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Abstract: The progressive decline of the coal industry necessitates the development of effective
treatment solutions for acid mine drainage (AMD), which is characterized by high acidity and el-
evated concentrations of heavy metals. This study proposes an innovative approach leveraging
sulfate-reducing bacteria (SRB) acclimated to contaminated anaerobic environments. The research
focused on elucidating the physiological characteristics and optimal growth conditions of SRB,
particularly in relation to the pH level and temperature. The experimental findings reveal that
the SRB exhibited a sulfate removal rate of 88.86% at an optimal temperature of 30 ◦C. Addition-
ally, SRB gel particles were formulated using sodium alginate (SA) and carboxymethyl cellulose
(CMC), and their performance was assessed under specific conditions (pH = 6, C/S = 1.5, T = 30 ◦C,
CMC = 4.5%, BSNa = 0.4 mol/L, and cross-linking time = 9 h). Under these conditions, the SRB gel
particles demonstrated an enhanced sulfate removal efficiency of 91.6%. Thermal analysis via differ-
ential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) provided further insights
into the stability and properties of the SRB gel spheres. The findings underscore the potential of SRB-
based bioremediation as a sustainable and efficient method for AMD treatment, offering a novel and
environmentally friendly solution to mitigating the adverse effects of environmental contamination.

Keywords: acid mine drainage; sulfate reducing bacteria; sulfate root removal rate; gel particles

1. Introduction

In addition to the decline in the coal industry’s backward production capacity, a
significant number of coal mines have closed. The closure of coal mines has resulted in
a number of environmental issues, with acid mine drainage (AMD) being a significant
concern [1–3]. It is imperative that the issue of effective management of AMD be addressed
with the utmost urgency.

AMD is characterized by strong acidity, high hardness, and a high concentration of
heavy metals [4–6]. Such contamination will not only affect surface water quality but will
also have an impact on groundwater resources. As a consequence of the substantial influx
of groundwater into the goaf water, precious water resources are transformed into mine
wastewater, thereby resulting in a significant waste of groundwater resources [7–9].

Sulfate-reducing bacteria (SRB) are a class of anaerobic microorganisms that metabolize
by using sulfate (SO4

2−) as an electron acceptor. These bacteria are able to survive in anoxic
or anaerobic environments and obtain energy by reducing sulfate to hydrogen sulfide
(H2S). The wide distribution of sulfate-reducing bacteria in nature and their ecological
and industrial importance have made them a focus of research. Recent studies have
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demonstrated that sulfate-reducing bacteria (SRB) can effectively treat acid mine water
through inoculation, with the resulting treatment being referred to as AMD [10–16]. In the
absence of oxygen, SRB reduce the sulfate in AMD to hydrogen sulfide, thereby reducing
the sulfate content. Hydrogen sulfide continues to react with the metal ions in wastewater
to form metal sulfide precipitation, which then removes the metal ions in AMD while
producing alkaline substances to increase the pH level [17–20]. The creation of an optimal
microenvironment for SRB and the immobilization of SRB gel particles are beneficial for
enhancing the efficacy and stability of the treatment process [21–23].

In this study, wastewater samples from an area affected by AMD and the pretreat-
ment process were collected. These samples were then used for the enrichment, culture,
separation, and screening of SRB. A highly efficient strain was developed for the treatment
of sulfate in AMD. Sodium alginate (SA) was employed to immobilize the SRB, while
carboxymethyl cellulose (CMC) was used to enhance the mechanical properties of SA.
This resulted in the formation of SRB gel particles through a cross-linking and embedding
method. Furthermore, the physicochemical properties, electrical conductivity, water loss
rate, and sulfate removal rate of the gel particles were investigated in order to provide
experimental guidance for the advanced treatment of AMD.

2. Results and Discussion

This section may be divided into subheadings. The text should provide a succinct and
accurate account of the experimental outcomes, their interpretation, and the conclusions
that can be drawn from the experiment.

2.1. Preliminary Screening of Sulfate-Reducing Bacteria

The preliminary screening results, as indicated in Table 1 and Figure 1, indicate that
the media of strains 1, 6, 9, and 10 exhibited the fastest blackening, accompanied by a
notable increase in pH at the end of the culture period. This suggests that these four
strains exhibited a pronounced ability to reduce sulfate, and they were therefore selected
for subsequent experiments. The four strains in the aforementioned preliminary screening
were designated as SRB-1, SRB-6, SRB-9, and SRB-10.
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and were unable to utilize glucose. However, they were able to utilize sucrose and lactose.
The strains SRB-1, SRB-6, and SRB-10 exhibited positive results in the gelatin liquefaction
experiment, whereas the strain SRB-9 displayed negative results. The four SRB strains
exhibit similarities with those reported by other scholars with regard to their physiological
and biochemical characteristics.

