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Abstract: Heterocyclic aryl selenides have recently attracted considerable research interest owing to
their applications in biological and pharmaceutical fields. Herein, we describe a simple and general
synthesis of 3-selanylindoles via a novel regioselective C–H selenation of indoles using a bismuth
reagent as a catalyst. The reactions of indoles with diselenides in the presence of 10 mol% BiI3 at
100 ◦C in DMF afforded the corresponding 3-selanylindoles in moderate-to-excellent yields. The
reaction proceeded efficiently under aerobic conditions by adding only a catalytic amount of BiI3,
which was non-hygroscopic and less toxic, and both selanyl groups of the diselenide were transferred
to the desired products.

Keywords: regioselective selenation; bismuth catalyst; bismuth(III) iodide; indole; diaryl diselenide

1. Introduction

Organoselenium compounds have received considerable attention in organic chem-
istry, as well as in biological and pharmaceutical sciences [1–14], and there is growing
interest in biologically active unsymmetrical diaryl selenides containing heterocyclic rings
(i.e., aryl heteroaryl selenides). For example, 3-selanylindoles, compounds with a selenium
side chain substituted at the 3-position of indoles, which are widely used as a basic skeleton
in natural products and medicines, have been reported to have biological activities, such
as the inhibition of tubulin polymerization, antiproliferative activity, anti-inflammatory
properties, and antioxidant activity, and are expected to be used as drug discovery resources
(Figure 1) [15–20]. Therefore, the development of synthetic methods for these compounds
has attracted attention. Direct selenation into indoles has been reported since the 2010s and
is a powerful and commonly used method involving the reaction of available indole deriva-
tives with stable and easy-to-handle diselenides as selenium sources. These reactions can
be broadly classified into those involving the addition of oxidants [21–23] or bases [24–26],
radical reactions using photoreactors [27–34] or electrolytic devices [35,36], and those using
transition metal catalysts containing Pd, Cu, Ag, and Fe [37–42]. However, these reactions
use excessive reagents, additives, and transition metal catalysts of toxicological concern
even in catalytic reactions, and require special equipment and expensive photocatalysts
or supporting electrolytes for the photoreactions and electrolytic reactions, respectively.
Recently, four transition metal-free catalytic reactions were reported (Scheme 1). Braga et al.
developed a catalytic reaction using DMSO as the oxidant in the presence of a catalytic
quantity of I2; however, the reaction required microwave irradiation [43]. The researchers
also used KIO3 as a catalyst, but this reaction required an excess (4 equiv.) of glycerol [44].
Roehrs et al. reported an I2-catalyzed reaction that required the addition of stoichiometric
amounts of urea hydrogen peroxide as an oxidant [45]. Jana et al. developed a reaction
using Cs2CO3 as a catalyst, albeit in an oxygen atmosphere [46]. As mentioned above,
catalytic reactions require additives; otherwise, the reaction conditions are restrictive.
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Scheme 1. Selenation of indoles with diaryl diselenides. 

Inorganic bismuth compounds have attracted attention in the field of organic synthe-
sis since the 1980s because of their excellent reactivity as mild Lewis acids, nontoxicity, 
and environmental friendliness [47–52]. For example, BiCl3, a trivalent bismuth halide, 
has been reported to act as a catalyst for the following reactions: the Mukaiyama aldol 
reaction [53,54], the nucleophilic opening of epoxide [55], deoxygenative allylation [56], 
the Diels–Alder reaction [57,58], the three-component reaction of aldehydes, amines, and 
ketones or trimethylsilyl cyanide [59,60], the Friedel–Crafts reaction [61], the oxy-Michael 
addition [62], the aminooxygenation of propargyl amidine [63], and the tandem cycliza-
tion of tryptamine-ynamide [64]. More recently, BiCl3 has been utilized in the catalytic 
coupling reactions of aryl iodides or aminobenzimidazoles with arylboronic acids for 
C(Ar)–C(Ar) and C(Ar)–N bond formation [65,66]. By contrast, bismuth iodide (BiI3) is 
widely used in semiconductors and solar cell devices [67,68]. However, its chemical reac-
tivity in organic reactions is largely unknown, and its use in catalytic reactions has been 
limited to the deprotection of acetals, guanylation with desulfurization using thioureas 
and amines, and S,S-acetalization of benzaldehyde [69–71]. Inspired by these reports, we 
present a facile Bi(III)-catalyzed regioselective C(Ar)–Se bond formation reaction of in-
doles with diaryl diselenides using BiI3 as the catalyst for the synthesis of 3-selanylindoles 
under mild conditions. The system was simple, containing only substrates and a Bi cata-
lyst. 

