Probiotic-Enriched Ice Cream with Fermented White Kidney Bean Homogenate: Survival, Antioxidant Activity, and Potential for Future Health Benefits
Abstract
:1. Introduction
2. Results and Discussion
2.1. Basic Chemical Composition
2.2. pH Value
2.3. Ice Cream Overrun
2.4. Survival of Yogurt and Probiotic Bacteria
2.5. Antioxidant Capacity
3. Materials and Methods
3.1. Materials
3.2. Dairy–Fermented Bean Ice Cream
3.3. Media and Other Reagents
3.4. Methods
3.4.1. Basic Chemical Composition
3.4.2. pH Measurement
3.4.3. Ice Cream Overrun
3.4.4. Determination of the Survival of Yogurt and Probiotic Bacteria
3.4.5. Determination of Antioxidant Capacity
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gasheva, M.A. Selection of Probiotic Starter Cultures for The Production of Fermented Ice Cream with Prescribed Functional Properties. New Technol. 2022, 18, 17–23. [Google Scholar] [CrossRef]
- Wang, W.; Wang, M.; Xu, C.; Liu, Z.; Gu, L.; Ma, J.; Jiang, L.; Jiang, Z.; Hou, J. Effects of Soybean Oil Body as a Milk Fat Substitute on Ice Cream: Physicochemical, Sensory and Digestive Properties. Foods 2022, 11, 1504. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Arslaner, A.; Salık, M.A. Functional Ice Cream Technology. Agricult Food Sci. 2020, 18, 180–189. [Google Scholar] [CrossRef]
- Hayat, I.; Ahmad, A.; Masud, T.; Ahmed, A.; Bashir, S. Nutritional and Health Perspectives of Beans (Phaseolus vulgaris L.): An Overview. Crit. Rev. Food Sci. Nutr. 2014, 54, 580–592. [Google Scholar] [CrossRef]
- Abirami; Kaur, J. Kidney Beans (Phaseolus vulgaris L.) Its Nutrient Profile, Health Benefits, Value-Added Products and Anti-Nutritional Properties. Pharma Innov. 2023, 12, 1524–1528. [Google Scholar] [CrossRef]
- Ganesan, K.; Xu, B. Polyphenol-Rich Dry Common Beans (Phaseolus vulgaris L.) and Their Health Benefits. Int. J. Mol. Sci. 2017, 18, 2331. [Google Scholar] [CrossRef] [PubMed]
- Orwat, J. Phenolic Antioxidant-Linked Bioactive Enrichment in Black Beans (Phaseolus vulgaris L.) to Screen for Health Benefits and Enhancement of Salinity Resilience. 2016. Available online: https://library.ndsu.edu/ir/handle/10365/28045 (accessed on 27 May 2024).
- Chupeerach, C.; Temviriyanukul, P.; Thangsiri, S.; Inthachat, W.; Sahasakul, Y.; Aursalung, A.; Wongchang, P.; Sangkasa-ad, P.; Wongpia, A.; Polpanit, A.; et al. Phenolic Profiles and Bioactivities of Ten Original Lineage Beans in Thailand. Foods 2022, 11, 3905. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Qin, L.; Mazhar, M.; Zhu, Y. Functional Components Profile and Glycemic Index of Kidney Beans. Front. Nutr. 2022, 9, 1044427. [Google Scholar] [CrossRef]
- Ongol, M.P.; Owino, J.; Lung’aho, M.; Dusingizimana, T.; Vasanthakaalam, H. Micro-Mineral Retention and Anti-Nutritional Compounds Degradation During Bean Cooking Process. Curr. Res. Nutr. Food Sci. J. 2018, 6, 526–535. [Google Scholar] [CrossRef]
