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Abstract: The syntheses, coordination chemistry, and Mössbauer spectroscopy of hepta-iron(III)
complexes using derivatised salicylaldoxime ligands from two categories; namely, ‘single-headed’
(H2L) and ‘double-headed’ (H4L) salicylaldoximes are described. All compounds presented here
share a [Fe3-µ3-O] core in which the iron(III) ions are µ3-hydroxo-bridged in the complex C1 and
µ3-oxo-bridged in C2 and C3. Each compound consists of 2 × [Fe3-µ3-O] triads that are linked
via a central [Fe(µ2-OH)6]3− ion. In addition to the charge balance and microanalytical evidence,
Mössbauer measurements support the fact that the triads in C1 are µ3-OH bridged and are µ3-O
bridged in C2 and C3.

Keywords: Mössbauer; iron cluster; coordination chemistry

1. Introduction

Polynuclear iron complexes have attracted interest due to their importance as both
biological [1–6] and magnetic materials [7–11]. Herein, we report on the syntheses and coor-
dination chemistry of three heptanuclear iron complexes built with derivatised salicylaldox-
imato ligands. The hepta-Fe(III) complexes presented here all share the common building
block [Fe3O], in which Fe(III) ions are bridged by oximato- and oxo/hydroxo- groups.
Salicylaldoximes and derivatised salicylaldoximes are well known to form multinuclear
species that contain these triangular metal rings with three-fold symmetry (Figure 1) [12,13].
Study of this class of iron clusters has been fueled by the presence of analogous iron units
observed in biologically important metalloproteins [2,14–22] and also as analogues of mag-
netically interesting manganese complexes [23]. The first iron–salicylaldoximato cluster
reported was a tetra-iron species, [Fe4(saoH)4(sao)4] [24] of which the chemistry was later
extended by Raptopolou et al. [13] to produce a tri-iron(III) compound with a [Fe3O]7+ core,
coordinated by five benzoate ions and a salicylaldoximato di-anion.

A similar tri-iron(III) compound with the same core formed with six benzoate ions,
an azido anion, and two bound ethanol molecules was reported by Boudalis et al. [12].
Recently, there have been several more examples reported for tri-, hexa-, and hepta-iron(III)
salicylaldoximato/derivatised salicylaldoximato complexes containing the [Fe3O]7+/8+

core [23,25–28]. The first polynuclear copper complex with a linked derivatised sal-
icylaldoximato ligand, N,N′-dimethyl-N,N′-hexamethylenebis(5-tert-butyl-2-hydroxy-3-
hydroxyiminomethyl)benzylamine (H4L), was reported by Plieger et al. in 2009 [29]. This
helical hexa-copper complex motivated us towards the synthesis of analogous iron(III) com-
pounds with the same class of ligands [30]. However, in 2012, Brechin et al. [23] reported an
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iron(III) analogue of this hexa-copper complex using H4L [29]. This was the hepta-iron(III)
cluster, [Fe7(µ3-O)2(µ2-OH)6(H2L-2H)3(pyr)6]·5BF4·6H2O·14MeOH, 1·2BF4·6H2O·14MeOH,
consisting of two triangles of [Fe3O]7+, which are linked via a central [Fe(OH)6]3− ion and
three helical (H4L-2H) ligands.
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Figure 1. A schematic of the planar [M3O(oximato)3]+/++ moiety with three-fold symmetry. C = grey,
M = orange, N = blue, O = red, and R = the rest of the ligand.

Salicylaldoxime-based ligands are of particular interest due to the ease in derivatizing
the aromatic ring and the inherent ability of the oximato moiety to coordinate multiple
metal centres in close proximity. We herein report the syntheses and structures of three
analogues (C1–C3) of the hepta-iron(III) complex 1 and use Mössbauer spectroscopy to
evidence unexpected speciation of the central µ3-oxygen atom.