Table 1. Preliminary screening of SRB strains.

Strain Name Fermentation pH Value Blackening Time of Medium

Strain 1 8.71 27
Strain 2 8.60 40
Strain 3 8.03 50
Strain 4 7.89 48
Strain 5 8.52 48
Strain 6 8.88 24
Strain 7 8.60 29
Strain 8 8.21 42
Strain 9 8.74 25
Strain 10 8.82 26

Table 2. Analysis of physiological and biochemical characteristics of SRB strains after prelimi-
nary screening.

Strain
Name

Gram
Stain

Electron
Receptor

Experiment

Gelatin
Liquification
Experiments

V-P
Test

Sugar Fermentation Experiment Electron Acceptor
Utilization Experiment

Glucose Sucrose Lactose Na2SO4 Sulfur

SRB-1 - + + - - + + + +
SRB-6 - + + - - + + + +
SRB-9 - + - - - + + + +
SRB-10 - + + - - + + + +

+ = Gram-positive or available; - = Gram-negative or unavailable.

2.2. Growth Curve and SO4
2− Reduction Effect of SRB Strain

The results of the experimental investigation into the ability of four strains to remove
SO4

2− are presented in Figure 2. The results demonstrate that SRB-1, SRB-6, SRB-9, and
SRB-10 were capable of reducing SO4

2−. Of these, SRB-6 exhibited the greatest reducing ability,
reducing 88.75% of the SO4

2− in the medium over a 60 h period. The removal rates of SRB-1,
SRB-9, and SRB-10 were 33.56%, 32.69%, and 46.05%, respectively, under the same culture time.Molecules 2024, 29, x FOR PEER REVIEW 4 of 15 
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As illustrated in Figure 3, the growth curves of the four SRB strains were determined
and analyzed following preliminary screening. The removal rate of SO4

2− was also evalu-
ated. It was observed that SRB-6 exhibited the shortest time to enter the logarithmic phase
and demonstrated the most effective removal of SO4

2−. Consequently, strain 6 was selected
for further investigation.
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Figure 3. Growth characteristic curves of different SRB strains: (a) SRB-1; (b) SRB-6; (c) SRB-9; and
(d) SRB-10.

2.3. Analysis of Physical and Chemical Properties of SRB Strains

The cell morphology, cell size, and movement characteristics of SRB-6 were observed
using scanning electron microscopy. The results are shown in Figure 4.

Through analysis of the morphology and growth characteristics of the selected SRB
strains, it was found that the individuals were rod-shaped, singly arranged non-spores,
and the colonies were black.

The rod-shaped morphology and single arrangement of SRB-6 are typical characteris-
tics of many sulfate-reducing bacteria. These morphological features confer an advantage
in terms of motility and interaction with the surrounding environment. The absence of
spore formation indicates that SRB-6 relies on continuous metabolic activity for survival
rather than entering a dormant state, which is a common strategy employed by other
bacterial species to withstand unfavorable conditions.



Molecules 2024, 29, 3217 5 of 14

Molecules 2024, 29, x FOR PEER REVIEW 5 of 15 
 

 

0 20 40 60 80 100

0

1000

2000

3000

4000

5000

6000

7000

co
nc

en
tra

tio
n 

(m
g/

L)

incubation time (h)  

0 20 40 60 80 100

0

1000

2000

3000

4000

5000

6000

co
nc

en
tra

tio
n 

(m
g/

L)

incubation time (h)  
(c) (d) 

Figure 3. Growth characteristic curves of different SRB strains: (a) SRB-1; (b) SRB-6; (c) SRB-9; and 
(d) SRB-10. 

2.3. Analysis of Physical and Chemical Properties of SRB Strains 
The cell morphology, cell size, and movement characteristics of SRB-6 were observed 

using scanning electron microscopy. The results are shown in Figure 4. 

   
Figure 4. Scanning electron microscopy (SEM) images of SRB strains at different magnifications. 

Through analysis of the morphology and growth characteristics of the selected SRB 
strains, it was found that the individuals were rod-shaped, singly arranged non-spores, 
and the colonies were black. 

