Therefore, it is very important to
remove PNP from water by efficient and cost-effective means. Many researchers have
focused on the development of novel catalysts with high degradation efficiency for PNP.

Based on the above research basis, FeOOH/g-C3N4 composite visible light catalyst
was prepared by thermal polycondensation and co-precipitation method in this project.
With PNP in water as the main target pollutant, the photo-assisted Fenton oxidation system
was established to study the visible light catalytic performance, and the mechanism of
FeOOH/g-C3N4 visible light catalytic on the degradation of PNP was discussed.

2. Experimental
2.1. Materials

All reagents used in the experiment are analytically pure, including urea, ferric chlo-
ride hexahydrate, ammonium bicarbonate, anhydrous ethanol, sodium hydroxide, hy-
drochloric acid (Xilong Scientific Co., Ltd., Shantou, China), 30% hydrogen peroxide
(Tianjin Continental Chemical Reagent Factory, Tianjin, China), etc.

2.2. Preparation of FeOOH/g-C3N4

Preparation of g-C3N4: 10 g of urea was put into a crucible, which was then fully
covered and wrapped with aluminum foil. Subsequently, the crucible was placed in a
muffle furnace. The initial temperature was set at 20 ◦C. The crucible was heated to different
preset temperatures and was maintained at each temperature for 4 h, and then cooled to
room temperature.

The preparation of FeOOH/g-C3N4: 0.3 g of g-C3N4 was taken into 40 mL anhydrous
ethanol, and subjected to ultrasonic treatment (Type KQ5200B ultrasonic cleaner, Kunshan
ultrasonic instrument Co., Ltd., Shanghai, China) for 1 h. Subsequently, 0.39 g of FeCl3·6H2O
was added with ultrasonic treatment for 10 min. Following this, 0.343 g of NH4HCO3 was
added, and then the mixture underwent magnetic stirring for 8 h. The resulting mixture was
subjected to centrifugal washing three times and then dried at 50 ◦C. The resulting catalyst
is denoted as x-FeOOH/g-C3N4 (x represents the mass fraction of FeOOH). As a control,
pure FeOOH without g-C3N4 was synthesized in the same procedure.
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2.3. Characterization

Phase analysis of the catalyst was carried out by X-ray diffraction (XRD, D/Max-RB).
The micromorphology of the catalyst was analyzed by scanning electron microscope (SEM,
Sigma 500, Sigma America, Ronkonkoma, NY, USA). The X-ray energy dispersive spec-
trometer (EDS) was used to analyze the composition of elements in the micro-structure
of catalysts. The Brunauer–Emmett–Teller method (BET, ASAP2460, Micromeritics, Nor-
cross, GA, USA) was used to analyze the specific surface area and pore distribution of
the catalysts. Ultraviolet-visible diffuse reflection spectroscopy (UV–Vis DRS, Lambda
950, PerkinElmer, Waltham, MA, USA) was applied to probe the optical performance of
the catalysts.

2.4. Experimental Procedures

The reaction device used in the photocatalytic degradation experiment is shown in
Figure 1. The optimization of single photocatalyst preparation conditions was achieved
by assessing RhB removal. A 0.25 g amount of photocatalysts and 250 mL of RhB solution
(10 mg/L) were placed in a photocatalytic reactor and stirred for 30 min under dark
conditions to reach an equilibrium of adsorption and desorption. Then, a 500 W xenon
lamp (type GXH500 long arc xenon lamp, Shanghai Jiguang Special Lighting electric
appliance factory, Shanghai, China) was turned on to radiate the reaction system. Samples
of the reaction solution (2–3 mL) were taken out every 30 min, and the clear solution
was filtered out through a 0.22 µm membrane. The optimization of composite catalyst-
preparation conditions was conducted using PNP as the target pollutant, and the effects of
different degradation processes were analyzed using the same method as described above.
In addition, 3 mmol/L H2O2 was added immediately after the light source was turned on
to construct the photo-Fenton system, and the concentration of the PNP in the reaction
solution was determined at 400 nm at different time intervals.
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After the photocatalytic degradation experiment was completed, the remaining reac-
tion liquid was centrifuged in a centrifugal tube to separate solids, washed with deionized
water and anhydrous ethanol, and dried for later use. The recovered catalyst was reused in
the photocatalytic degradation experiment.