- Sharma, R.; Diwan, B.; Singh, B.P.; Kulshrestha, S. Probiotic Fermentation of Polyphenols: Potential Sources of Novel Functional Foods. Food Prod. Pro Nutr. 2022, 4, 21. [Google Scholar] [CrossRef]
- Contente, M.L.; Annunziata, F.; Cannazza, P.; Donzella, S.; Pinna, C.; Romano, D.; Tamborini, L.; Barbosa, F.G.; Molinari, F.; Pinto, A. Biocatalytic Approaches for an Efficient and Sustainable Preparation of Polyphenols and Their Derivatives. J. Agric. Food Chem. 2021, 69, 13669–13681. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.-T.; Zhang, Z.; Wang, Y.; Zhang, W.; Zhang, L.; Liu, Y.; Chen, D.; Wang, W.; Ma, W.; Qian, J.-Y.; et al. Antioxidant Capacity, Flavor and Physicochemical Properties of FH06 Functional Beverage Fermented by Lactic Acid Bacteria: A Promising Method to Improve Antioxidant Activity and Flavor of Plant Functional Beverage. Appl. Biol. Chem. 2023, 66, 7. [Google Scholar] [CrossRef] [PubMed]
- Nciri, N.; Shin, T.; Cho, N. PUblic Health Hazards Associated with Naturally Occurring Toxins in Legume Seeds—Rapid Detection and Characterization of A Lectin from A Korean Cultivated Kidney Bean (Phaseolus vulgaris L.). Asian J. Pharm. Clin. Res. 2018, 11, 76–79. [Google Scholar] [CrossRef]
- Alrosan, M.; Tan, T.-C.; Mat Easa, A.; Gammoh, S.; Alu’datt, M.H. Effects of Fermentation on the Quality, Structure, and Nonnutritive Contents of Lentil (Lens culinaris) Proteins. J. Food Qual. 2021, 2021, 5556450. [Google Scholar] [CrossRef]
- Tong, P.S.; Berner, L.A. Dairy Processing and Products. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-08-100596-5. [Google Scholar]
- Goff, H.D. Milk Proteins in Ice Cream. In Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects; McSweeney, P.L.H., O’Mahony, J.A., Eds.; Springer: New York, NY, USA, 2016; pp. 329–345. ISBN 978-1-4939-2800-2. [Google Scholar]
- Małkowska, M.; Staniewski, B.; Ziajka, J. Analyses of Milk Fat Crystallization and Milk Fat Fractions. Int. J. Food Prop. 2021, 24, 325–336. [Google Scholar] [CrossRef]
- Méndez-Velasco, C.; Goff, H.D. Fat Structure in Ice Cream: A Study on the Types of Fat Interactions. Food Hydrocol. 2012, 29, 152–159. [Google Scholar] [CrossRef]
- Alamprese, C.; Foschino, R.; Rossi, M.; Pompei, C.; Savani, L. Survival of Lactobacillus Johnsonii La1 and Influence of Its Addition in Retail-Manufactured Ice Cream Produced with Different Sugar and Fat Concentrations. Int. Dairy. J. 2002, 12, 201–208. [Google Scholar] [CrossRef]
- Turgut, T.; Cakmakci, S. Investigation of the Possible Use of Probiotics in Ice Cream Manufacture. Int. J. Dairy. Technol. 2009, 62, 444–451. [Google Scholar] [CrossRef]
- Talearngkul, R.; Sae-tan, S.; Sirivarasai, J. Effect of Yogurt Ice Cream on the Viability and Antidiabetic Potential of the Probiotics Lactobacillus Acidophilus, Lacticaseibacillus Rhamnosus, and Bifidobacterium Animalis Subsp. Lactis after In Vitro Digestion. Foods 2023, 12, 4373. [Google Scholar] [CrossRef]