The rod-shaped morphology and single arrangement of SRB-6 are typical character-
istics of many sulfate-reducing bacteria. These morphological features confer an ad-
vantage in terms of motility and interaction with the surrounding environment. The ab-
sence of spore formation indicates that SRB-6 relies on continuous metabolic activity for 
survival rather than entering a dormant state, which is a common strategy employed by 
other bacterial species to withstand unfavorable conditions. 

The black coloration of the colonies is a consequence of the production of metal sul-
fides as a result of sulfate reduction. When SRB-6 reduces sulfate (SO42−) to sulfide (S2−), 
the sulfide can react with metal ions present in the medium, forming black metal sulfide 
precipitates. This is a common indicator of active sulfate reduction and is frequently em-
ployed as a qualitative measure of SRB activity in cultures. 

Consequently, the observed morphological and growth characteristics are consistent 
with the known metabolic functions of SRB-6, particularly its role in sulfate reduction and 
the subsequent formation of metal sulfide precipitates. These characteristics are funda-
mental to its ecological function and have the potential to be applied in the fields of bio-
remediation and bioenergy production. 

Figure 4. Scanning electron microscopy (SEM) images of SRB strains at different magnifications.

The black coloration of the colonies is a consequence of the production of metal
sulfides as a result of sulfate reduction. When SRB-6 reduces sulfate (SO4

2−) to sulfide
(S2−), the sulfide can react with metal ions present in the medium, forming black metal
sulfide precipitates. This is a common indicator of active sulfate reduction and is frequently
employed as a qualitative measure of SRB activity in cultures.

Consequently, the observed morphological and growth characteristics are consistent
with the known metabolic functions of SRB-6, particularly its role in sulfate reduction
and the subsequent formation of metal sulfide precipitates. These characteristics are
fundamental to its ecological function and have the potential to be applied in the fields of
bioremediation and bioenergy production.

2.4. The Effect of Different pH Values on the Reduction of SO4
2− by an SRB Strain

The results presented in Figure 5 demonstrate that the removal efficiency of SO4
2−

exhibited a pronounced dependence on the pH value. This indicates that the pH value is a
crucial factor in determining the activity of an SRB strain. Both excessively low and high
pH values had a detrimental impact on the activity of the SRB strains, thereby affecting
the reduction of SO4

2−. The results of this experiment demonstrate that when the pH level
was between 6 and 7, the removal rate of SO4

2− was closest to 100%. This indicates that
the SRB-6 strain, which was the subject of this experiment, is most suitable for growth and
activity in a pH range from 6 to 7.
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The optimal pH range for the removal of SO4
2− by SRB-6 was between 6 and 7. This is

due to the fact that the enzymes involved in the sulfate reduction pathway exhibit optimal
catalytic efficiency within this pH range. Furthermore, the stability and integrity of the
bacterial cell membrane, which is essential for nutrient uptake and waste expulsion, were
maintained best at this pH level. The pH range of 6–7 is conducive to the availability and
solubility of essential nutrients and minerals required for bacterial growth and metabolism.
Furthermore, extreme pH levels can result in the accumulation of toxic compounds that
inhibit bacterial growth. Consequently, the pH range of 6–7 minimizes the toxic effects,
thereby creating an optimal environment for SRB activity [24–26].

2.5. The Effect of Different Temperatures on the Reduction of SO4
2− by an SRB Strain

The results of the experimental investigation, presented in Figures 6 and 7, demonstrate
that the temperature exerted a significant influence on the growth and metabolic activity of
microorganisms. The rate of removal of SO4

2− also varied with the temperature. At 5 ◦C,
the metabolic activity of the SRB strain was inhibited, resulting in a reduction in the growth
rate and a significantly diminished removal rate of SO4

2−. In the temperature range of
10–30 ◦C, the growth rate of the strain increased with rising temperatures, resulting in an
increased removal rate of SO4

2−. At 30 ◦C, the SRB strain exhibited the highest removal
efficiency for SO4

2−.
The optimum temperature for SO4

2 removal by SRB-6 was 30 ◦C, because the metabolic
rate of the SRB strains generally increased with the temperature and reached peak effi-
ciency at this point. At 30 ◦C, the enzymes and cellular processes involved in sulphate
reduction operated at their best. In addition, higher temperatures within this optimum
range enhanced essential cellular functions such as nutrient uptake, energy production, and
waste removal, which are critical for sustained metabolic activity. This temperature also
supported faster bacterial growth and proliferation, resulting in higher biomass amounts
capable of reducing more sulphate.