2.5. Analytical Methods

UV-vis (Type 722N visible spectrophotometer, Shanghai Yuanxi Instrument Co., Ltd.,
Shanghai, China) was used to determine the concentration of target pollutants in the
reaction solution, and the RhB maximum absorption wavelength of 554 nm.

Isopropanol (IPA), ethylenediamine tetraacetic acid disodium (EDTA-2Na) and p-
benzoquinone (BQ) were selected as the capture agents of •OH, h+ and•O2

−, respectively.
The experimental procedure was the same as in Section 2.4. After the system reached the
adsorption and desorption equilibrium, a certain amount of the aforementioned trapping
agent is added into the system to continue the photocatalytic degradation experiment.
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3. Results and Discussion
3.1. Evaluation of FeOOH/g-C3N4 Catalytic Performance in Different Preparation Conditions

Figure 2a shows the effect of calcination temperature on the photocatalytic degradation
of RhB by g-C3N4. The results show that the degradation rate of RhB was about 95% when
the calcination temperature was 600 ◦C. This result is because the C/N ratio of g-C3N4
increases with the increase in temperature, and the band gap decreases according to other
references [33,34]. Generally, the narrower the band gap, the larger the corresponding light
absorption range. But an excessively narrow band gap may facilitate the recombination
of photogenerated electron–hole pairs, resulting in low light quantum utilization and a
weakened redox capacity. The catalyst prepared at 600 ◦C may combine these two effects
to achieve the most suitable catalytic performance. Therefore, 600 ◦C was chosen as the
optimal calcination temperature.
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Figure 2. Effect of (a) calcination temperature and (b) calcination time on photocatalytic degradation
of RhB by g-C3N4.

As shown in Figure 2b, the degradation efficiency of RhB was about 95% when the
calcination time was 4 h. This phenomenon can be attributed to the increase in the specific
surface area and pore volume of g-C3N4 with prolonged calcination time [35]. However,
once the calcination time surpasses a certain threshold, the structure tends to stabilize,
leading to no significant alteration in the photocatalytic capability of g-C3N4. Therefore,
4 h was chosen as the optimal calcination time.

The FeOOH/g-C3N4 photocatalyst prepared with different mass fractions of FeOOH
was used in photocatalytic degradation of PNP for 120 min. The total removal was calcu-
lated and the dark adsorption curve was plotted with the results illustrated in Figure 3a,b.
Figure 3a shows that the prepared 0.3FeOOH/g-C3N4 composite photocatalyst has the
highest efficiency in PNP degradation, achieving a degradation rate of approximately 82%
under visible light for 120 min. This may be because a mass fraction of 0.3FeOOH is the
ideal doping amount, resulting in the optimal specific surface area and pore size, thereby
enhancing photocatalytic efficacy. Figure 3b shows that all three photocatalysts can reach
adsorption equilibrium after a dark reaction for 30 min. Notably, the 0.3FeOOH/g-C3N4
photocatalyst exhibits the highest adsorption capacity for PNP, with an adsorption ratio
of 7.6% after 30 min. This heightened adsorption is likely due to its high specific surface
area. In the photocatalytic system, catalysts with large specific surface areas can adsorb
more target pollutants, which is conducive to the subsequent photocatalytic reaction. Thus,
FeOOH doping enhances the PNP degradation rate of g-C3N4, and 0.3FeOOH/g-C3N4
demonstrates superior photocatalytic performance. Therefore, the 0.3FeOOH/g-C3N4
composite photocatalyst was used in subsequent photocatalytic performance tests and the
influence of experimental parameters was assessed.
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In conclusion, the optimal preparation conditions of g-C3N4 were calcination at 600 ◦C
for 4 h. Similarly, for the FeOOH/g-C3N4 composite photocatalyst, the optimal conditions
were determined by adding FeOOH with a mass fraction of 0.3.

3.2. Characterizations of FeOOH/g-C3N4
3.2.1. Crystal Structure Analysis

XRD was used to characterize the crystal structure of the catalysis. As shown in
Figure 4, there are two distinct characteristic peaks located at 12.8◦ and 27.2◦, which belong
to the (100) and (002) surfaces of g-C3N4, respectively, indicating that g-C3N4 has a high
purity phase (JCPDS No. 87-1526). There is no obvious FeOOH diffraction peak in the
figure for FeOOH/g-C3N4 and FeOOH, which may be due to the synthesized FeOOH
being amorphous.
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EDS analysis was performed on the sample of the 0.3FeOOH/g-C3N4 photocatalyst,
and the results are shown in Figure 5. The results show that the prepared catalyst con-
tains 41.9% N, 30.9% C, 15.2% O and 7.0% Fe, which is consistent with the theoretical
calculation results.
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Figure 5. EDS diagram of FeOOH/g-C3N4.