- Akın, M.B.; Akın, M.S.; Kırmacı, Z. Effects of Inulin and Sugar Levels on the Viability of Yogurt and Probiotic Bacteria and the Physical and Sensory Characteristics in Probiotic Ice-Cream. Food Chem. 2007, 104, 93–99. [Google Scholar] [CrossRef]
- Ziarno, M.; Zaręba, D.; Maciejak, M.; Veber, A.L. The Impact of Dairy Starter Cultures on Selected Qualitative Properties of Functional Fermented Beverage Prepared from Germinated White Kidney Beans. J. Food Nutr. Res. 2019, 58, 167–176. [Google Scholar]
- Cichońska, P.; Ziarno, M. Effect of Germination on Content of Selected Carbohydrates and Total Polyphenols in White Kidney Bean Beverages. Food Sci. Technol. Qual. 2021, 128, 86–94. [Google Scholar] [CrossRef]
- Purwijantiningsih, E. Pengaruh Jenis Prebiotik Terhadap Kualitas Yogurt Probiotik. Biota 2007, 12, 177–185. [Google Scholar] [CrossRef]
- Hidayat, S.; Nurwidada, W.H.Z.; Kuntoro, B. Melting Rate, pH and Glucose Content of Goat Milk Ice Cream Stabilize by Grass Jelly Leaves Gel (Cyclea barbata Miers) in Different Concentration. J. Peternak. 2019, 16, 61–65. [Google Scholar] [CrossRef]
- Saputro, A.E.; Yanti, R.; Rahayu, E.S. Microbiological, Physicochemical, and Sensory Characters of Synbiotic Ice Cream from Fermented Milk Using Lactiplantibacillus Plantarum Subsp. Plantarum Dad-13 Combined with Inulin. Curr. Res. Nutr. Food Sci. J. 2023, 11, 1363–1373. [Google Scholar] [CrossRef]
- Favaro-Trindade, C.S.; Bernardi, S.; Bodini, R.B.; De Carvalho Balieiro, J.C.; De Almeida, E. Sensory Acceptability and Stability of Probiotic Microorganisms and Vitamin C in Fermented Acerola (Malpighia Emarginata DC.) Ice Cream. J. Food Sci. 2006, 71, S492–S495. [Google Scholar] [CrossRef]
- Haynes, I.N.; Playne, M.J. Survival of Probiotic Cultures in Low-Fat Ice-Cream. Aust. J. Dairy. Technol. 2002, 57, 10. [Google Scholar]
- Miano, T.F. Effect of Various Ingredients on The Physico Chemical Properties of Ice Cream. Pak. J. Sci. 2021, 73, 670. [Google Scholar] [CrossRef]
- Mohammadi, R.; Mortazavian, A.M.; Khosrokhavar, R.; da Cruz, A.G. Probiotic Ice Cream: Viability of Probiotic Bacteria and Sensory Properties. Ann. Microbiol. 2011, 61, 411–424. [Google Scholar] [CrossRef]
- Elsamani, M.O. Probiotics, Organoleptic and Physicochemical Properties of Vegetable Milk Based Bio-Ice Cream Supplemented with Skimmed Milk Powder. Int. J. Nutr. Food Sci. 2016, 5, 361–366. [Google Scholar] [CrossRef]
- Nurliyani, N.; Indratiningsih, I.; Putri, K.B. Substitution Effect of Skim Milk with Sweet Potato (Ipomoea batatas) on Probiotic Ice Cream Characteristics. International Congress on Challenges of Biotechnological Research in Food and Health, Surakarta, Indonesia, November 2014. Slamet Riyadi University. 2014, 18–29. Available online: https://www.neliti.com/publications/169858/the-effect-of-red-sweet-potato-ipomoea-batatas-l-substitution-on-skim-milk-as-pr (accessed on 27 May 2024).