The removal rates of SO4
2− by SRB-6 at 5 ◦C, 10 ◦C, 20 ◦C, and 30 ◦C were 10.21%,

26.34%, 73.11%, and 88.86%, respectively.
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2.6. Research on SRB Gel Particles
2.6.1. Physical and Chemical Characteristic Analysis

The surface of the SRB gel sphere was smooth, black, and bright, exhibiting a granular
structure that is nearly spherical or ellipsoidal (Figure 8). After being stored at 4 ◦C for
8 h, the SRB gel sphere underwent slight deformation due to minor water loss, causing a
slight reduction in volume and a shape that remained close to spherical. Further inspection
revealed that the SRB gel spheres had a diameter of approximately 1.5–2.5 mm and surface
holes and contained elements such as carbon (C), oxygen (O), nitrogen (N), phosphorus (P),
and sulfur (S).
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The authors note that the SRB gel spheres exhibited minor deformation following
storage, yet their reusability is a pivotal consideration for practical applications. For
repeated use, it was essential to assess the structural integrity and functional performance
of the SRB gel spheres through multiple cycles of sulfate reduction and recovery. To ensure
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the reusability of the SRB gel spheres, several factors had to be evaluated. Firstly, the
spheres must maintain their shape and avoid significant degradation or deformation after
each use. Secondly, their sulfate reduction capability must remain consistent across multiple
cycles. Thirdly, the presence of essential elements (C, O, N, P, and S) must not diminish
significantly. Finally, the gel spheres’ ability to retain water and prevent excessive drying
out during storage must be monitored to maintain their structural and functional integrity.

This paper presents the results of DSC-TGA of sulfate-reducing bacteria gel spheres,
as illustrated in Figure 9. The provided DSC-TGA analysis offers valuable insights into the
thermal properties and stability of sulfate-reducing bacteria (SRB) gel spheres. The TGA
curve indicates that the SRB gel spheres maintained their weight stability up to approxi-
mately 100 ◦C, which is indicative of a low moisture content. Between 100 ◦C and 200 ◦C,
slight weight loss accompanied by an endothermic peak in the DSC curve suggests the
release of adsorbed water and low molecular weight volatiles. The most significant thermal
event occurred between 200 ◦C and 400 ◦C, where major weight loss was accompanied by a
pronounced endothermic peak, indicating the thermal degradation of organic components,
including the bacterial biomass and gel matrix. Following decomposition, beyond 400 ◦C,
the weight stabilized, and a minor exothermic peak suggests secondary thermal events
such as recrystallization or further chemical transformations of the residual material. This
comprehensive thermal analysis is essential for understanding the thermal behavior and
stability of SRB gel spheres and demonstrates that this potent SRB gel sphere can slowly
dissolve in an aqueous medium, effectively controlling the growth of any microorganisms
in an aquatic environment.
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2.6.2. Conductivity

According to the above results (Figure 10), the conductivity of the SRB gel balls first
increased and the decreased with the increase in CMC density, and when the CMC density
was 4.5%, the conductivity value reached its maximum (2.563 × 10−4 s/cm). When the
concentration of CMC was low, the network structure formed by the gel balls was loose
and sparse, which is not conducive to the attachment of PAn, thus making it difficult to
form a conductive channel. Consequently, the gel balls exhibited low conductivity. When
the CMC density was high, a coordinated reaction between the CMC and Fe3+ in the gel
balls would occur, resulting in blockage of the channel and hindering the entry of PAn,
thereby reducing the conductivity.
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The results presented in Figure 11 demonstrate that the macromolecules in the gel balls
intertwined with each other to form a uniform and fine pore structure. As the concentration
of BSNa increased, the cross-linked network exhibited a tendency towards greater density.
Following the analysis of the rate of sulfate removal by the gel balls at varying densities
of BSNa, it was determined that at a BSNa density of 0.4 mol/L, the highest conductivity
was 5.62 × 10−3 s/cm. However, an excessively high density of BSNa may result in
damage to the structure of PAn, potentially leading to a reduction in conductivity due to
the non-conductive nature of BSNa.
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2.6.3. Water Loss Rate and Cross-Linking Time