2. Results and Discussion 
We initially focused on determining the optimal experimental conditions, including 

screening for suitable catalysts and solvents, for the synthesis of 3-selanylindole 3aa using 
N-methylindole 1a and diphenyl diselenide 2a as model substrates, the results of which, 
are summarized in Table 1. N-methylindole 1a (0.5 mmol) was reacted with 2a (0.25 mmol) 
in the presence of several Bi catalysts (0.05 mmol) in DMF at 100 °C under aerobic 
conditions (entries 1–7). BiCl3, BiBr3, BiI3, and Bi(OTf)3, which function as Lewis acids, 
afforded the corresponding 3-selanylindole 3aa in good-to-excellent yields (77–97%). BiI3 
displayed the best yield and reaction time, and both selanyl groups were efficiently 
transferred from the diselenide to product 3aa (entry 3). Furthermore, although bismuth 
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Inorganic bismuth compounds have attracted attention in the field of organic synthe-
sis since the 1980s because of their excellent reactivity as mild Lewis acids, nontoxicity,
and environmental friendliness [47–52]. For example, BiCl3, a trivalent bismuth halide,
has been reported to act as a catalyst for the following reactions: the Mukaiyama aldol
reaction [53,54], the nucleophilic opening of epoxide [55], deoxygenative allylation [56],
the Diels–Alder reaction [57,58], the three-component reaction of aldehydes, amines, and
ketones or trimethylsilyl cyanide [59,60], the Friedel–Crafts reaction [61], the oxy-Michael
addition [62], the aminooxygenation of propargyl amidine [63], and the tandem cyclization
of tryptamine-ynamide [64]. More recently, BiCl3 has been utilized in the catalytic coupling
reactions of aryl iodides or aminobenzimidazoles with arylboronic acids for C(Ar)–C(Ar)
and C(Ar)–N bond formation [65,66]. By contrast, bismuth iodide (BiI3) is widely used
in semiconductors and solar cell devices [67,68]. However, its chemical reactivity in or-
ganic reactions is largely unknown, and its use in catalytic reactions has been limited to
the deprotection of acetals, guanylation with desulfurization using thioureas and amines,
and S,S-acetalization of benzaldehyde [69–71]. Inspired by these reports, we present a
facile Bi(III)-catalyzed regioselective C(Ar)–Se bond formation reaction of indoles with
diaryl diselenides using BiI3 as the catalyst for the synthesis of 3-selanylindoles under mild
conditions. The system was simple, containing only substrates and a Bi catalyst.

2. Results and Discussion

We initially focused on determining the optimal experimental conditions, including
screening for suitable catalysts and solvents, for the synthesis of 3-selanylindole 3aa using
N-methylindole 1a and diphenyl diselenide 2a as model substrates, the results of which, are
summarized in Table 1. N-methylindole 1a (0.5 mmol) was reacted with 2a (0.25 mmol) in
the presence of several Bi catalysts (0.05 mmol) in DMF at 100 ◦C under aerobic conditions
(entries 1–7). BiCl3, BiBr3, BiI3, and Bi(OTf)3, which function as Lewis acids, afforded the
corresponding 3-selanylindole 3aa in good-to-excellent yields (77–97%). BiI3 displayed
the best yield and reaction time, and both selanyl groups were efficiently transferred from
the diselenide to product 3aa (entry 3). Furthermore, although bismuth halides such as
BiCl3 and BiBr3 are hygroscopic, BiI3 can be easily handled in air without such concerns.
By contrast, antimony catalysts with the same group of atoms as bismuth and other Lewis
acid catalysts were less effective than BiI3 (entries 8–12). A comparison to iodine (I2) was
also attempted; however, the reaction barely progressed (entry 13). Solvent screening
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indicated that the reaction proceeded efficiently in DMF (97%), DMSO (89%), and THF
(60%), whereas CH3CN, MeOH, dioxane, 1,2-DCE, and toluene were inefficient (entries
3 and 14–20). When the reaction was performed at 60 ◦C, the reaction time increased
markedly to 8 h (entry 21). The reaction performed under oxygen produced 3aa in a high
yield (94%), which was almost identical to that obtained under aerobic conditions (entries
3 and 22). However, the yield was notably suppressed (9%) under an argon atmosphere
(entry 23). Decreasing the BiI3 loading from 10 to 5 and 1 mol% markedly prolonged the
reaction time, although the reaction afforded the desired product (entries 24 and 25). The
best result was obtained under aerobic conditions at 100 ◦C when 1a was treated with
0.5 equivalents of diselenide 2a in the presence of BiI3 (10 mol%) in DMF (entry 3). This
selenation could also be scaled up to 10 mmol. The desired product 3aa was obtained in
an excellent yield (99%), generating up to 2.84 g of the product. Furthermore, the reaction
of 1a and 2a with 1 equivalent of TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl] or 1,1-
diphenylethylene as radical scavengers afforded 3aa in yields of 94% and 96%, respectively
(entries 26 and 27). These results indicate that the reaction system does not follow a radical
mechanism. The regiochemistry of 3-selanylindole 3aa was elucidated using 1H-NMR and
single-crystal X-ray analyses (Figure 2). The 1H-NMR spectrum of 3aa was consistent with
that of the standard sample [41].