- Abghari, A.; Sheikh-Zeinoddin, M.; Soleimanian-Zad, S. Nonfermented Ice Cream as a Carrier for Lactobacillus Acidophilus and Lactobacillus Rhamnosus. Int. J. Food Sci. Technol. 2011, 46, 84–92. [Google Scholar] [CrossRef]
- Alamprese, C.; Foschino, R.; Rossi, M.; Pompei, C.; Corti, S. Effects of Lactobacillus Rhamnosus GG Addition in Ice Cream. Int. J. Dairy. Technol. 2005, 58, 200–206. [Google Scholar] [CrossRef]
- Ferraz, J.L.; Cruz, A.G.; Cadena, R.S.; Freitas, M.Q.; Pinto, U.M.; Carvalho, C.C.; Faria, J.A.F.; Bolini, H.M.A. Sensory Acceptance and Survival of Probiotic Bacteria in Ice Cream Produced with Different Overrun Levels. J. Food Sci. 2012, 77, S24–S28. [Google Scholar] [CrossRef]
- Ahn, J.-B.; Hwang, H.-J.; Park, J.-H. Physiological Responses of Oxygen-Tolerant Anaerobic Bifidobacterium Longum under Oxygen. J. Microbiol. Biotechnol. 2001, 11, 443–451. [Google Scholar]
- Bolduc, M.-P.; Raymond, Y.; Fustier, P.; Champagne, C.P.; Vuillemard, J.-C. Sensitivity of Bifidobacteria to Oxygen and Redox Potential in Non-Fermented Pasteurized Milk. Int. Dairy. J. 2006, 16, 1038–1048. [Google Scholar] [CrossRef]
- Cruz, A.G.; Cadena, R.S.; Faria, J.A.F.; Bolini, H.M.A.; Dantas, C.; Ferreira, M.M.C.; Deliza, R. PARAFAC: Adjustment for Modeling Consumer Study Covering Probiotic and Conventional Yogurt. Food Res. Int. 2012, 45, 211–215. [Google Scholar] [CrossRef]
- Fortin, M.-H.; Champagne, C.P.; St-Gelais, D.; Britten, M.; Fustier, P.; Lacroix, M. Effect of Time of Inoculation, Starter Addition, Oxygen Level and Salting on the Viability of Probiotic Cultures during Cheddar Cheese Production. Int. Dairy. J. 2011, 21, 75–82. [Google Scholar] [CrossRef]
- Goktas, H.; Dikmen, H.; Bekiroglu, H.; Cebi, N.; Dertli, E.; Sagdic, O. Characteristics of Functional Ice Cream Produced with Probiotic Saccharomyces boulardii in Combination with Lactobacillus rhamnosus GG. LWT 2022, 153, 112489. [Google Scholar] [CrossRef]
- Salem, M.M.E.; Fathi, F.A.; Awad, R.A. Production of Probiotic Ice Cream. Pol. J. Food Nutr. Sci. 2005, 55, 267–271. [Google Scholar]
- Pimentel, T.C.; de Oliveira, L.I.G.; de Souza, R.C.; Magnani, M. Probiotic Ice Cream: A Literature Overview of the Technological and Sensory Aspects and Health Properties. Int. J. Dairy. Technol. 2022, 75, 59–76. [Google Scholar] [CrossRef]
- Aboulfazli, F.; Shori, A.B.; Baba, A.S. Effects of the Replacement of Cow Milk with Vegetable Milk on Probiotics and Nutritional Profile of Fermented Ice Cream. LWT 2016, 70, 261–270. [Google Scholar] [CrossRef]
- Kailasapathy, K.; Sultana, K. Survival and [Beta]-D-Galactosidase Activity of Encapsulated and Free Lactobacillus Acidophilus and Bifidobacterium Lactis in Ice-Cream. Austr. J. Dairy. Technol. 2003, 58, 223. [Google Scholar]
- Patil, A.G.; Banerjee, S. Variants of Ice Creams and Their Health Effects. MOJ Food Proc. Technol. 2017, 4, 58–64. [Google Scholar] [CrossRef]
