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Abstract: Lignin, a natural pol2ymer with a complex structure that is difficult to separate, is prone to
C-C bond condensation during the separation process. To reduce the condensation of lignin, here,
a novel method is proposed for separating the components by using a combination of maleic acid
(MA)/ozone (O3) to co-treat wheat straw. The removal of lignin, glucan, and xylan was 38.07 ± 0.2%,
31.44 ± 0.1%, and 71.98 ± 0.1%, respectively, under the conditions of ball-milling of wheat straw
for 6 h, reaction temperature of 60 ◦C, and O3 holding time of 9 min. Lignin-rich solutions were
collected to extract the dissolved lignin (DL) after washing the treated samples. The DL obtained
under MA/O3 conditions had a carboxyl group (-COOH) content of 2.96 mmol/g. The carboxyl
group of MA underwent esterification with the hydroxyl group (-OH) at the γ position of lignin and
O3 reacted on the positions of the lignin side chain or the phenolic ring, resulting in a break in the
side chain and the opening of the phenolic ring to introduce the carboxyl group. The 2D-HSQC-NMR
results revealed that the phenolic ring-opening reaction of lignin in the presence of O3 was essentially
free of β-β and β-5 condensation bonds.

Keywords: wheat straw; MA; O3; component separation; lignin

1. Introduction

Lignocellulosic biomass stands as the most abundant natural resource, stored in vari-
ous forms such as in agricultural residues [1], wood [2], graminoids [3], waste paper [4],
kitchen waste [5], etc. These materials are recognized as cost-effective feedstocks for produc-
ing biomaterials, biofuels, and platform chemicals. Among agricultural wastes, wheat straw
is particularly rich in lignin, cellulose, and hemicellulose. Lignin, a natural polymer, boasts
a three-dimensional network composed of guaiacyl (G), syringyl (S), and p-hydroxyphenyl
(H) units interconnected by ether (C-O-C) and carbon–carbon (C-C) bonds [6]. This com-
plex structure endows lignin with numerous functional groups, such as hydroxyl (-OH),
double bonds (C=C), and ether bonds, making it highly suitable for antimicrobial [7] and
anti-ultraviolet applications [8]. Additionally, lignin’s excellent biodegradability, reactivity,
and biocompatibility make it a promising candidate for use as an antimicrobial agent, drug
and gene carrier, and wound healing material [9–12]. Its potential extends to biomedical
applications, including drug delivery and tissue engineering [13–16]. Some scholars have
already elaborated on the biomedical applications of lignin [17].

In biomass systems, lignin reinforces structural components through physical or chem-
ical binding, thereby enhancing the mechanical strength of the cell wall but also hindering
the separation of these components [18]. Moreover, the structure of lignin also contains
hydroxyl groups and many polar groups, which can form strong intramolecular and inter-
molecular hydrogen bonds, making lignin extremely stable and difficult to dissolve [19].
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The chemical separation process of lignocellulose is usually performed with the help of
inorganic acids [20], alkalis [21], ionic liquids [22], or organic solvents in total solvent
systems [23]. However, the traditional method has the disadvantages of difficult solvent
recovery, low lignin utilization, the high cost of ionic liquids, and the severe C-C bond
condensation of lignin under vigorous separation conditions [24]. Condensed lignin in par-
ticular has increased molecular weight and decreased reactivity, rendering it unfavorable
for further depolymerization into platform molecular compounds [25] and the production
of high-value products.