Table 1. Optimization of the reaction conditions [a].
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Entry Catalyst Solvent Temp. [◦C] Time [h] Yield (%) [b]

1 BiCl3 DMF 100 24 85
2 BiBr3 DMF 100 6 84
3 BiI3 DMF 100 1 97 (91) [c]

4 BiF3 DMF 100 24 14
5 Bi(OTf)3 DMF 100 24 77
6 Bi(ONO2)3 DMF 100 24 49
7 Ph3Bi DMF 100 24 2
8 SbBr3 DMF 100 24 77
9 SbI3 DMF 100 24 74

10 AlCl3 DMF 100 24 11
11 InCl3 DMF 100 24 25
12 FeCl3 DMF 100 24 41
13 I2 DMF 100 24 20
14 BiI3 DMSO 100 2 89
15 BiI3 CH3CN 80 24 45
16 BiI3 THF 60 24 60
17 BiI3 MeOH 60 24 51
18 BiI3 1,2-DCE 80 2 12
19 BiI3 Dioxane 100 24 19
20 BiI3 Toluene 100 24 12
21 BiI3 DMF 60 8 89

22 [d] BiI3 DMF 100 1 94
23 [e] BiI3 DMF 100 24 9
24 [f] BiI3 DMF 100 8 94
25 [g] BiI3 DMF 100 24 92
26 [h] BiI3 DMF 100 1 94
27 [i] BiI3 DMF 100 1 96

[a] Conditions: 1a (0.5 mmol), 2a (0.25 mmol), catalyst (10 mol%), and solvent (2 mL). [b] GC yield using biphenyl
as the internal standard. [c] Isolated yield. [d] Under O2. [e] Under argon. [f] BiI3 (5 mol%). [g] BiI3 (1 mol%).
[h] TEMPO (0.5 mmol). [i] Diphenylethylene (0.5 mmol).
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To understand the scope and limitations of the developed regioselective selenation
reaction, various indoles 1 (0.5 mmol) were reacted with diselenides 2 (0.25 mmol) under the
optimized conditions (Figure 3). The reaction of N-methylindole 1a with diaryl diselenides
2b–i afforded the corresponding products, i.e., 3ab–ai, in good-to-excellent yields, except
for 3ah. For 3ab–ae, the presence of an electron-donating or electron-withdrawing group at
the 4-position of the benzene ring of diselenides 3b–e did not affect the reaction progression,
although the reaction time was slightly prolonged when electron-donating groups were
substituted. Sterically hindered ortho-substituted diselenides 2f and 2g reacted to give
selenides 3af and 3ag, respectively. By contrast, for 2h, which comprises a benzylamino
group, the reaction did not proceed, and the starting materials were recovered. For the
reaction using diaryl diselenide 2i, which bears a heterocyclic ring, 3ai was afforded in a
good yield. Dibenzyl diselenide 2j, which contains a benzyl moiety as the alkyl group, also
afforded 3aj in a good yield (82%). Next, the reaction of diphenyl diselenide 2a with various
N-methylindoles, i.e., 1b–i, bearing electron-donating or electron-withdrawing groups on
the benzene ring afforded the desired products 3ba–3ia in satisfactory yields (75–99%).
The reaction proceeded smoothly from the unsubstituted indoles 1j–l to obtain the parent
3-selanylindoles 3ja–la (79–93%). Furthermore, the reaction of the N-substituted indoles
1m and 1n with benzyl or phenyl groups on the nitrogen also gave the corresponding
products 3ma and 3na; however, N-acetylindole 1o with an electron-withdrawing group
did not give 3oa, and the starting materials were recovered. These results suggest that
the reaction is electrically influenced by the substituents on the indole nitrogen. 2-Phenyl-
and 2-methylindoles 1p and 1q were treated with 2a to afford the 3-selanyl-2-substituted
indoles 3pa and 3qa, respectively. The attempted double selenation of 1a using two
equivalents of diphenyl diselenide 2a did not yield the corresponding 2,3-diselanylindole
3ra; instead, 3-selanylindole 3aa was isolated in a yield of 98%. These results suggest
that this reaction proceeds only at the 3-position of the indole. Finally, the reaction of
1a with dichalcogenides containing sulfur and tellurium was attempted. The reaction
with diphenyl disulfide afforded the desired 3-sulfanylindole 4 in an excellent yield (99%),
although the reaction time (24 h) was longer than that with diselenide, which is a selenium
reagent. By contrast, the reaction proceeded to a certain extent with diphenyl ditelluride,
and indole 5 was obtained in a yield of 26%.
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BiI3 (0.05 mmol), and DMF (2 mL). [b] Yield of isolated products. [c] 2a (0.5 mmol); 3aa was isolated in
a yield of 98%.