- Kumari, J.; Dubey, R.P. Development of Nutritious Ice-Creams from Soymilk Andpumpkin Seed Milk and Evaluation of Their Acceptability. Food Sci. Res. J. 2016, 7, 96–100. [Google Scholar] [CrossRef]
- Taspinar, T.; Yazici, G.N.; Güven, M. Evaluating the Potential of Using Plant-Based Milk Substitutes in Ice Cream Production. Biol. Life Sci. Forum 2023, 26, 21. [Google Scholar] [CrossRef]
- Aboulfazli, F.; Baba, A.S.; Misran, M. The Rheology and Physical Properties of Fermented Probiotic Ice Creams Made with Dairy Alternatives. Int. J. Food Eng. 2015, 11, 493–504. [Google Scholar] [CrossRef]
- Giusti, F.; Capuano, E.; Sagratini, G.; Pellegrini, N. A Comprehensive Investigation of the Behaviour of Phenolic Compounds in Legumes during Domestic Cooking and in Vitro Digestion. Food Chem. 2019, 285, 458–467. [Google Scholar] [CrossRef]
- Hart, J.J.; Tako, E.; Kochian, L.V.; Glahn, R.P. Identification of Black Bean (Phaseolus vulgaris L.) Polyphenols That Inhibit and Promote Iron Uptake by Caco-2 Cells. J. Agric. Food Chem. 2015, 63, 5950–5956. [Google Scholar] [CrossRef]
- Deshpande, S.S.; Sathe, S.K.; Salunkhe, D.K.; Cornforth, D.P. Effects of Dehulling on Phytic Acid, Polyphenols, and Enzyme Inhibitors of Dry Beans (Phaseolus vulgaris L.). J. Food Sci. 1982, 47, 1846–1850. [Google Scholar] [CrossRef]
- Kajiwara, V.; Moda-Cirino, V.; dos Santos Scholz, M.B. Studies on Nutritional and Functional Properties of Various Genotypes of Andean Beans. J. Food Sci. Technol. 2022, 59, 1468–1477. [Google Scholar] [CrossRef]
- Timoracká, M.; Vollmannová, A.; Ismael, D. Minerals, Trace Elements and Flavonoids Content in White and Coloured Kidney Bean. Potravin. Slovak. J. Food Sci. 2011, 5, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Huber, K.; Brigide, P.; Bretas, E.B.; Canniatti-Brazaca, S.G. Effect of Thermal Processing and Maceration on the Antioxidant Activity of White Beans. PLoS ONE 2014, 9, e99325. [Google Scholar] [CrossRef]
- de Reu, J.C.; Rombouts, F.M.; Nout, M.J.R. Influence of Acidity and Initial Substrate Temperature on Germination of Rhizopus Oligosporus Sporangiospores during Tempe Manufacture. J. Appl. Bacteriol. 1995, 78, 200–208. [Google Scholar] [CrossRef]
- Saranraj, P. Lactic Acid Bacteria and Its Antimicrobial Properties A Review. Int. J. Pharm. Biol. Arch. 2014, 4, 1124–1133. [Google Scholar]
- Verni, M.; Rizzello, C.G. The Antioxidant Potential of Fermented Foods: Challenges and Future Trends. Fermentation 2023, 9, 790. [Google Scholar] [CrossRef]