2. Results
2.1. Discussion of the Crystal Structure of the Fe7 Complex of a ‘Single-Headed’ Derivatised
Salicylaldoxime (C1)

The first hepta-iron(III) compound, C1, was synthesised using a simple derivatised sal-
icylaldoxime ligand, H2L1 (2-hydroxy-5-tert-butyl-3-(N-piperidinylmethyl)benzaldehyde
oxime) (Figure 2) [31–33]. Slow evaporation of the filtrate from the 1:1 reaction mixture of
Fe(BF4)2·6H2O and the ligand, H2L1, in a methanol-pyridine solution led to the formation
of dark maroon rhombic-shaped crystals of the hepta-iron(III) cluster, [Fe7(µ3-OH)2(µ2-
OH)6(H2L1-2H)5(H2L1-H)(pyr)6]·(BF4)2·(H2O)6·(pyr)3 (C1·2BF4·8H2O·2pyr) which crys-
tallised in the R3 space group.
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One sixth of the complex C1 represents the asymmetric unit, and the full complex is
generated by an S6 − 3 improper rotation. There are six molecules of the ligand H2L1 in the
di-anionic form, H2L1-2H, in the complex, which are directly connected to six iron atoms
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(6 × µ3-Fe2) that form two metal triads of [FeIII
3(µ3-OH)]8+, which are exactly parallel to

each other (Figure 3). The central oxygen of the triad is formulated as a hydroxo species
based on Mössbauer spectroscopy (see below). These triads are linked via six hydroxo
groups that provide the coordination sphere to a seventh iron atom (Fe1), which sits in
the middle of the complex as an anion [Fe(µ2-OH)6]3− and is located 3.118 Å from the
metal triads (the distance between the metal planes is 6.237 Å). Each triangle consists of
three doubly deprotonated ligands (H2L1-2H), three iron(III) bound to a µ3-OH and three
capping pyridine molecules (pyr). Thus, the positive charge (+21) provided by the seven
FeIII is overbalanced by −12 from the six ligands, −8 from hydroxo groups [2 × (µ3-OH)
+ 6 × (µ2-OH)], and −2 from 2 × BF4

− ions present within the lattice. Charge neutrality
is achieved by a single proton distributed randomly over the 6 piperidinyl groups of the
salicylaldoximato ligand.
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Each iron atom of the complex is hexa-coordinated and sits in an approximately
octahedral geometry. Equatorial sites around each iron atom of the triads (Fe2) are occupied
by a phenolato oxygen (O1) atom and an oximato nitrogen (N212) atom from one ligand and
an oximato oxygen (O213) atom from a neighbouring ligand and a central oxygen atom (µ3-
O). A pyridine group (N100) and a hydroxo group (µ2-OH) are axially coordinated to each
iron atom (Fe2) of the triangles. The iron centres of each metal triangle are held together
by three N-O groups from the ligands resulting in a bridge between two neighbouring
iron atoms. The bridging sequence is as Fe-O-N-Fe on both metal triangles. The central
oxygen atom, µ3-O, of the metal triangle is displaced out of the metal planes by 0.314(6) Å
away from the centre of the complex. The consequence is that the axial pyridyl groups tilt
slightly away from each other, relieving steric strain. The Fe atom from [Fe(µ2-OH)6]3− sits
in an almost perfect octahedral coordination environment, as a consequence of sitting on
the S6-3 axis. The hourglass-like metallic core of C1 is illustrated in Figure 3, and selected
bond lengths and angles around Fe1 and Fe2 are shown in Table 1.

Additionally, water and pyridine molecules exist within the lattice. The hydroxo
groups (µ2-OH) form strong hydrogen bonds (1.880 (10) Å) with water molecules and
also moderately strong hydrogen bonds with neighbouring phenolate oxygen atoms, O1
(2.559 (6) Å) [34]. The composition of the crystal structure of this complex is confirmed by
microanalytical data, charge balance, and Mössbauer.
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Table 1. Selected structural parameters for C1·2BF4·8H2O·2pyr.