However, the reaction mechanism for this selenation remains unclear. Circumstantial
evidence indicates that the reaction was affected by the gaseous atmosphere and proceeded
smoothly in the presence of a molecular oxygen atmosphere while being notably suppressed
in an inert gas atmosphere (Table 1: entries 3, 22, and 23). BiI3 forms a pentacoordinated
complex with bismuth, the central atom, and the oxygen atoms of reagents and solvents
such as Mo8O26 and THF [72,73]. Therefore, a possible mechanism for this reaction is
illustrated in Scheme 2. The initial step was the generation of the pentacoordinated Bi–
peroxo complex A from BiI3 and oxygen. While the selenium atom of the diselenide
coordinates with complex A, the 3-position of the indole nucleophilically attacks another
selenium atom, forming complex B and intermediate C. The aryl selenide anion formed
during the interconversion between complexes B and A attacks intermediate C to form
3-selanylindole 3 and selenol D. Selenol D is converted to diselenide 2 via oxidation in air.
Therefore, the reaction proceeds with 0.5 equivalents of diselenide, and both selanyl groups
are used for the reaction. Bismuth complexes A and B, which are expected to form during
this process, have not yet been confirmed or isolated.
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3. Conclusions

Herein, we report a simple Bi-catalyzed regioselective selenation protocol for the syn-
thesis of 3-selanylindoles under mild reaction conditions. The reaction is atom-economical,
with the participation of both selanyl groups of the diaryl diselenide. Indoles and dise-
lenides bearing different functional groups afforded the corresponding products in satisfac-
tory yields. This reaction is the first example of the Bi-catalyzed C–H selenation of aromatic
heterocycles. Detailed studies on the exact mechanism of this reaction and the synthesis of
asymmetric selenides containing other heterocyclic rings using this protocol are currently
underway.