Compared with conventional methods, the use of solid organic acid such as maleic
acid (MA) is versatile, and both wood feedstocks [26] and herbaceous feedstocks [27] can
be rapidly delignified at atmospheric pressure. Cai et al. found that 49.4% of lignin was
removed from birch at 100 ◦C, with a solid–liquid ratio of 1:10, reaction time of 60 min, and
acid concentration of 50 wt% [28]. Su et al. found that 71% of lignin was removed from
wheat straw at 120 ◦C, with a solid–liquid ratio of 1:15, reaction time of 90 min, and acid
concentration of 60 wt% [29]. They also revealed that the treatment using MA hydrotropic
fractionation also introduced carboxyl groups into lignin and enhanced antioxidant activity.
However, the lignin obtained at high temperatures (>100 ◦C) with high solid–liquid ratios
(>1:10) and acid concentrations (>50 wt.%) had a severe degree of condensation, especially
the S and G units. Although the degree of lignin condensation was reduced compared to
traditional methods, condensed lignin is still a problem that cannot be ignored. Reducing
the reaction temperature and the solid–liquid ratio has limited effects on reducing the
degree of lignin condensation and decreases the removal ratios of the components of wheat
straw. To further reduce lignin condensation, this study introduced O3, which has great
oxidizing properties.

O3 is an allotrope of oxygen, a colorless gas at room temperature and pressure, and sol-
uble in water. Among the common oxygen-containing reactive groups, O3 is the strongest
oxidant other than hydroxyl radicals, with an oxidation potential of 2.07 V. It has been re-
ported that O3 can attack the C3-C4 position of lignin to form a muconic acid structure [30],
which introduces carboxyl groups into the lignin structure. In addition, the lignin side
chain can be oxidized with O3, destroying the double bond structure while introducing
hydroxyl and carboxyl groups to increase lignin reactivity [31,32]. It is worth noting that
O3 is extremely unstable [33]; the higher the temperature, the shorter the half-life, and it is
not easy to transport or store, which determines that it must be prepared on-site. Therefore,
the present study envisaged the introduction of O3 into an MA system for rapid lignin
removal at lower treatment temperatures and reduced lignin condensation.

In this study, MA and O3 were combined to separate wheat straw fractions and in-
vestigate the effects of wheat straw pulverization degree, O3 holding time, and reaction
temperature on the removal ratio of the fractions. The experimental procedure and reac-
tion mechanism are depicted in Figure 1. Optimal conditions yielded removal ratios of
38.07 ± 0.2% for lignin, 31.44 ± 0.1% for glucan, and 71.98 ± 0.1% for xylan. Remarkably,
the obtained lignin was free from β-β and β-5 condensation bonds and exhibited a carboxyl
group content of 2.96 mmol/g.
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2. Results and Discussion
2.1. Effect of MA/O3 on the Removal of Components of Wheat Straw

Table S1 shows the component removal ratio of the wheat straw after treatment
under different conditions. For ground wheat straw without ball-milling, the removal
ratios initially increased with time but subsequently decreased under constant temperature
conditions. This trend was attributed to the dense structure and high crystallinity of the
raw material, which impeded the penetration of acid and O3 into the wheat straw [34].
Generally, the removal ratios decreased as the temperature increased to 70 ◦C or 80 ◦C
when O3 was used as the sole treatment. This decline was due to the decreased stability of
O3 (shorter half-life and accelerated decomposition) at higher temperatures, which reduced
its reactivity with the feedstock. The removal ratios of components of wheat straw were
higher under MA/O3 and O3/H2SO4 conditions compared to O3 treatment alone. The
presence of acid promoted the reaction between O3 and the components of wheat straw [35].
The component removal ratio after MA/O3 treatment was higher than that of O3/H2SO4
treatment, indicating that the synergistic effect of MA and O3 was superior to that of O3
and H2SO4.

At 60 ◦C with an O3 holding time of 6 min, the lignin removal ratio under MA/O3
treatment was 25.21%, an increase of 6.41 percentage points compared to the 18.80%
observed with MA treatment alone. When the temperature was raised to 80 ◦C, the
lignin removal ratio increased from 23.75% to 26.70%, representing an increase of only
2.95 percentage points. This demonstrates that although increasing the temperature could
enhance the MA reaction, the gain in lignin removal ratio at 80 ◦C was limited due to O3
decomposition. With an O3 holding time of 6 min, lignin removal was hindered by the O3
decomposition induced by the temperature increase.