The results demonstrate that an increase in CMC density was associated with a
reduction in the water loss rate of the SRB gel balls. This occurred primarily within the first
hour following the cross-linking process (Figure 12). The experimental results demonstrate
that the water loss rate of the CMC density of 5.5% was significantly lower than those of
the other three densities of samples. This was primarily due to the low water content of the
gel balls themselves, which increased with an increase in the CMC density. Additionally,
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CMC is a hydrophilic substance which reduces the free water lost during the water binding
process. Consequently, the water loss rate of the gel balls was lowest when the CMC density
was 5.5%. Figure 12 illustrates that the degree of cross-linking of the gel balls was essentially
saturated at 8 h, which ensured that the gel balls had a certain hardness. Consequently, the
cross-linking time to ensure a complete and efficient reaction was determined to be 9 h.
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2.6.4. The Removal Rate of Sulfate Ions in the Treatment of AMD

In light of the aforementioned determination experiments, SRB-6 was selected as the
experimental bacterium, and the requisite environment was established. This environment
was defined by the following parameters: pH = 6, C/S = 1.5, T = 30 ◦C, CMC = 4.5%,
BSNa = 0.4 mol/L, and a cross-linking time of 9 h. The sulfate-reducing bacteria gel
particles prepared under the conditions of CMC = 4.5% and BSNa = 0.4 mol/L were reacted
with the AMD. The sulfate radical removal rate of the AMD by the immobilized sulfate-
reducing bacteria gel particles was found to reach 91.6%, with a correspondingly positive
treatment effect.

2.7. Microbial Abundance Analysis

Figure 13 illustrates the prevalence of several microbial taxa across different experi-
mental strains. The color of the heatmap indicates the level of microbial abundance. The
abundance of Bacteroides_vadinHA17 remained at 25% in all of the experimental strains,
indicating that this microbial taxon maintains a high level of stability under different ex-
perimental conditions. Carnobacteriaceae demonstrated greater abundance (22%) under the
SRB-6 experimental conditions, in comparison with a relatively lower abundance (20%)
under other conditions. This may be indicative of more favorable conditions for this
taxon in SRB-6. Lentimicrobiaceae exhibited the lowest abundance (10%) under the SRB-9
experimental conditions, while it exhibited relatively high abundance (15%) under the
other conditions. The lowest abundance of Prolixibacteraceae was observed in the SRB-9
experimental conditions (8%), with an increase observed in the SRB-6 conditions (12%).
This may indicate that different conditions have significantly different effects on the growth
of this microorganism. Anaerolineaceae showed the greatest abundance (22%) under the
SRB-9 experimental conditions and slightly lower abundance (18–20%) under the other
conditions. This suggests that the SRB-9 conditions in particular may have facilitated the
growth of this taxon. Desulfobacteraceae also showed the highest abundance (22%) under
the SRB-6 experimental conditions and the lowest abundance (5% and 10%) under the
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SRB-1 and SRB-10 experimental conditions, respectively, reflecting the different effects of
different conditions on this group of microorganisms. Desulfobacteraceae is a key microbial
group representing sulfate-reducing bacteria. These microorganisms play an important
role in wastewater treatment and ecosystems and are effective in AMD degradation and
sulfur cycling. Desulfobacteraceae showed the greatest abundance (22%) under the SRB-6
experimental conditions. This suggests that these conditions may have provided a more
suitable environment to promote the growth of sulfate-reducing bacteria. Possible facilitat-
ing factors include nutrient availability, the environmental pH level, temperature, or other
biochemical conditions. This may indicate that the growth of this microorganism is signifi-
cantly influenced by different conditions. Anaerolineaceae exhibited the greatest abundance
(22%) under the SRB-9 experimental conditions, with a slightly lower (18–20%) abundance
observed under the other conditions. This indicates that the SRB-9 conditions may have
been particularly conducive to the growth of this taxon. Desulfobacteraceae also exhibited
the greatest abundance (22%) under the SRB-6 experimental conditions and the lowest (5%
and 10%) abundance under the SRB-1 and SRB-10 experimental conditions, respectively,
reflecting the differential effects of the various conditions on this group of microorganisms.
Desulfobacteraceae represents a key microbial group, comprising sulfate-reducing bacte-
ria. These microorganisms play a pivotal role in wastewater treatment and ecosystems
and are effective in AMD degradation and sulfur cycling. Desulfobacteraceae exhibited the
greatest abundance (22%) under the SRB-6 experimental conditions. This indicates that
the condition may have provided a more conducive environment for the proliferation of
sulfate-reducing bacteria. It is possible that the facilitating factors include the availability
of nutrients, the environmental pH level, temperature, or other biochemical conditions.
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3. Materials and Methods
3.1. Materials

Yeast extract, sodium lactate, trisodium citrate, resazurim, ascorbic acid, MgSO4·7H2O,
Na2SO4, sodium thioglycolate, sodium alginate (SA), carboxymethyl cellulose (CMC),
aniline (AN), activated carbon (GAC), graphene oxide (GO), sodium benzene sulfonate
(BSNa), and CaCl2 were used in this study. All experimental drugs were analytically pure,
and the experimental water was deionized water.