3.2.2. Microtopography Analysis

Figure 6 displays the SEM microscopic morphology analysis results. The sample
of g-C3N4 presents an irregular layered structure, which corresponds to the traditional
two-dimensional layered structure of g-C3N4. The nanosheets in g-C3N4 have a smooth
surface, while the FeOOH/g-C3N4 composite photocatalyst has a rough surface. This can be
attributed to the generation of granular FeOOH during the co-precipitation process, which
uniformly adheres to the surface of g-C3N4. This phenomenon contributes to an increase in
the specific surface area, enhancing the number of active sites on the catalyst surface.
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3.2.3. Analysis of Specific Surface Area and Aperture Structure

Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) methods were used
to analyze the specific surface area and pore distribution of the prepared photocatalysts,
respectively, with the results shown in Figure 7. As can be seen from Figure 7a, N2 adsorption–
desorption isotherms of g-C3N4 and FeOOH/g-C3N4 samples are consistent with the hys-
teresis characteristic curves of mesoporous materials with a type IV isotherm and a type H3
adsorption hysteresis loop in the high P/P0 range. This aligns with the pore size distribution
curve in Figure 7b, indicating a mesoporous structure in the catalysts. This indicates that
the introduction of FeOOH has no significant effect on pore structure. BET model analysis
showed that the specific surface areas of FeOOH, g-C3N4 and FeOOH/g-C3N4 were 62.5, 96.9
and 143.2 m2/g, respectively. The composite catalyst demonstrated a substantial increase
in specific surface area compared to individual FeOOH and g-C3N4. According to the BJH
model, the average pore sizes of FeOOH, g-C3N4 and FeOOH/g-C3N4 were 3.406, 3.053 and
3.823 nm, respectively, with corresponding pore volumes of 0.086, 0.214 and 0.849 cm3/g.
Higher specific surface area enhances adsorption capacity, while a rich pore structure exposes
more active sites, thereby improving catalytic activity. In summary, FeOOH/g-C3N4 with its
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largest specific surface area and suitable pore distribution combines the advantages of the two
single catalysts, exhibiting significant photocatalytic potential.
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3.2.4. Optical Property Analysis

The optical properties of the prepared FeOOH/g-C3N4 photocatalyst were analyzed
by UV-Vis DRS. As shown in Figure 8a, both g-C3N4 and FeOOH/g-C3N4 can absorb
visible light. The absorption edge of pure g-C3N4 is about 430 nm, while that of FeOOH/g-
C3N4 is extended to about 480 nm, which means it red-shifted and has a wide range; thus,
the absorption intensity is strengthened. This indicates that the prepared FeOOH/g-C3N4
photocatalyst demonstrates efficient utilization of visible light. For semiconductor materials,
the band gap (Eg) is calculated as αhν = A(hν− Eg)n/2, where α is the absorption coefficient,
h is Planck’s constant, ν is the optical frequency, and A is a constant. n value is determined
by the type of semiconductor leap. Since g-C3N4 is an indirect semiconductor, n is taken as 4,
while FeOOH is a direct semiconductor, so n is 1. Figure 8b,c display band gaps of 2.53 eV
and 1.90 eV for g-C3N4 and FeOOH, respectively. The charge transportation between
the FeOOH/g-C3N4 heterojunction follows a Z-scheme according to references [36,37].
Hence, electron–hole (e−-h+) pairs were generated on the surface of FeOOH and g-C3N4
photocatalysts under visible light irradiation. Briefly, the electrons are excited into the CB
while the holes remain in the VB. Due to the formation of a heterojunction, the FeOOH
holes migrate downward. Conversely, the electrons of g-C3N4 will migrate to the more
positively charged CB of FeOOH. As a result, the electrons gather on the CB of FeOOH and
the holes gather on the VB of g-C3N4 for the purpose of photogenerated charge separation.
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3.3. Catalytic Performance of Different Degradation Processes