The carboxyl group in the MA structure could react with the hydroxyl group in
xylan or dextran to form an ester bond, introducing a carboxyl group into the cellulose.
However, this reaction did not cause significant removal of dextran or xylan, but more
of a structural change. As shown in Table S1, the removal of xylan and dextran was
also relatively high with MA/O3 treatment because the O3 was a non-selective substance
that could react with lignin, dextran, and xylan. O3 underwent oxidation reactions with
carbohydrates, converting reducing end groups to carboxyl groups, converting hydroxyl
groups to carbonyl groups, and breaking ligand bonds through ozonolysis [36].

If the wheat straw was ball-milled for 6 h, the rigid structure made of cellulose, hemi-
cellulose, and lignin was destroyed and the crystallinity was reduced (Figure 2). The
ball-milled wheat straw was more accessible to MA and O3, allowing these agents to
penetrate the straw more thoroughly and facilitating the removal of lignin. As shown in
Table S1, the overall lignin removal ratio from ball-milled wheat straw increased signif-
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icantly. As shown in Table 1, under the optimal conditions of 60 ◦C and an O3 holding
time of 9 min, the lignin removal ratio reached 38.07%, which was 11.37% higher than the
23.32% achieved with ground wheat straw without ball-milling. However, as the temper-
ature increased, the lignin removal ratio slightly decreased, likely due to the accelerated,
ineffective decomposition of O3 at higher temperatures.
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Table 1. WIS a yield and component removal at a reaction temperature of 60 ◦C and O3 holding time
of 9 min.

Item Temp. c

(◦C)

O3
Holding

Time
(min)

Ground Wheat Straw Ball-Milled Wheat Straw

MA d MA/O3 O3
e O3/H2SO4

f MA MA/O3 O3 O3/H2SO4

Yield (%)

60 ◦C

0 78.40 ± 0.3 N/A 63.66 ± 0.5 N/A
9 N/A g 81.20 ± 0.4 92.33 ± 0.5 94.33 ± 0.3 N/A 63.05 ± 0.3 82.67 ± 0.4 70.33 ± 0.6

Lignin removal
ratio b

(%)
0 18.80 ± 0.2 N/A 28.46 ± 0.8 N/A

9 N/A 23.32 ± 0.1 4.77 ± 0.7 14.32 ± 0.3 N/A 38.07 ± 0.2 15.78 ± 0.7 28.25 ± 0.7

Dextran
removal ratio b

(%)
0 13.77 ± 0.3 N/A 22.28 ± 0.3 N/A
9 N/A 21.53 ± 0.3 5.15 ± 0.6 10.54 ± 0.2 N/A 31.44 ± 0.1 14.95 ± 0.6 25.98 ± 0.9

Xylan removal
ratio b

(%)

0 13.76 ± 0.4 N/A 55.16 ± 0.4 N/A
9 N/A 25.35 ± 0.2 10.15 ± 0.4 17.53 ± 0.7 N/A 71.98 ± 0.1 23.37 ± 0.3 59.34 ± 0.5

a Water–insoluble solids. b The removal ratio of components was calculated based on the original content of each
component in the ground wheat straw. c Temperature. d Maleic acid. e Ozone. f Sulfuric acid. g Not applicable.

The oxidation of hydroxylated (HO•) and hydroperoxyl (HOO•) radicals produced
by O3 decomposition affected the removal of glucan and xylan. HOO• free radicals oxidize
the reducing terminal groups of carbohydrates to carboxyl groups (-COOH); HO• free
radicals oxidized both the reducing terminal groups and the aliphatic hydroxyl groups to
carboxyl groups and formed the ketol structure on the polysaccharide chain, leading to
chain breakage [37].

After treatment under the conditions of 6 h of ball-milling, reaction temperature of
60 ◦C, and O3 holding time of 9 min, the removal ratios of lignin, xylan, and dextran
reached 38.07%, 71.98%, and 31.44%, respectively.