4. Materials and Methods
4.1. General Information

All the chemicals, including organic solvents, were obtained from commercial vendors
and used as received without further purification. All chromatographic separations were
accomplished with Silica Gel 60N (Kanto Chemical Co., Inc., Tokyo, Japan). Thin-layer
chromatography (TLC) was performed using Macherey–Nagel Pre-coated TLC plates Sil
G25 UV254. Melting point measurements were conducted on a Yanagimoto micro-melting
point hot-stage apparatus (MP-S3) and reported as uncorrected values. In addition, 1H
NMR (TMS: δ = 0.00 ppm as an internal standard), 13C NMR (CDCl3: δ = 77.00 ppm as an
internal standard), 19F NMR (376 MHz, benzotrifluoride; δ = −64.0 ppm as an external
standard), and 77Se NMR (76 MHz, diphenyldiselenide; δ = 463.15 ppm as an external
standard) spectra were recorded on JEOL ECZ-400S (400, 100, 376, and 76 MHz for 1H-,
13C-, 19F-, and 77Se NMR, respectively) spectrometers (JEOL Ltd., Tokyo, Japan). GC-MS
(EI) spectra were recorded on Agilent 5977 E Diff-SST MSD-230 V spectrometer. HRMS
(ESI) spectra were recorded on Agilent 6230 (Agilent Technologies Japan, Ltd., Tokyo,
Japan). X-ray measurements were recorded on Rigaku XtaLAB Synergy with a HyPix3000
diffractometer (Rigaku, Corp., Tokyo, Japan). IR spectra were recorded on an FTIR-8400S
or IRAffinity-1S system from a Shimadzu spectrometer (SHIMADZU Corp, Kyoto, Japan)
and are reported as the frequencies of absorption (cm−1). Only selected IR absorbencies are
reported. The spectroscopic data of the calcogenated indoles 3aa–ad, 3ag, 3ka, 3ma, 3qa,
4 [41], 3aj [74], 3ba [42], 3ea, 3ja, 3na [35], 3la [27], 3pa [75], and 5 [76] are in accordance
with those in the literature, and their characterization data are in Supplementary Materials.

4.2. General Procedure for the Synthesis of Calcogenated Indoles

The indole derivative (1) (0.5 mmol) was added to a solution of dichalcogenide (2)
(0.25 mmol, 0.5 eq.) and bismuth(III) iodide (30 mg, 0.05 mmol, and 10 mol%) in anhydrous
dimethylformamide (2 mL). After stirring at 100 ◦C in an oil bath, the mixture was cooled to
room temperature and evaporated to dryness under reduced pressure. The crude product
was purified on a silica gel column chromatography to give the desired product 3.
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4.3. Characterization Data of Novel Compounds
4.3.1. 3-(4-Trifluoromethylphenyl)selanyl-1-methyl-1H-indole (3ae)

Yield: 171 mg (96%); Colorless prism (from CH2Cl2-Hexane); m.p. 133.0–135.0 ◦C;
Rf = 0.54 (CH2Cl2-Hexane, 1:2). 1H NMR (400 MHz, CDCl3): δ = 7.57 (d, J = 7.8 Hz, 1H;
Ar-H), 7.41 (d, J = 8.2 Hz, 1H; Ar-H), 7.36 (s, 1H; Ar-H), 7.35–7.30 (m, 3H; Ar-H), 7.26 (d,
J = 8.2 Hz, 2H; Ar-H), 7.19 (td, J = 8.2, 0.9 Hz, 1H; Ar-H), 3.88 ppm (s, 3H; N-CH3). 13C
NMR (100 MHz, CDCl3): δ = 140.0 (C), 137.5 (C), 135.9 (CH), 130.4 (C), 128.0 (CH), 127.5 (q,
J = 32 Hz, C), 125.5 (q, J = 3.9 Hz, CH), 124.2 (q, J = 272 Hz, C), 122.7 (CH), 120.7 (CH), 120.2
(CH), 109.7 (CH), 94.6 (C), 33.2 ppm (CH3). 19F NMR (376 MHz, CDCl3): δ = −63.7 ppm.
77Se NMR (76 MHz, CDCl3): δ = 223.4 ppm. IR (ATR): ν~ = 739, 822, 1072, 1105, 1321 cm−1.
MS (EI, 70 eV): m/z (%) = 355 (21) [M]+, 275 (100), 130 (14). HRMS (ESI): m/z calcd for
C16H12F3NSe: 355.0087 [M]+; found: 355.0088.

4.3.2. 1-Methyl-3-(2-methylphenyl)selanyl-1H-indole (3af)