The degradation effects of PNP under different degradation processes were analyzed
and measured, as shown in Figure 9. As can be seen from the figure, the removal of PNP by
light alone is only about 10%, because the structure of PNP is stable under visible light and
is difficult to degrade through this process. The addition of H2O2 to this system enhances
the removal of PNP to approximately 43%, indicating that H2O2 has a certain oxidation
effect, but cannot reach the ideal efficiency, because the amount of •OH generated by
H2O2 decomposition under light is still small, thus the oxidation effect on PNP is limited.
Based on light, H2O2 and FeOOH/g-C3N4, the removal of PNP sharply rises to about
82%, indicating that most organic matter can be rapidly oxidized and decomposed. This
indicates that FeOOH/g-C3N4 has an obvious effect on PNP degradation in the photo-
Fenton-like reaction system. The catalytic performance of FeOOH/g-C3N4 under visible
light, combined with the strong oxidation of the Fenton system, achieves an ideal synergistic
effect in PNP degradation.
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Figure 9. Effects of different degradation processes on PNP treatment.

3.4. Effect of Reaction Conditions on the Decomposition of PNP
3.4.1. Effect of H2O2 Dosage

A 1.0 g/L FeOOH/g-C3N4 photocatalyst was placed into a 250 mL PNP solution
with a concentration of 10 mg/L. The system underwent dark adsorption for 30 min
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until the adsorption equilibrium was reached, and then different concentrations of H2O2
(2 mmol/L, 3 mmol/L, 4 mmol/L, 5 mmol/L) were added. The influence of catalyst dosage
on PNP degradation was studied under simulated visible light radiation for 120 min. The
degradation curve is shown in Figure 10a. The pseudo-first-order reaction kinetics was
fitted, with the results shown in Figure 10b and Table 1.
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Figure 10. Effect of H2O2 concentration on PNP degradation efficiency: (a) photocatalytic degradation
curve and (b) quasi-first-order kinetic fitting curve of photocatalytic reaction.

Table 1. Effect of H2O2 dosage on PNP degradation: quasi-first order kinetic analysis.

H2O2 Dosage
(mmol L−1) Kinetic Equation Speed Constant k

(min−1) R2

2.0 y = 0.00863x 0.00863 0.99412
3.0 y = 0.0145x 0.0145 0.99379
4.0 y = 0.01992x 0.01992 0.99543
5.0 y = 0.02161x 0.02161 0.99293

As shown in Figure 10a, the degradation rate of PNP in the reaction increases with the
increase in H2O2 dosage. However, when the concentration increases above 4 mmol/L, the
PNP removal exhibits marginal improvement, which is mainly because excessive H2O2 will
capture •OH instead and increase side reactions in the system. As a result, the utilization
rate of •OH in the system is reduced, which affects the effect of PNP removal. Thus, the
optimal concentration is identified as 4 mmol/L. Figure 10b and Table 1 show that the
photocatalytic reaction rate enhanced with the increase in H2O2 dosage, and the pseudo-
first-order reaction rate constant is the maximum and remains nearly the same at 4 mmol/L
and 5 mmol/L. Therefore, the optimal dosage of 4 mmol/L is selected for further study on
the influence of photocatalytic parameters.

3.4.2. Effect of Catalyst Dosage

The influence of catalyst dosage on PNP degradation was studied with various dosages
of FeOOH/g-C3N4 catalyst (0.6 g/L, 0.8 g/L, 1.0 g/L and 1.2 g/L), and other conditions
were the same as in Section 3.4.1. The degradation curves are shown in Figure 11a. The
quasi-first-order reaction kinetics was fitted, and the results are shown in Figure 11b and
Table 2.

As shown in Figure 11a, when the dosage of the catalyst increased from 0.6 g/L
to 1.0 g/L, the degradation rate of PNP also increased. This is mainly attributed to the
enlarged number of active sites on the catalyst surface and the increased concentration of
Fe3+. For the constant amount of pollutants, the enhanced catalyst dosage leads to more
significant participation of PNP in catalytic oxidation reactions, consequently improving its
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degradation rate. However, when the dosage of the catalyst continues to increase to 1.2 g/L,
the removal rate decreases. The reason is that the excessive catalyst amount could lead to a
decrease in light transmittance in the reaction system, thus resulting in insufficient light
intensity and inhibitory effects on the photocatalytic effect. When the dosage is 1.0 g/L,
the degradation rate of PNP is up to 91% after 120 min. Figure 11b and Table 2 show
that a higher dosage of catalyst results in an increased photocatalytic reaction rate with
the maximum quasi-first-order reaction rate constant at 1.0 g/L. Therefore, the optimal
FeOOH/g-C3N4 dosage of 1.0 g/L is selected to proceed with the subsequent investigation
of the influence of photocatalytic parameters.
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Figure 11. Effect of catalyst dosage on PNP degradation efficiency: (a) photocatalytic degradation
curve and (b) quasi-first-order kinetic fitting curve of photocatalytic reaction.