2.2. Particle Size, Zeta Potential, and Carboxyl Content of Lignin

In Figure 3a,b, the zeta potential and particle size of the DL under the MA/O3 condi-
tion were −21.45 mV and 221.6 nm, which was smaller than that of MWL (371.5 nm). This
indicated that the lignin underwent significant fragmentation due to the action of O3 and
MA. In Figure 3c, the carboxyl group content of DL obtained under the MA/O3 conditions
was 2.96 mmol/g, whereas the carboxyl group contents of MWL and DL obtained from
MA treatment alone were just 0.31 mmol/g and 0.37 mmol/g, respectively. This suggested
that a substantial number of carboxyl groups were introduced through the esterification
by MA [28] and the oxidation by O3 [32,38]. Due to the introduction of a large number of
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hydrophilic carboxyl groups, the lignin from the MA/O3 system needed to be dissolved in
the more polar deuterated water (D2O) in the subsequent 2D-HSQC-NMR experiments,
while the lignin obtained from the MA system could only be dissolved in the less polar
dimethyl sulfoxide-d6 (DMSO-d6).
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2.3. UV and FT-IR Spectra Analysis

In Figure 4a, three absorbance bands can be observed at approximately 219 nm, 284 nm,
and 324 nm. The introduction of two methoxy groups into the phenolic ring resulted in a
red shift of the maximum absorption of lignin from 280 to 284 nm. This indicated that DL
contained a lower amount of S units than the previously extracted lignin [39].
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O3 holding time: 9 min).

The FT-IR spectrum of lignin, as shown in Figure 4b, exhibited characteristic absorp-
tion bands at 3434 cm−1 and 2929 cm−1, which were attributed to -OH and -CH groups,
respectively. The strong C=O absorption band at 1735 cm−1 was indicative of the esterifica-
tion of MA and the potent oxidative properties of O3, which introduced carboxyl groups
into the lignin structure [40]. Additionally, the -OH and C=O signals of DL obtained under
MA/O3 conditions were significantly stronger compared to those obtained under other
conditions. The characteristic absorption bands at 1637 cm−1, 1511 cm−1, and 1454 cm−1

corresponded to the vibrational modes of the phenolic ring backbone [41]. The vibrational
absorption at 1250 cm−1 in the lignin was attributed to the C-O bond stretching vibration
of the guaiacyl (G) [42]. The presence of hemicellulose in the lignin was suggested by the
characteristic absorption at 1049 cm−1.

2.4. Thermal Stability Analysis

The TG and DTG analyses of lignin are shown in Figure 5, from which the maximum
pyrolysis temperature (Tm) and amount of residual carbon of the lignin for each condition
were derived, presented in Table S2. The Tm of DL obtained from the MA/O3 condition was
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256 ◦C and the residual carbon was 22.02%. Both the Tm and the residual carbon contents
were significantly lower than those observed for lignin treated with O3, MA, or O3/H2SO4.
The Tm of lignin was influenced by the content of β-O-4 bonds and the Mw, which were
the two most critical factors [43]. The reduction in Tm indicated that the thermal stability
of lignin was reduced after MA and O3 treatments. This reduction was attributed to the
depolymerization reaction induced by MA and the oxidation reaction of O3, which broke
the β-O-4 bonds in the lignin, leading to a decrease in its molecular weight [29,31,44].
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2.5. Molecular Weight Analysis

Table 2 shows the MW, Mn, and PI for each of the lignins. Compared with MWL, the
MW and Mn of DL obtained under MA/O3 conditions were significantly smaller, and the
polydispersity index of the samples was on the large side, reaching 3.97. This was attributed
to the strong oxidizing properties of O3 [45] and its significantly accelerated molecular
motion rate at 60 ◦C compared to ambient temperature. O3 continuously penetrated the
wheat straw and reacted with lignin, leading to the opening of the phenolic ring and
oxidation of the side chains [46]. The reactions between O3 and the lignin structures
are illustrated in Figure S1. Due to the inhomogeneity of lignin distribution in the wheat
straw [47], the reaction degree of lignin with MA or O3 varied, resulting in polydisperse Mw.

Table 2. Weight-average (Mw), number-average (Mn) molecular weights, and polydispersity indexes
(PI, Mw/Mn) of lignin.