Atoms Length (Å) Atoms Length (Å)

Fe2–O2 1.9287 (11) Fe2–N100 2.208 (4)
Fe2–O213 1.959 (3) Fe2–O3 2.043 (3)

Fe2–O1 1.939 (3) Fe1–O3 1.920 (2)
Fe2–N212 2.124 (3) O213–N212 1.378 (6)

Atoms Angle (◦) Atoms Angle (◦)

N100–Fe2–O2 94.9 (2) O1–Fe2–O2 172.6 (2)
N100–Fe2–O213 90.1 (2) O213–Fe2–N212 176.5 (2)

N100–Fe2–O1 88.1 (2) O1–Fe2–O213 91.5 (2)
N100–Fe2–N212 90.0 (2) O213–Fe2–O2 95.2 (2)

O3–Fe2–O1 87.0 (2) O2–Fe2–N212 88.3 (2)
O3–Fe2–O2 89.7 (2) N212–Fe2–O1 85.1 (2)

O3–Fe2–N212 87.2 (2) Fe1–O3–Fe2 133.8 (2)
Fe2–O2–Fe2 * 117.4 (2) O3–Fe1–O3 * 89.8 (2)
N100–Fe2–O3 174.5 (2)

* Generated by S6-3 symmetry.

2.2. Discussion of the Crystal Structures of Fe7 Complexes of Linked/’Double-Headed’ Derivatised
Salicylaldoximes

The complexes, C2 and C3 are double-headed, µ3-oxo-bridged hepta-iron(III) com-
pounds produced in the form of dark red rhombic crystals. Both were obtained by slow
evaporation of filtered reaction mixtures of the iron salt Fe(BF4)2·6H2O and the correspond-
ing ligand (H4L2 and H4L3, respectively) in the presence of NaPF6 at a 1:2:2 ratio in a
methanol-pyridine solution. These complexes are analogues of C1. Despite the different
amine linkers present in the ligands (Figure 4) and the additional non-coordinated species
present within the lattices, C2 and C3 are structurally very similar. Each of these clusters
contains two approximately parallel oximato- and oxo-bridged metal triangles connected
to a central Fe(III) atom via six hydroxo groups. X-ray crystal structures of the hepta-
iron(III)clusters, C2 and C3, are described in this section. Selected structural parameters for
these complexes can be found in Table 2.
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Table 2. Selected structural parameters for C2 and C3.

C2 C3

Atoms Length (Å) Length (Å)

Fetri–µ3O 1.881 (7)–1.952 (7) 1.913 (4)–1.936 (3)
Fetri–µ2OH 1.997 (6)–2.034 (6) 2.036 (3)–2.045 (3)

Femid–µ2OH 1.911 (6)–1.969 (6) 1.964 (3)–1.972 (3)
Feplane–µ3O 0.338–0.376 0.330
Femid–µ3O 3.447 (7)–3.491 (8) 3.512 (4)
µ3O–µ3O 6.938 (10) 7.024 (4)

Atoms Angle (◦) Angle (◦)

Fetri–µ3O–Fetri 114.6 (3)–119.2 (4) 116.2 (2)–118.0 (2)
Fetri–µ2OH–Femid 131.6 (4)–136.3 (4) 134.6 (6)–135.3 (6)
µ3O–Femid–µ3O 178.2 (2) 180

Of particular note are the Fe-µ3-oxo bond lengths and displacements of the triply-
bridging oxygen atom from the planes of the Fe3 moiety, which are not significantly
different for the [Fe3

III-µ3-OH]8+ moiety of C1, and the [Fe3
III-µ3-O]7+ of 1 and C2 and C3.

Therefore, there is no crystallographic evidence to distinguish µ3-O atoms being hydroxo
in C1 from their being oxo in C2 and C3. In contrast to the [Fe3

III-µ3-OH]8+ of C1, the metal
triads are formulated as [Fe3

III-µ3-O]7+ on the basis of Mössbauer spectroscopy. In C2, the
oximato bridging sequence on the upper triangle is -N-O-, whereas it is -O-N- on the lower
triangle. On the other hand, the same oximato bridging sequence occurs on both triangles
of C3. As the ligands utilised for C2 and C3 are flexible linked salicylaldoximes containing
salicylaldoxime units on either side, only three ligand molecules are required to form a
hepta-iron(III)complex, unlike those used for C1. Three of these ‘salicylaldoxime heads’
from three ligand molecules form a lower triangle and the other three ‘heads’ form an upper
triangle (Figure 1). Due to the flexibility of the di-amine linker between the salicylaldoxime
‘heads’, these complexes take a twisted helical shape (Figure 5).
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2.3. Mössbauer Results and Discussion
57Fe Mössbauer measurements were performed on complexes C1–C3 at low and room

temperature. Integral fits of the transmission were carried out for the data obtained at room
temperature. The parameters for each of the samples are listed in Table 3.