Yield: 129 mg (86%); Colorless plate (from CH2Cl2-Hexane); m.p. 129.0–132.0 ◦C;
Rf = 0.20 (CH2Cl2-Hexane, 1:5). 1H NMR (400 MHz, CDCl3): δ = 7.59 (d, J = 7.8 Hz,
1H; Ar-H), 7.39 (d, J = 8.2 Hz, 1H; Ar-H), 7.31 (s, 1H; Ar-H), 7.30 (td, J = 8.2, 0.9 Hz, 1H;
Ar-H), 7.17 (td, J = 7.3, 0.9 Hz, 1H; Ar-H), 7.10 (d, J = 7.3 Hz, 1H; Ar-H), 7.00 (td, J = 7.8,
2.3 Hz, 1H; Ar-H), 6.86–6.80 (m, 2H; Ar-H), 3.85 (s, 3H; N-CH3), 2.46 ppm (s, 3H; CH3). 13C
NMR (100 MHz, CDCl3): δ = 137.6 (C), 135.92 (C), 135.87 (CH), 134.8 (C), 130.8 (C), 129.7
(CH), 127.8 (CH), 126.4 (CH), 125.2 (CH), 122.4 (CH), 120.5 (CH), 120.4 (CH), 109.5 (CH),
94.9 (C), 33.1 (CH3), 21.2 ppm (CH3). 77Se NMR (76 MHz, CDCl3): δ = 178.3 ppm. IR (ATR):
ν~ = 411, 426, 729, 746, 1456 cm−1. MS (EI, 70 eV): m/z (%) = 301 (40) [M]+, 221 (60), 131
(100), 91 (30). HRMS (ESI): m/z calcd for C16H15NSe: 301.0370 [M]+; found: 301.0370.

4.3.3. 3-(2-Benzothienyl)selanyl-1-methyl-1H-indole (3ai)

Yield: 171 mg (99%); Yellow needle (from CH2Cl2-Hexane); m.p. 144.0–147.0 ◦C;
Rf = 0.21 (CH2Cl2-Hexane, 1:5). 1H NMR (400 MHz, CDCl3): δ = 7.78 (d, J = 7.8 Hz, 1H;
Ar-H), 7.62 (d, J = 6.9 Hz, 1H; Ar-H), 7.60 (d, J = 7.3 Hz, 1H; Ar-H), 7.39 (s, 1H; Ar-H), 7.36
(d, J = 7.8 Hz, 1H; Ar-H), 7.32–7.16 (m, 5H; Ar-H), 3.83 ppm (s, 3H; N-CH3). 13C NMR
(100 MHz, CDCl3): δ = 142.2 (C), 140.5 (C), 137.2 (C), 135.1 (CH), 132.1 (C), 130.3 (C), 126.3
(CH), 124.1 (CH), 123.5 (CH), 122.51 (CH), 122.47 (CH), 121.5 (CH), 120.5 (CH), 120.3 (CH),
109.6 (CH), 97.1 (C), 33.1 ppm (CH3). 77Se NMR (76 MHz, CDCl3): δ = 179.9 ppm. IR (ATR):
ν~ = 426, 486, 556, 723, 735, 1236 cm−1. MS (EI, 70 eV): m/z (%) = 343 (14) [M]+, 263 (100),
207 (21), 131 (43), 89 (21), 44 (29). HRMS (ESI): m/z calcd for C17H13NSSe: 342.9934 [M]+;
found: 342.9932.

4.3.4. 1,5-Dimethyl-3-phenylselanyl-1H-indole (3ca)

Yield: 133 mg (88%); Colorless plate (from CH2Cl2-Hexane); m.p. 104.0–105.0 ◦C;
Rf = 0.58 (CH2Cl2-Hexane, 1:5). 1H NMR (400 MHz, CDCl3): δ = 7.41 (s, 1H; Ar-H), 7.27–
7.20 (m, 4H; Ar-H), 7.14–7.05 (m, 4H; Ar-H), 3.81 (s, 3H; N-CH3), 2.43 ppm (s, 3H; CH3).
13C NMR (100 MHz, CDCl3): δ = 135.83 (C), 135.76 (CH), 134.5 (C), 130.9 (C), 129.8 (C),
128.9 (CH), 128.3 (CH), 125.4 (CH), 124.1 (CH), 120.0 (CH), 109.2 (CH), 95.0 (C), 33.1 (CH3),
21.4 ppm (CH3). 77Se NMR (76 MHz, CDCl3): δ = 206.4 ppm. IR (ATR): ν~ = 424, 457, 731,
793, 1474, 1506 cm−1. MS (EI, 70 eV): m/z (%) = 301 (20) [M]+, 221 (100), 144 (13). HRMS
(ESI): m/z calcd for C16H15NSe: 301.0370 [M]+; found: 301.0369.