Name of Sample MWL MA O3 MA/O3 O3/H2SO4

Mw 14,678 8105 9730 7758 7990
Mn 4258 3563 1832 1954 1802
PI 3.45 2.27 5.31 3.97 4.43

The Mw of DL under O3/H2SO4 conditions was smaller than that obtained with the
O3 treatment alone. However, the Mw of DL under MA/O3 conditions was even lower
than that under O3/H2SO4 conditions. This indicated that the combination of MA and
O3 produced synergistic effects on the lignin, making the lignin macromolecules more
susceptible to fragmentation.

2.6. 2D-HSQC-NMR Spectra Analysis

Previous studies were used to assign the signals of lignin and carbohydrate linkage
bonds [48–50]. The 2D-HSQC-NMR profiles of the lignin phenolic ring region and side
chain region are shown in Figure 6 and the semi-quantitative analysis of the units in the
lignin structure is shown in Table 3.
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Table 3. HSQC semi–quantitative analysis of lignin structural units.

Characteristics MWL MA O3 O3/H2SO4 MA/O3

Lignin interunit linkages

β-O-4 50 52 0 0 0
β-β 1 10 0 0 0
β-5 2 7 0 0 0

Condensed degree a 6 10 0 0 0

Lignin aromatic units

G 51 53 62 69 100
S 45 43 38 31 0
H 4 4 0 0 0

S/G 0.87 0.81 0.61 0.45 0
a Condensed degree, % = 100 × (IBα + ICα)/(IAα + IBα + ICα), which refers to the integral value of each signal
in 2D–HSQC–NMR.

2.6.1. Lignin Cross-Signals

Compared with MWL, both G and S unit signals were detected in the phenolic ring
region (δC/δH 90–150/8.0–6.0 ppm) of the 2D-HSQC-NMR spectra of the DL obtained
under O3 and O3/H2SO4 conditions. These signals primarily included the C5-H5 signals
(G5) of the guaiacyl unit and the etherified syringyl units’ C2-H2 and C6-H6 signals (S2,6).
The S/G ratio of MWL was 0.87, while the S/G ratios of DL obtained under O3 and
O3/H2SO4 conditions were 0.61 and 0.45, respectively, indicating a significant decrease in
the proportion of S units. Only G-unit signals, mainly C5-H5 signals of the guaiacyl unit
(G5), could be detected in the phenolic ring region of the lignin under MA/O3 conditions.
In contrast, the DL obtained by MA treatment was rich in G, S, and H unit signals, which
was similar to MWL. The S/G ratio in DL directly decreased from 0.81 to 0 in the MA/O3
condition compared to the MA condition. The reason for this was that under the strong
oxidizing effect of O3, the aromatic ring structure in lignin underwent a 1,3-even ring
addition reaction, and the phenolic ring was cleaved to generate structures such as lactone
bonds. Under the further action of O3, the lactone bond broke and substances such as
muconic acid were generated [30,51], resulting in the missing phenolic ring signal of the
lignin. In contrast, lignin obtained in different separation environments was condensed to
varying degrees, and the phenolic ring was essentially not ring-opened [29]. The signals
at δC/δH 136.13/6.37 ppm and δC/δH 128.73/6.29 ppm for lignin obtained under MA
conditions and MA/O3 conditions were due to the esterification of the γ-OH of lignin
by MA to form Eγ(MA)2,3 [28]. The signal located at δC/δH 114.81/6.11 ppm (PCAβ)
belonged to C8-H8 in p-coumaric acid. In contrast to the MWL and DL obtained from
MA conditions, the DL obtained with the participation of O3 in the reaction did not find
the signals of tricin located at δC/δH 94.2/6.60 ppm (T8), δC/δH 98.8/6.31 ppm (T6), and
δC/δH 104.1/7.07 ppm (T3).