Table 3. Room temperature 57Fe Mössbauer fitting parameters for C1–C3 (δ = isomer shift,
∆EQ = quadrupole splitting, Γ = half height line width, I = intensity).

Complex δ (mm/s) ∆EQ (mm/s) ΓL (mm/s) ΓR (mm/s) I (%)

C1
0.41 0.86 0.37 0.37 77.8
0.40 0.50 0.21 0.21 28.9

C2
0.40 1.50 0.35 0.35 70
0.40 0.55 0.35 ± 0.15 0.35 ± 0.15 30

C3
0.40 1.55 0.30 0.30 75
0.35 0.45 0.35 0.35 26

The spectra that were recorded at 293 K illustrate two distinctive fitting lines (red
and blue) (Figures 6–8). These two lines can be unambiguously attributed to the two
different iron environments present in each complex. The intensity of the blue peaks
on the Mössbauer spectra of these complexes is much higher than that of the red peaks.
The intensity ratio between the two iron species of each hepta-iron(III)compound was
observed to be approximately 7:3, near enough to the expected value of 6:1 given by the
crystallographic results, given that the central Fe atom is very tightly constrained relative
to the iron triads. The isomer shift values of these complexes indicate the +3 oxidation
state and high-spin state of the iron sites [35], and these numbers do not differ significantly
among complexes C1–C3 at 293 K. The quadrupole splitting value for C1 (0.50 mm−1 and
0.87 mm−1), on the other hand, is significantly different from the values obtained for C2
and C3 (0.45–0.55 mm−1 and 1.50–1.55 mm−1) (see Table 3). The large quadrupole splitting
(and relative intensity compared to the other doublet) is consistent with µ3-oxo groups for
C2 and C3. The smaller quadrupole splitting of the doublets of weaker intensity for C2 and
C3 and the pair of quadrupole doublets for C1 are consistent with µ2-hydroxo groups and
for C1 the µ3-hydroxo groups.
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3. Materials and Methods

All reactions were performed under aerobic conditions using chemicals and solvents
as received, unless otherwise stated. 1H and 13C NMR spectra were recorded on a Bruker
Avance 500 MHz spectrometer (Bruker, Billerica, MA, USA); δ values are relative to TMS or
the corresponding solvent. Mass spectra were obtained using a Micromass ZMD 400 elec-
trospray spectrometer (Waters Corporation, Millford, MS, USA). IR spectra were recorded
on a Nicolet 5700 FT-IR spectrometer from Thermo Electron Corporation (Thermo Elec-
tron Scientific Instruments Corp., Madison, WI, USA) using an ATR sampling accessory.
Elemental analyses were determined by the Campbell Microanalytical Laboratory at the
University of Otago.

3.1. Synthesis of Ligands H4L2 and H4L3

The starting material of the multi-step ligand synthesis, 5-methylsalicylaldehyde, was
synthesised as described in the literature [31]. The preparation of 3-(bromomethyl)-2-
hydroxy-5-methylbenzaldehyde (1) and precursors L2a and L3a were carried out by the
procedure of Tasker and Schröder [36]. The preparation of N,N′-dimethyl-p-xylenediamine
(2), and the oximations were carried out according to the procedure by Plieger et al. [32] The
ligand H2L1 was synthesised using the protocols in Tasker et al. [33] and Plieger et al. [37].