- Aziz, T.; Xingyu, H.; Sarwar, A.; Naveed, M.; Shabbir, M.A.; Khan, A.A.; Ulhaq, T.; Shahzad, M.; Zhennai, Y.; Shami, A.; et al. Assessing the Probiotic Potential, Antioxidant, and Antibacterial Activities of Oat and Soy Milk Fermented with Lactiplantibacillus Plantarum Strains Isolated from Tibetan Kefir. Front. Microbiol. 2023, 14, 1265188. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-C.; Yu, R.-C.; Chou, C.-C. Antioxidative Activities of Soymilk Fermented with Lactic Acid Bacteria and Bifidobacteria. Food Microbiol. 2006, 23, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Li, Y.; Zhen, C.; Song, J.; Hou, J.; Gou, J.; Li, X.; Xie, S.; Zhou, J.; Yan, Y.; et al. Effect of Microbial Reinforcement on Polyphenols in the Acetic Acid Fermentation of Shanxi-Aged Vinegar. Fermentation 2023, 9, 756. [Google Scholar] [CrossRef]
- Maisto, M.; Annunziata, G.; Schiano, E.; Piccolo, V.; Iannuzzo, F.; Santangelo, R.; Ciampaglia, R.; Tenore, G.C.; Novellino, E.; Grieco, P. Potential Functional Snacks: Date Fruit Bars Supplemented by Different Species of Lactobacillus spp. Foods 2021, 10, 1760. [Google Scholar] [CrossRef]
- Erdem, T.K.; Tatar, H.D.; Ayman, S.; Gezginç, Y. Exopolysaccharides from Lactic Acid Bacteria: A Review on Functions, Biosynthesis and Applications in Food Industry. Turk. J. Agric. Food Sci. Technol. 2023, 11, 414–423. [Google Scholar] [CrossRef]
- Barukčić Jurina, I.; Miletić, I.; Božanić, R.; Jurina, T.; Leboš Pavunc, A.; Lisak Jakopović, K. Changes in Some Quality Properties of Frozen Mare Milk during 6 Months of Storage. Hrvat. Časopis Za Prehrambenu Tehnol. Biotehnol. I Nutr. 2023, 18, 72–78. [Google Scholar] [CrossRef]
- Khattab, R.; Celli, G.B.; Ghanem, A.; Brooks, M.S.-L. Effect of Frozen Storage on Polyphenol Content and Antioxidant Activity of Haskap Berries (Lonicera caerulea L.). J. Berry Res. 2015, 5, 231–242. [Google Scholar] [CrossRef]
- Hassan, M.F.Y.; Barakat, H. Effect of Carrot and Pumpkin Pulps Adding on Chemical, Rheological, Nutritional and Organoleptic Properties of Ice Cream. Food Nutr. Sci. 2018, 9, 969–982. [Google Scholar] [CrossRef]
- Kadosh, E.; Snir-Alkalay, I.; Venkatachalam, A.; May, S.; Lasry, A.; Elyada, E.; Zinger, A.; Shaham, M.; Vaalani, G.; Mernberger, M.; et al. The Gut Microbiome Switches Mutant P53 from Tumour-Suppressive to Oncogenic. Nature 2020, 586, 133–138. [Google Scholar] [CrossRef]
- Sayin, V.I.; Ibrahim, M.X.; Larsson, E.; Nilsson, J.A.; Lindahl, P.; Bergo, M.O. Antioxidants Accelerate Lung Cancer Progression in Mice. Sci. Transl. Med. 2014, 6, 221ra15. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, E.; Maliszewska, B.; Ziarno, M. Characterization of Fermented Milks After the Passaging Process of Starter Cultures. Post. Techn Przetw. Spoz. 2021, 2, 11–22. [Google Scholar]
- Ertan, K.; Bayana, D.; Gökçe, O.; Alatossava, T.; Yilmaz, Y.; Gürsoy, O. Total Antioxidant Capacity and Phenolic Content of Pasteurized and UHT-Treated Cow Milk Samples Marketed in Turkey. Akad. Gıda 2017, 15, 103–108. [Google Scholar] [CrossRef]