Table 2. Effect of catalyst dosage on PNP degradation: quasi-first order kinetic analysis.

Catalyst Dosage
(mg L−1) Kinetic Equation Speed Constant k

(min−1) R2

0.6 y = 0.00616x 0.00616 0.99924
0.8 y = 0.00952x 0.00952 0.99085
1.0 y = 0.01992x 0.01992 0.99543
1.2 y = 0.01674x 0.01674 0.99574

3.4.3. Effect of Initial pH Value

NaOH and HCl solution were used to adjust the initial pH value of the reaction
system to 3, 5, 7, 9, and other conditions were the same as in Section 3.4.1. The influence
of the initial pH value on the degradation of PNP was studied. Figure 12a illustrates the
degradation curves. The quasi-first-order reaction kinetics was fitted, and the results are
shown in Figure 12b and Table 3.

In Figure 12a, the initial pH value greatly affects the PNP removal, showing a gradual
decrease with rising pH value. This indicates that the system has better catalytic activity in
an acidic environment, which is the same as the conclusion of other studies in the general
heterogeneous Fenton system. Under acidic conditions, Fe3+ can participate in the reaction
in the form of ions without facile hydrolysis, increasing the utilization rate of •OH in
the system, thus improving the PNP removal. In addition, under acidic conditions, H+

can promote the decomposition of H2O2 to produce •OH, which improves the ability of
catalytic oxidation of organic pollutants. Conversely, under alkaline conditions, Fe3+ is
prone to hydrolysis, resulting in a decrease in catalytic activity, and H2O2 easily loses
its activity in alkaline conditions, which reduces the generation of •OH and inhibits the
effective degradation of PNP. In addition, it can be seen from the figure that when the pH
value is 3 and 5, the final PNP removal is relatively close, which can reach more than 92%.
Given the cost-effectiveness and proximity to typical water pH, the optimal pH value of 5 is
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selected for this experiment. As shown in Figure 12b and Table 3, different initial pH values
in reaction systems exhibit a consistent trend in influencing the photocatalytic reaction rate.
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Figure 12. Effect of initial pH value of the reaction system on PNP degradation efficiency: (a) photo-
catalytic degradation curve and (b) quasi-first-order kinetic fitting curve of photocatalytic reaction.

Table 3. Effect of initial pH on PNP degradation: quasi-first order kinetic analysis.

Initial pH Value Kinetic Equation Kinetic Equation k (min−1) R2

3 y = 0.02469x 0.02469 0.99628
5 y = 0.02079x 0.02079 0.99916
7 y = 0.01441x 0.01441 0.99292
9 y = 0.01098x 0.01098 0.9901

3.4.4. Effect of PNP Initial Concentration

The concentration of PNP solution was different (5 mg/L, 10 mg/L, 15 mg/L and
20 mg/L), and other conditions were the same as in Section 3.4.1. The effect of the initial
concentration of target substance PNP on its degradation was studied. The degradation
curve is illustrated in Figure 13a. The quasi-first-order reaction kinetics was fitted, and the
results are shown in Figure 13b and Table 4. As shown in Figure 13a, the total degradation
rate decreases with the increase in the initial concentration of PNP. When the concentration
of PNP is 5 mg/L, the removal is close to 98% at 120 min, but when the concentration
increases to 20 mg/L, the removal rate is only about 63% at 120 min. This is because in
high concentrations of PNP, more intermediate products are produced in the photocatalytic
reaction process, and these substances will also react with •OH. At the same time, when the
dosage of the catalyst is fixed, the number of active sites provided and the number of active
groups that can participate in the photocatalytic reaction are limited, which also limits the
number of PNP molecules that can participate in the photocatalytic reaction. Therefore,
when the concentration of PNP increases, the limited catalyst cannot provide enough
reaction sites, and the overall degradation rate will decrease correspondingly. Figure 13b
and Table 4 further demonstrate that the photocatalytic reaction rate also decreases with
the gradual increase in the initial concentration of PNP.

Table 4. Effects of PNP initial concentration on its degradation: quasi-first order kinetic analysis.