3.1.1. L2a (Precursor for H4L2): 3,3′-[1,4-Piperazinediylbis(methylene)]bis
[2-hydroxy-5-methylbenzaldehyde]

Solutions of 1 (1.27 g, 5.54 mmol) and piperazine (0.242 g, 2.77 mmol), each in dry
CH2Cl2 (15 mL), were simultaneously added to a stirred solution of Et3N (1.11 g, 11.0 mmol)
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in dry CH2Cl2 (20 mL). The resulting yellow solution was stirred for 24 h at room tem-
perature (RT). The solution was washed with water (3 × 70 mL) and the organic phase
dried over anhydrous Na2SO4. Removal of the solvent afforded a brown solid, which was
purified by adding ethanol to a concentrated solution of the compound in CHCl3 affording
a pale brown powder, which was dried in vacuo. Yield (0.90 g, 85%). MP 221–222 ◦C.
υmax/cm−1 1679 (s). Found: C, 68.14; H, 6.74; N, 7.26. Calc for C22H26N2O4·0.3C2H5OH: C,
68.44; H, 7.09; N, 7.04. 1H NMR (500 MHz; CDCl3) δ: 2.29 (s, 6H), 2.66 (br, 8H), 3.70 (s, 4H),
7.17 (d, J = 1.75 Hz, 2H), 7.41 (d, J = 1.61 Hz, 2H), 10.21 (s, 2H) ppm. 13C NMR (125 MHz;
CDCl3) δ: 20.2, 52.4, 58.5, 122.0, 123.5, 128.4, 129.5, 137.0, 158.8, 192.6 ppm. m/z (ESI) 383
[M + H]+.

3.1.2. H4L2: 3,3′-[1,4-Piperazinediylbis(methylene)]bis
[2-hydroxy-5-methylbenzaldehyde oxime]

A solution of hydroxylamine hydrochloride (0.400 g, 5.76 mmol) in dry ethanol (60 mL)
was neutralised with potassium hydroxide (0.324 g, 5.76 mmol) in dry ethanol (60 mL).
The resulting white precipitate was removed, and the filtrate was added to a solution
of L2a (0.727 g, 1.90 mmol) in 5 mL chloroform and 95 mL dry ethanol over 30 min.
The pale yellow solution was stirred for a further 24 h at RT, during which time a pale
yellow precipitate was formed. The precipitate was filtered, and the remaining solvent was
removed under reduced pressure. The combined pale yellow residues were then washed
with cold chloroform (3 x 30 mL) and dried in vacuo. Yield (0.321 g, 41%). MP 245–246 ◦C.
υmax/cm−1 1625 (s), 1470 (s), 1136 (s), 822 (s). Found: C, 63.59; H, 6.84; N, 13.58. Calc for
C22H28N4O4·0.2C2H5OH: C, 63.80; H, 6.98; N, 13.29. 1H NMR (500 MHz; d6-DMSO) δ: 2.19
(s, 6H), 3.59 (s, 8H), 3.62 (s, 4H), 6.96 (d, J = 1.92 Hz, 2H), 7.23 (d, J = 1.74 Hz, 2H), 8.27 (s,
2H) ppm. 13C NMR (125 MHz; d6-DMSO) δ: 20.5, 52.4, 58.4, 118.5, 123.2, 126.5, 127.8, 131.6,
146.9, 153.6 ppm. m/z (ESI) 413 [M + H]+.

3.1.3. L3a (Precursor for H4L3):
3,3′-[1,4-Phenylenebis[methylene(methylimino)methylene]]bis
[2-hydroxy-5-methylbenzaldehyde]