4.3.5. 5-Chloro-1-methyl-3-phenylselanyl-1H-indole (3da)

Yield: 135 mg (84%); Colorless plate (from CH2Cl2-Hexane); m.p. 132.0–133.5 ◦C;
Rf = 0.54 (CH2Cl2-Hexane, 1:5). 1H NMR (400 MHz, CDCl3): δ = 7.60 (s, 1H; Ar-H), 7.33 (s,
1H; Ar-H), 7.28–7.19 (m, 4H; Ar-H), 7.15–7.08 (m, 3H; Ar-H), 3.82 ppm (s, 3H; N-CH3). 13C
NMR (100 MHz, CDCl3): δ = 136.9 (CH), 135.9 (C), 133.7 (C), 131.9 (C), 129.0 (CH), 128.6
(CH), 126.5 (C), 125.7 (CH), 122.8 (CH), 119.9 (CH), 110.7 (CH), 95.7 (C), 33.3 ppm (CH3).
77Se NMR (76 MHz, CDCl3): δ = 209.6 ppm. IR (ATR): ν~ = 422, 457, 689, 733, 795, 1422,
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1474 cm−1. MS (EI, 70 eV): m/z (%) = 321 (25) [M]+, 241 (100), 164 (15). HRMS (ESI): m/z
calcd for C15H12ClNSe: 320.9823 [M]+; found: 320.9825.

4.3.6. 1-Methyl-3-phenylselanyl-1H-indole-5-carbonitrile (3fa)

Yield: 149 mg (96%); Colorless prism (from CH2Cl2-Hexane); m.p. 198.0–199.5 ◦C;
Rf = 0.34 (CH2Cl2-Hexane, 1:1). 1H NMR (400 MHz, CDCl3): δ = 7.95 (d, J = 1.4 Hz, 1H;
Ar-H), 7.49 (dd, J = 8.7, 1.4 Hz, 1H; Ar-H), 7.45 (s, 1H; Ar-H), 7.41 (d, J = 8.7 Hz, 1H; Ar-H),
7.23–7.20 (m, 2H; Ar-H), 7.17–7.12 (m, 3H; Ar-H), 3.88 ppm (s, 3H; N-CH3). 13C NMR
(100 MHz, CDCl3): δ = 139.0 (C), 137.6 (CH), 132.8 (C), 130.5 (C), 129.11 (CH), 129.07 (CH),
126.14 (CH), 126.08 (CH), 125.4 (CH), 120.4 (C), 110.5 (CH), 103.6 (C), 97.9 (C), 33.3 ppm
(CH3). 77Se NMR (76 MHz, CDCl3): δ = 212.5 ppm. IR (ATR): ν~ = 461, 474, 631, 692,
741 cm−1. MS (EI, 70 eV): m/z (%) = 312 (17) [M]+, 232 (100), 155 (16). HRMS (ESI): m/z
calcd for C16H12N2Se: 312.0166 [M]+; found: 312.0166.

4.3.7. 1,4-Dimethyl-3-phenylselanyl-1H-indole (3ga)

Yield: 138 mg (92%); Colorless plate (from CH2Cl2-Hexane); m.p. 84.0–85.0 ◦C;
Rf = 0.25 (CH2Cl2-Hexane, 1:5). 1H NMR (400 MHz, CDCl3): δ = 7.29 (s, 1H; Ar-H),
7.24–7.18 (m, 4H; Ar-H), 7.15–7.11 (m, 2H; Ar-H), 7.07 (tt, J = 6.9, 1.4 Hz, 1H; Ar-H), 6.89
(d, J = 7.3 Hz, 1H; Ar-H), 3.80 (s, 3H; N-CH3), 2.69 ppm (s, 3H; CH3). 13C NMR (100 MHz,
CDCl3): δ = 137.9 (C), 136.8 (CH), 136.4 (C), 132.3 (C), 129.0 (CH), 127.9 (CH), 125.2 (CH),
122.4 (CH), 122.0 (CH), 107.5 (CH), 94.6 (C), 33.1 (CH3), 18.7 ppm (CH3). 77Se NMR
(76 MHz, CDCl3): δ = 251.5 ppm. IR (ATR): ν~ = 457, 667, 689, 727, 739, 1474 cm−1. MS (EI,
70 eV): m/z (%) = 301 (33) [M]+, 221 (100), 144 (44). HRMS (ESI): m/z calcd for C16H15NSe:
301.0370 [M]+; found: 301.0369.