- Sadeghi, N.; Behzad, M.; Jannat, B.; Oveisi, M.R.; Hajimahmoodi, M.; Kashanipour, A.H. Total Phenolic Compounds Content and Antioxidant Activity in Packed and Bulk Milk in Different Regions of Tehran, Iran. J. Food Safe Hyg. 2018, 4, 8–12. [Google Scholar]
Sample Code | Proteins [%] | Fat [%] | DM [%] |
---|---|---|---|
Control sample | 3.03 a ± 0.15 | 5.66 a ± 0.26 | 26.92 a ± 1.14 |
ics1 samples | 3.03 a ± 0.11 | 5.56 a ± 0.20 | 26.58 a ± 0. 98 |
ics2 samples | 2.97 a ± 0.14 | 5.61 a ± 0.20 | 26.59 a ± 1.13 |
ics3 samples | 2.98 a ± 0.12 | 5.59 a ± 0.22 | 26.60 a ± 0.99 |
ics4 samples | 3.00 a ± 0.13 | 5.59 a ± 0.21 | 26.57 a ± 1.04 |
ics5 samples | 3.01 a ± 0.10 | 5.56 a ± 0.23 | 26.61a ± 0.99 |
ics6 samples | 2.98 a ± 0.12 | 5.58 a ± 0.22 | 26.62 a ± 0.96 |
Sample Code | Average Content of Carbohydrates Assessed [mg/kg] | ||||||||
---|---|---|---|---|---|---|---|---|---|
Lactose | Glucose | Galactose | Fructose | Sucrose | Maltose | Raffinose | Stachyose | Verbascose | |
ics0 | 28.27 a ± 1.55 | 5.26 b ± 0.29 | 0.00 a ± 0.00 | 0.01 a ± 0.00 | 116.23 a,b ± 3.00 | 0.04 a ± 0.00 | 0.02 a ± 0.00 | 0.14 c ± 0.01 | 0.01 a ± 0.00 |
ics1 | 26.79 a ± 1.14 | 5.23 b ± 0.27 | 0.00 a ± 0.00 | 0.01 a ± 0.00 | 115.63 b ± 2.45 | 0.04 a ± 0.00 | 0.02 a ± 0.00 | 0.14 c ± 0.01 | 0.01 a ± 0.00 |
ics2 | 28.09 a ± 1.54 | 4.99 a ± 0.28 | 0.00 a ± 0.00 | 0.01 a ± 0.00 | 116.97 b ± 2.41 | 0.04 a ± 0.00 | 0.02 a ± 0.00 | 0.13 b,c ± 0.01 | 0.01 a ± 0.00 |
ics3 | 28.36 a ± 1.47 | 5.23 b ± 0.27 | 0.00 a ± 0.00 | 0.01 a ± 0.00 | 116.97 b ± 1.17 | 0.04 a ± 0.00 | 0.02 a ± 0.00 | 0.12 a,b ± 0.01 | 0.01 a ± 0.00 |
ics4 | 27.02 a ± 1.36 | 5.26 b ± 0.20 | 0.00 a ± 0.00 | 0.01 a ± 0.00 | 110.26 a ± 3.14 | 0.04 a ± 0.00 | 0.02 a ± 0.00 | 0.12 a,b ± 0.01 | 0.01 a ± 0.00 |
ics5 | 28.26 a ± 1.51 | 5.00 a,b ± 0.19 | 0.00 a ± 0.00 | 0.01 a ± 0.00 | 116.97 b ± 2.88 | 0.04 a ± 0.00 | 0.02 a ± 0.00 | 0.11 a ± 0.01 | 0.01 a ± 0.00 |
ics6 | 26.71 a ± 1.44 | 5.26 b ± 0.22 | 0.00 a ± 0.00 | 0.01 a ± 0.00 | 116.36 a,b ± 3.01 | 0.04 a ± 0.00 | 0.02 a ± 0.00 | 0.11 a ± 0.01 | 0.01 a ± 0.00 |
Sample Code | Sampling Time [Month] | |
---|---|---|
0 | 6 | |
ics0 | 6.60 a ± 0.16 | 6.55 a ± 0.15 |
ics1 | 5.61 c,d ± 0.13 | 5.57 d ± 0.13 |
ics2 | 5.87 b ± 0.18 | 5.63 d ± 0.13 |
ics3 | 5.82 b,c ± 0.20 | 5.54 d ± 0.10 |
ics4 | 5.61 c,d ± 0.30 | 5.49 d ± 0.13 |
ics5 | 5.95 b ± 0.15 | 5.88 b ± 0.10 |
ics6 | 5.74 c ± 0.14 | 5.66 c,d ± 0.11 |
Sample Code | Sampling Time [Month] | |
---|---|---|
0 | 6 | |
ics0 | 15.42 b ± 0.11 | 15.10 a,b ± 0.15 |
ics1 | 14.70 a ± 0.44 | 14.67 a ± 0.47 |
ics2 | 18.23 d ± 0.59 | 18.13 d ± 0.59 |
ics3 | 17.47 c,d ± 0.55 | 17.37 c,d ± 0.65 |
ics4 | 15.43 a,b,c ± 0.49 | 15.33 a,b,c ± 0.49 |
ics5 | 16.83 c ± 0.50 | 16.80 c ± 0.53 |
ics6 | 15.17 a,b ± 0.47 | 15.10 a,b ± 0.54 |
Sample Code/Population | Sampling Time [Month] | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 (before Freezing) | 0 (after Freezing) | 1 | 2 | 3 | 4 | 5 | 6 | ||