Solutions of 1 (1.27 g, 5.54 mmol) and 2 (0.461 g, 2.77 mmol), each in dry CH2Cl2
(15 mL), were simultaneously added to a stirred solution of Et3N (1.11 g, 11.0 mmol) in dry
CH2Cl2 (20 mL). The yellow solution was stirred for 24 h at RT. The solution was washed
with water (3 × 70 mL), and the organic phase dried over anhydrous Na2SO4. Removal of
the solvent afforded a pale yellow solid, which was recrystallised by adding ethanol to a
concentrated solution of the compound in CHCl3 affording yellow crystals, which were
dried in vacuo. Yield (1.16 g, 90%). MP 152–155 ◦C. υmax/cm−1 1678 (s), 3449 (br), 828 (s).
Found: C, 72.60; H, 6.87; N, 6.03. Calc for C28H32N2O4: C, 73.02; H, 7.00; N, 6.08. 1H NMR
(500 MHz; CDCl3) δ: 2.28 (s, 6H), 2.30 (s, 8H), 3.63 (s, 4H), 3.73 (s, 4H), 7.19 (d, J = 1.79 Hz,
2H), 7.34 (s, 4H), 7.44 (d, J = 1.57 Hz, 2H), 10.31 (s, 2H) ppm. 13C NMR (125 MHz; CDCl3) δ:
20.3, 41.5, 58.5, 58.5, 61.4, 122.3, 124.2, 128.3, 128.7, 129.4, 136.5, 136.6, 159.1, 192.1 ppm. m/z
(ESI) 461 [M + H]+.

3.1.4. H4L3: 3,3′-[1,4-Phenylenebis[methylene(methylimino)methylene]]bis
[2-hydroxy-5-methylbenzaldehyde oxime]

A solution of hydroxylamine hydrochloride (0.377 g, 5.43 mmol) in dry ethanol (60 mL)
was neutralised with potassium hydroxide (0.323 g, 5.76 mmol) in dry ethanol (60 mL). The
resulting white precipitate was removed, and the filtrate was added to a solution of L3a
(1.00 g, 2.17 mmol) in 5 mL chloroform and 95 mL dry ethanol over 30 min. The pale yellow
solution was stirred for a further 48 h at RT, after which time a pale yellow precipitate was
obtained. The combined residues were filtered, washed with cold chloroform (3 × 30 mL)
followed by cold ethanol (3 × 30 mL), and dried in vacuo. Yield (0.978 g, 92%). MP
203–204 ◦C. υmax/cm−1 1610 (m), 2955 (m), 1469 (vs), 1285 (s), 1020 (m). Found: C, 67.01;
H, 6.96; N, 10.89. Calc for C28H34N4O4·0.5C2H5OH: C, 67.81; H, 7.26; N, 10.91. 1H NMR
(500 MHz; d6-DMSO) δ: 2.12 (s, 6H), 2.21 (s, 6H), 3.58 (s, 4H), 3.66 (s, 4H), 7.01 (d, J = 1.64 Hz,
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2H), 7.24 (d, J = 1.80 Hz, 2H), 8.28 (s, 2H) ppm. 13C NMR (125 MHz; d6-DMSO): 20.5, 41.3,
58.1, 60.7, 118.5, 123.9, 126.3, 127.9, 129.5, 131.3, 137.1, 146.9, 153.6 ppm. m/z (ESI) 491
[M + H]+.

3.2. Synthesis of Metal Complexes C1–C3
3.2.1. [. Fe7(µ3-OH)2(µ2-OH)6(H2L1-2H)5(H2L1-H)1(pyr)6]·(BF4)2·(H2O)8 (pyr)2
(C1·2BF4·8H2O·2pyr)

To the ligand H2L1 (0.145 g, 0.50 mmol), dissolved in MeOH (12.5 mL), was added
Fe(BF4)2·6H2O (0.169 g, 0.50 mmol) in MeOH (12.5 mL). After full dissolution, NaPF6
(0.167 g, 1.00 mmol) and pyridine (2 mL) were added to the maroon-coloured solution. The
mixture was stirred for 3 h and filtered, and the filtrate was left to evaporate slowly. X-ray
quality crystals were produced after 2 weeks (CCDC 2331487). Yield (0.180 g, 67%). Found:
C, 52.63; H, 6.35; N, 8.58. Calc for C132H183Fe7N18O20·2BF4·6H2O: C, 52.59; H, 6.52; N, 8.36.
νmax/cm−1 3388(br), 2967, 2370, 1605, 1550, 1459, 1084, 1040, 839, 732, 534, 437.