4.3.8. 1,6-Dimethyl-3-phenylselanyl-1H-indole (3ha)

Yield: 126 mg (84%); Colorless plate (from CH2Cl2-Hexane); m.p. 86.0–87.5 ◦C;
Rf = 0.45 (CH2Cl2-Hexane, 1:5). 1H NMR (400 MHz, CDCl3): δ = 7.50 (d, J = 8.2 Hz,
1H; Ar-H), 7.26–7.22 (m, 3H; Ar-H), 7.18 (s, 1H; Ar-H), 7.14–7.06 (m, 3H; Ar-H), 7.01 (d,
J = 7.8 Hz, 1H; Ar-H), 3.80 (s, 3H; N-CH3), 2.52 ppm (s, 3H; CH3). 13C NMR (100 MHz,
CDCl3): δ = 137.8 (C), 135.1 (CH), 134.3 (C), 132.4 (C), 128.9 (CH), 128.5 (C), 128.4 (CH),
125.4 (CH), 122.1 (CH), 120.1 (CH), 109.5 (CH), 95.6 (C), 32.9 (CH3), 21.8 ppm (CH3). 77Se
NMR (76 MHz, CDCl3): δ = 209.3 ppm. IR (ATR): ν~ = 430, 598, 689, 729, 797 cm−1. MS (EI,
70 eV): m/z (%) = 301 (19) [M]+, 221 (100), 144 (17). HRMS (ESI): m/z calcd for C16H15NSe:
301.0370 [M]+; found: 301.0371.

4.3.9. 1,7-Dimethyl-3-phenylselanyl-1H-indole (3ia)

Yield: 113 mg (75%); Colorless plate (from CH2Cl2-Hexane); m.p. 110.0–111.0 ◦C;
Rf = 0.34 (CH2Cl2-Hexane, 1:5). 1H NMR (400 MHz, CDCl3): δ = 7.46 (d, J = 7.8 Hz, 1H;
Ar-H), 7.24–7.20 (m, 3H; Ar-H), 7.13–7.05 (m, 3H; Ar-H), 7.01 (t, J = 7.3 Hz, 1H; Ar-H), 6.96
(d, J = 6.9 Hz, 1H; Ar-H), 4.08 (s, 3H; N-CH3), 2.79 ppm (s, 3H; CH3). 13C NMR (100 MHz,
CDCl3): δ = 137.2 (CH), 136.1 (C), 134.2 (C), 131.8 (C), 128.9 (CH), 128.5 (CH), 125.4 (CH),
125.1 (CH), 121.5 (C), 120.6 (CH), 118.7 (CH), 95.7 (C), 37.0 (CH3), 19.6 ppm (CH3). 77Se
NMR (76 MHz, CDCl3): δ = 208.8 ppm. IR (ATR): ν~ = 689, 733, 748, 781, 1450 cm−1. MS (EI,
70 eV): m/z (%) = 301 (18) [M]+, 221 (100), 144 (17). HRMS (ESI): m/z calcd for C16H15NSe:
301.0370 [M]+; found: 301.0370.

4.4. Single-Crystal X-ray Diffraction Experiment of 3aa

A suitable crystal was selected and measured on an XtaLAB Synergy, Single source at
home/near, HyPix3000 diffractometer. The crystal was kept at 103 K in an N2 cold stream
during data collection. Using Olex2 [77], the structure was solved with the SHELXT [78]
structure solution program using Intrinsic Phasing and refined with the SHELXL [79] re-
finement package using Least Squares minimization. Crystal Data for 3aa: C15H13NSe
(M = 286.22 g/mol), monoclinic, space group P21/n (no. 14), a = 7.73810(10) Å, b = 9.03610(10) Å,
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c = 18.1620(2) Å, β = 101.9160(10)◦, V = 1242.56(3) Å3, Z = 4, T = 103 K, µ(Cu Kα) = 3.873 mm−1,
Dcalc = 1.530 g/cm3, 6253 reflections measured (9.954◦ ≤ 2Θ ≤ 136.378◦), and 2263 unique
reflections (Rint = 0.0255 and Rsigma = 0.0218), which were used in all calculations. The final
R1 was 0.0243 (I > 2σ(I)), and wR2 was 0.0652 (all data).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29133227/s1. The characterization data of known
compounds and 1H- and 13C-NMR spectra are available online. The crystal structures have been
deposited to the CCDC with the number 2291058, and the CIF files are also provided.
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