ics0 | No bacteria added | 0.0 a ± 0.0 | 0.0 a ± 0.0 | 0.0 a ± 0.0 | 0.0 a ± 0.0 | 0.0 a ± 0.0 | 0.0 a ± 0.0 | 0.0 a ± 0.0 | 0.0 a ± 0.0 |
ics1 | S. thermophilus | 8.7 b ± 0.2 | 8.7 b ± 0.2 | 8.7 b ± 0.2 | 8.6 a,b ± 0.3 | 8.6 a,b ± 0.3 | 8.5 a ± 0.3 | 8.4 a ± 0.2 | 8.4 a ± 0.3 |
L. delbrueckii subsp. bulgaricus | 6.8 c ± 0.2 | 6.8 c ± 0.2 | 6.4 b,c ± 0.4 | 6.2 a,b ± 0.2 | 6.2 a,b ±0.2 | 6.2 a,b ± 0.2 | 6.1 a ± 0.3 | 5.9 a ± 0.2 | |
ics2 | L. acidophilus La-5 | 8.7 e ± 0.2 | 8.6 d,e ± 0.2 | 8.5 d ± 0.3 | 8.4 c,d ± 0.3 | 8.3 c ± 0.2 | 8.2 c ± 0.3 | 7.4 b ± 0.2 | 7.1 a ± 0.2 |
ics3 | L. plantarum 299v | 8.6 d ± 0.2 | 8.7 d ± 0.2 | 8.3 c ± 0.3 | 8.2 c ± 0.3 | 8.1 c ± 0.3 | 7.5 b ± 0.2 | 7.3 b ± 0.2 | 6.7 a ± 0.2 |
ics4 | L. rhamnosus GG | 8.7 c ± 0.2 | 8.7 c ± 0.1 | 8.5 b,c ± 0.2 | 8.4 b ± 0.2 | 8.2 b ± 0.3 | 8.2 b ± 0.2 | 7.3 a ± 0.2 | 7.0 a ± 0.2 |
ics5 | L. casei DN-114001 | 8.9 d ± 0.1 | 8.8 d ± 0.1 | 8.6 c ± 0.1 | 7.7 b,c ± 0.2 | 7.4 b ± 0.1 | 7.5 b ± 0.3 | 7.4 b ± 0.3 | 6.7 a ± 0.2 |
ics6 | B. animalis subsp. lactis Bb-12 | 8.3 c ± 0.3 | 8.3 c ± 0.4 | 7.9 b,c ± 0.3 | 7.6 b ± 0.1 | 7.2 a,b ± 0.2 | 7.2 a,b ± 0.2 | 7.0 a ± 0.2 | 6.9 a ± 0.2 |
Sample Code | Microbial Sample Composition |
---|---|
ics0 | Control sample (nonfermented white bean homogenate) |
ics1 | White bean homogenate fermented by YC-180 |
ics2 | White bean homogenate fermented by L. acidophilus La-5 |
ics3 | White bean homogenate fermented by L. plantarum 299v |
ics4 | White bean homogenate fermented by L. rhamnosus GG |
ics5 | White bean homogenate fermented by L. casei DN-114001 |
ics6 | White bean homogenate fermented by B. animalis subsp. lactis Bb-12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziarno, M.; Cichońska, P.; Kowalska, E.; Zaręba, D. Probiotic-Enriched Ice Cream with Fermented White Kidney Bean Homogenate: Survival, Antioxidant Activity, and Potential for Future Health Benefits. Molecules 2024, 29, 3222. https://doi.org/10.3390/molecules29133222
Ziarno M, Cichońska P, Kowalska E, Zaręba D. Probiotic-Enriched Ice Cream with Fermented White Kidney Bean Homogenate: Survival, Antioxidant Activity, and Potential for Future Health Benefits. Molecules. 2024; 29(13):3222. https://doi.org/10.3390/molecules29133222
Chicago/Turabian StyleZiarno, Małgorzata, Patrycja Cichońska, Ewa Kowalska, and Dorota Zaręba. 2024. "Probiotic-Enriched Ice Cream with Fermented White Kidney Bean Homogenate: Survival, Antioxidant Activity, and Potential for Future Health Benefits" Molecules 29, no. 13: 3222. https://doi.org/10.3390/molecules29133222
APA StyleZiarno, M., Cichońska, P., Kowalska, E., & Zaręba, D. (2024). Probiotic-Enriched Ice Cream with Fermented White Kidney Bean Homogenate: Survival, Antioxidant Activity, and Potential for Future Health Benefits. Molecules, 29(13), 3222. https://doi.org/10.3390/molecules29133222