3.2.2. [Fe7O2(H4L2-2H)3(OH)6(pyr)6)]·(BF4)4·(H2O)7·PF6·(pyr)2 (C2·4BF4·7H2O·PF6·2pyr)

To the ligand H4L2 (0.206 g, 0.50 mmol), suspended in MeOH (12.5 mL), was added
Fe(BF4)2·6H2O (0.348 g, 1.00 mmol) dissolved in MeOH (12.5 mL). After full dissolution,
NaPF6 (0.167 g, 1.00 mmol) and pyridine (2 mL) were added to the maroon-coloured
solution. The solution was stirred for 3 h and filtered, and the filtrate was left to evaporate
slowly. X-ray quality crystals were produced after 2 weeks (CCDC 2331488). Yield (0.200 g,
47%). Found: C, 40.24; H, 4.44; N, 8.84. Calc for C96H114Fe7N18O20·4BF4

−·7H2O·PF6
−: C,

40.47; H, 4.53; N, 8.85. υmax/cm−1 3412(br), 1724, 1703, 1613, 1552, 1463, 1307, 1084, 1034,
825, 757, 483, 434.

3.2.3. [Fe7O2(H4L3-2H)2(H4L3-3H)(OH)6(pyr)6)]·(PF6)4·(H2O)7 (C3·4PF6·7H2O)

To the ligand H4L3 (0.245 g, 0.50 mmol), suspended in MeOH (12.5 mL), was added
Fe(BF4)2·6H2O (0.337 g, 1.00 mmol) dissolved in MeOH (12.5 mL). After full dissolution,
NaPF6 (0.167 g, 1.00 mmol) and pyridine (2 mL) were added to the maroon-coloured
solution. The mixture was stirred for 3 h and filtered, and the filtrate was left to evaporate
slowly. X-ray quality crystals were produced after 2 weeks (CCDC 2331489). Found: C,
42.84; H, 4.24; N, 7.92. Calc for C114H131Fe7N18O20·4PF6·7H2O: C, 43.19; H, 4.61; N, 7.95.
υmax/cm−1 3426(br), 2367, 1617, 1560, 1466, 1300, 1084, 1039, 823, 757, 618, 522, 440.

3.3. X-ray Structure Determination

X-ray data of complexes C1 and C2 were recorded at low temperature with a Rigaku-
Spider X-ray diffractometer, comprising a Rigaku MM007 microfocus copper rotating-anode
generator, high-flux Osmic monochromating and focusing multilayer mirror optics (Cu
Kα radiation, λ = 1.54178 Å), and a curved image plate detector. CrystalClear [38] was
utilized for data collection and FSProcess in PROCESS-AUTO [39] for cell refinement and
data reduction.

Single-crystal diffraction data for C3 were collected at 100 K on the MX2 beamline
(λ = 0.7093 Å) at the Australian Synchrotron, Victoria, Australia. The dataset was processed
and evaluated using XDS [40]. The resulting reflections were scaled using AIMLESS140
from the CCP4 program suite [41]. All structures were solved employing direct methods
and expanded by Fourier techniques [42]. All nonhydrogen atoms were refined using
anisotropic thermal parameters. The hydrogen atoms were included in the ideal posi-
tions with fixed isotropic U value and were riding on their respective non-hydrogen
atoms. Crystal data and refinement parameters for C1–C3 are given in Table A1. CCDC
2331487–2331489 contain the supplementary crystallographic data for this paper.

SQUEEZE results (electrons per formula unit):
C1: Electron count 126
C2: Electron count 232
C3: Electron count 276
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3.4. Mössbauer Measurements

Samples of 17–29 mg were measured in a custom-made Teflon sample holder. Möss-
bauer spectra were recorded on a spectrometer from SEE Co. (Science Engineering &
Education Co., Edina, MN, USA) equipped with a closed-cycle refrigerator system from
Janis Research Co. and SHI (Sumitomo Heavy Industries Ltd., Shinagawa City, Tokyo,
Japan). Data were collected in constant acceleration mode in transmission geometry. The
zero velocity of the Mössbauer spectra refers to the centroid of the room temperature
spectrum of a 25 µm metallic iron foil. Analysis of the spectra was conducted using the
WMOSS program (SEE Co, formerly WEB Research Co., Edina, MN, USA).