3.2. Preparation of the Materials

It was necessary to collect sludge and contaminated water, which was produced in an
anaerobic environment at the water gushing point of the AMD and in nearby rivers and
wetlands that had been polluted by AMD, as well as in the pretreatment process of AMD.
A total of 20–30 samples were collected from 8–10 sites. The samples were immediately
placed into pre-sterilized glassware, sealed to ensure as anaerobic an environment was
maintained as possible, and then stored in a refrigerator at a temperature of −20 ◦C for
subsequent analysis.

3.3. Experimental Methods

In this experiment, sludge was anaerobically incubated in a constant temperature
shaker at 35 ◦C and 150 r/min for 4–6 days. This was followed by inoculation into
modified Postgate medium, which was repeated five times to select the best-growing
SRB suspensions. The suspensions were then incubated by the dilution coating layered
sandwich method, with the objective of isolating small, individual black colonies of various
morphologies, sizes, and colors. Finally, the suspensions were anaerobically cultured. Three
distinct gel particles were prepared at a solid-to-liquid ratio (M/V) of 10% for the treatment
of acid mine wastewater. The adsorption of sulphate was then investigated under static
conditions, with three sets of parallel experiments set up for each group.

3.4. Analytical Method

Determination of the pH level was carried out using a pH meter (PHS-3C; Leici, Shang-
hai, China). The mass concentration of sulfate was determined through ion chromatography
using an ion chromatograph (ICS-5000; Thermo Scientific, Waltham, MA, USA).

DSC (SeikoDSC6100, Chiba, Japan) was used to determine the thermal transition
properties of resistant dextrins. Each sample (3 mg, dry base) was moistened with distilled
water (7 µL) in a DSC dish and equilibrated at 4 ◦C for 24 h prior to analysis. The DSC
disc was heated at a rate of 5 ◦C/min in the range of 0–500 ◦C, with the empty disc as a
reference. A thermal analysis system (EXSTAR-6000; Seiko, Chiba, Japan) was utilized.

This experiment adopted the model of the scanning electron microscope (SEM, HI-
TACHISU8010; Hitachi, Japan) for electron microscopy (SEM) analysis. Scanning electron
microscopy (SEM) employs the use of high-energy electron beams focused into extremely
fine dots which are then scanned point by point on the surface of a sample. This process
allows for the excitation and collection of a diverse range of physical information. The
surface structure features of the tested sample are revealed by the process of receiving,
magnifying, and displaying the aforementioned information [27–29].

4. Conclusions

This study demonstrates that sulfate-reducing bacteria (SRB) gel particles are an
effective type of treatment for acid mine drainage (AMD). The SRB strains were observed
to demonstrate high sulfate removal efficiency under optimal conditions. In particular, the
SRB gel particles, when prepared with sodium alginate (SA) and carboxymethyl cellulose
(CMC), demonstrated sulfate removal rates of up to 91.6% at a pH of six, C/S ratio of 1.5,
temperature of 30 ◦C, CMC concentration of 4.5%, and BSNa concentration of 0.4 mol/L.
These findings illustrate the potential of SRB gel particles for practical applications in the
bioremediation of AMD.
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Nevertheless, it is essential to address several limitations in future research. Firstly,
the long-term stability and reusability of SRB gel particles must be thoroughly evaluated
under a range of environmental conditions. The slight deformation observed in the SRB gel
spheres after storage indicates the potential for structural integrity to be compromised over
extended periods and repeated use. Furthermore, the scalability of this treatment method
must be evaluated to ascertain its suitability for large-scale industrial applications.

Future research should also investigate the genetic and metabolic pathways of SRB in
order to enhance their sulfate reduction efficiency. An investigation into the interactions
between SRB and other microbial communities in AMD-affected environments could
provide insights into the optimization of treatment conditions. Moreover, the integration of
SRB gel particles with other treatment technologies could enhance the overall effectiveness
and efficiency of AMD remediation.

In conclusion, while the SRB gel particles showed promise for the treatment of age-
related macular degeneration (AMD), it is essential that the limitations and challenges
outlined in this study be addressed through future research and development if their full
potential for practical applications is to be realized.
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