Initial Conc. of PNP
(mg L−1) Kinetic Equation Kinetic Equation k

(min−1) R2

5 y = 0.02712x 0.02712 0.99774
10 y = 0.02079x 0.02079 0.99916
15 y = 0.01011x 0.01011 0.99701
20 y = 0.00781x 0.00781 0.99443
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Figure 13. Effect of initial concentration of PNP on its degradation efficiency: (a) photocatalytic
degradation curve and (b) quasi-first-order kinetic fitting curve of photocatalytic reaction.

3.4.5. Stability of FeOOH/g-C3N4

The FeOOH/g-C3N4 involved in the photocatalytic reaction was centrifuged, washed,
recovered and dried, and its visible light catalytic performance for PNP was tested again to
evaluate its recycling performance. As shown in Figure 14, the degradation rate of PNP by
FeOOH/g-C3N4 was nearly 80% even when it was reused five times, which indicates that
the FeOOH/g-C3N4 photocatalyst prepared in this paper has better recycling performance
and good stability.
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Figure 14. Recycling test of FeOOH/g-C3N4 photocatalyst for PNP degradation.

3.5. Identification of Active Species in the Photo-Fenton-like Process

In the process of photocatalytic degradation, three active substances, namely •OH,
h+ and •O2

−, typically play crucial roles. In this paper, isopropyl alcohol (IPA), EDTA-
2Na and p-benzoquinone (BQ) were selected as the capture agents of •OH, h+ and •O2

−,
respectively. The effect of PNP degradation in each capture experiment was compared
with a system without adding a capture agent. The results are illustrated in Figure 15.
The degradation rate of PNP is 92% when there is no trapping agent in the system. When
the capture agent EDTA-2Na was added to the system, the degradation rate of PNP was
unchanged, indicating that there is no significant role of h+ in the photocatalytic system.
The degradation rate of PNP decreased significantly with the addition of IPA and BQ, and
the inhibition effect of IPA was greater. Therefore, the capture experiment showed that
both •OH and •O2

− in the FeOOH/g-C3N4 photo-Fenton-like system played roles in PNP
degradation, with •OH having a more significant impact.
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3.6. Comparison with Other Results about Modification of g-C3N4

The comparison of photocatalytic efficiency of other modified g-C3N4 is shown in
Table 5. It can be seen that g-C3N4 is commonly modified by non-metals, metals and
their oxides. The catalyst used in this experiment has a great advantage in time and
degradation rate.

Table 5. Comparison of degradation results of organic pollutants by different catalysts.

Catalysts Target Pollutant Light Sources Degradation Time
(min)

Degradation Rate
(%) Refs

Al2O3/g-C3N4 RhB 300 W Xe lamp 120 83 [38]
ZnO/g-C3N4 MO 150 W Xe lamp 300 65 [39]

O-g-C3N4 Cr(VI) 300 W Xe lamp 60 80 [40]
α-Fe2O3/g-C3N4 Cr(VI) 300 W Xe lamp 150 98 [41]

TiO2/g-C3N4 RhB 300 W Xe lamp 180 80 [42]
FeOOH/g-C3N4 brilliant blue 500 W Xe lamp 30 99 Present work

4. Conclusions

In summary, FeOOH/g-C3N4 was successfully prepared by thermal polycondensation
and coprecipitation, serving as a highly effective heterogeneous Fenton photocatalyst for
the removal of PNP from water. The optimum preparation conditions were obtained as
follows: g-C3N4 calcined at 600 ◦C for 4 h, with a mass fraction of FeOOH of 0.3. Single-
factor experiments were conducted to establish the optimal process conditions for PNP
degradation: H2O2 dosage of 4 mmol/L, catalyst dosage of 1 g/L, PNP initial concentration
of 10 mg/L and pH value of 5. Under these conditions, the degradation efficiency of PNP
by FeOOH/g-C3N4 reaches 92% within 120 min. Characterization techniques including
SEM, XRD and UV-vis proved that FeOOH was successfully loaded on the surface of
g-C3N4 without affecting the crystal structure of g-C3N4. After five cycles of photocatalytic
degradation of PNP by FeOOH/g-C3N4, the degradation efficiency remained nearly 80%,
which proves that the FeOOH/g-C3N4 photocatalyst prepared in this paper has good
recycling and stability. Moreover, capture experiments revealed that both •OH and •O2

−

play roles in the photocatalytic degradation of PNP by FeOOH/g-C3N4, while •OH plays
a more significant role.
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