4. Conclusions

The syntheses of one new ‘single-headed’ (C1) and two new ‘double-headed’ (C2
and C3) heptanuclear iron complexes formulated as [Fe3O–Fe(OH)6–Fe3O] are reported.
Complexes C2 and C3 contain a common metallic core, [Fe7(µ3-O)2(µ2-OH)6]+11, which is
structurally similar to the [Fe7(µ3-OH)2(µ2-OH)6]+13 core of C1. The presence of the µ3-OH
groups within the iron triads of C1 is evidenced by 57Fe Mössbauer spectroscopy, observed
as a significant change to the quadrupole splitting (0.50 mm−1 and 0.87 mm−1) which is
consistent with the presence of µ3-OH groups.
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Appendix A

Table A1. Crystal data and structural refinement parameters for C1–C3.

C1 C2 C3

Formula B2C162F8Fe7H230N24O26 B4C136F22Fe7H151N26O27P C114H123Fe7N18O22
CCDC 2331487 2331488 2331489
FW (g mol−1) 3494.26 3464.98 2488.25
T (K) 153 153 100
Crystal system trigonal triclinic monoclinic
Space group R3 P1 P21/n
a (Å) 22.558 (5) 17.1685 (11) 15.949 (3)
b (Å) 22.558 (5) 17.3485 (11) 25.627 (5)
c (Å) 33.105 (5) 29.534 (2) 18.611 (4)
α (◦) 90.000 (5) 86.396 (6) 90
β (◦) 90.000 (5) 76.716 (5) 107.11 (3)
γ (◦) 120.000 (5) 60.913 (4) 90

https://www.mdpi.com/article/10.3390/molecules29133218/s1
https://www.mdpi.com/article/10.3390/molecules29133218/s1
www.ccdc.cam.ac.uk/data_request/cif
www.ccdc.cam.ac.uk/data_request/cif
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Table A1. Cont.

C1 C2 C3

V (Å3) 14589 (7) 7469.2 (9) 7270 (3)
Z (Z′) 3 (0.167) 2 (1) 2 (0.5)
ρcalc (g cm−3) 1.193 1.541 1.137
µ (mm−1) 4.665 6.32 0.74
F (000) 5526 3560 2582
Crystal size (mm) 0.2 × 0.2 × 0.2 0.33 × 0.23 × 0.21 0.2 × 0.2 × 0.2
Radiation CuKα (λ = 1.54178) CuKα (λ = 1.54178) Synchrotron (λ = 0.71073)
2Θ (◦) 13.128 to 144.218 13.174 to 130.18 4.302 to 49.426

Index ranges
−27 ≤ h ≤ 26,
−27 ≤ k ≤ 24,
−25 ≤ l ≤ 38

−20 ≤ h ≤ 20,
−18 ≤ k ≤ 20,
−34 ≤ l ≤ 34

−18 ≤ h ≤ 17,
0 ≤ k ≤ 30,
0 ≤ l ≤ 21

Reflections collected 43942 96150 43481

Independent reflections 6222 [Rint = 0.0783,
Rsigma = 0.0531]

24944 [Rint = 0.1440,
Rsigma = 0.1731]

12205 [Rint = 0.0487,
Rsigma = 0.0418]

Data/restraints/parameters 6222/78/357 24944/1523/1559 12205/931/861
Goodness-of-fit on F2 1.094 1.194 1.079
Final R indexes [I ≥ 2σ(I)] R1 = 0.0868, wR2 = 0.2465 R1 = 0.1448, wR2 = 0.4009 R1 = 0.0784, wR2 = 0.2466
Final R indexes [all data] R1 = 0.0985, wR2 = 0.2723 R1 = 0.2433, wR2 = 0.4638 R1 = 0.0935, wR2 = 0.2615
Residual density (e− Å−3) 1.62/−1.20 0.98/−0.61 0.58/−0.32
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