In the side chain region of 2D-HSQC-NMR (δC/δH 50–110/3.1–5.5 ppm), the
methoxy signal was located at δC/δH 55.74/3.81 ppm (-OCH3). The correlation signals
of Cα-Hα and Cγ-Hγ in the β-O-4 structure were identified at δC/δH 72.89/4.73 ppm
(Aα) and δC/δH 61.47/3.74 ppm (Aγ), respectively. Cβ-Hβ cross-peaks centered at
δC/δH 89.31/4.09 ppm (Aβ(S)), 87.15/4.39 ppm (Aβ(G)), and 89.96/4.41 ppm (Aβ(H))
were from β-O-4 substructures linked to S, G, and H units, respectively. The Cγ-Hγ

signal in the resinol structure and the Cγ-Cγ cross-signal at the cinnamyl alcohol end-
group were located at δC/δH 67.87/3.97 ppm (Cγ) and δC/δH 65.56/4.13 ppm (Iγ),
respectively.

The resinol structure and the phenyl coumarin structure represent the common β-β
and β-5 condensation bonds in lignin, respectively. The Cα-Hα signal (Cα) was located
at δC/δH 88.05/4.75 ppm in the resinol structure and the Cα-Hα signal (Bα) was located
at δC/δH 90.3/5.55 ppm in the phenyl coumarin structure. However, the above signals
were not found in the DL structure obtained with O3 participation in the reaction. As
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shown in Table 3, the contents of β-β bonds and β-5 bonds in MA lignin were 10% and 7%,
respectively, which were increased by 9 and 5 percentage points compared to MWL. This in-
dicated that DL underwent significant condensation in the presence of MA. However, after
the introduction of O3, the condensation bonds of lignin were significantly reduced, with
the value directly decreased from 10% to 0, which effectively inhibited the condensation
of lignin.

2.6.2. Carbohydrate Cross-Signals

In Figure 6, the cross-signal peaks of C2-H2, C3-H3, C4-H4, and C5-H5 of β-D-xylopyranose
were located at δC/δH 75.59/3.27 ppm (X2), δC/δH 73.87/3.50 ppm (X3), δC/δH 76.29/
3.55 ppm (X4), and δC/δH 62.86/3.49 ppm (X5) [52]. The cross-signal peaks of C1-H1,
C2-H2, and C3-H3 of furan-type arabinose were located at δC/δH 103.11/4.97 ppm (Ara1),
δC/δH 79.07/3.77 ppm (Ara2), and at δC/δH 77.38/3.71 ppm (Ara3) [29]. C3-H3 signals in
1-O-acetyl-β-D-xylose were located at δC/δH 99.11/4.67 ppm (X31). The cross-signal peaks of
C2-H2 and C3-H3 of O-acetyl-β-D-xylopyranose were located at δC/δH 72.78/4.34 ppm (X’2)
and δC/δH 76.08/4.68 ppm (X’3). The C4-H4 cross-signal in 4-O-methyl-α-D-glucuronic acid
was located at δC/δH 75.48/3.18 ppm (U4) [53].

The lignin obtained by different separation methods except MWL had different degrees
of arabinose and xylose signals. This indicated that the DLs contained some hemicellulose
presence, which corresponded to the results of the FT-IR. Compared with other lignin, the
side chain signals of DL obtained by MA/O3 conditions were more complex and contained
more sugar group signals, corresponding to higher glucan and xylan solubilization rates.

3. Materials and Methods
3.1. Materials

Air-dried wheat straw was harvested from Jurong (Jurong, China). It was processed
to obtain stems (without internodes), ground using a Wiley mill, and screened to retain
the part of 40–80 mesh. The moisture content of the wheat straw was determined to be
8.57 ± 0.1% and the wheat straw was vacuum-dried and prepared for use. Extracts from
the ground wheat straw were removed using benzene/ethanol (2:1, v/v) extraction for 8 h.
The extractive-free ground wheat straw was ball-milled in a PULVERISETTE 7 reinforced
planetary ball-mill (Beijing Feiqi Scientific Instrument Co., Ltd., Beijing, China) at 600 rpm
for 6 h at room temperature. To prevent overheating, it was set to pause for 5 min every
10 min of operation. An ozone generator (Nanjing Qiangti Drying Equipment Co., Ltd.,
Nanjing, China) with a flow rate of 2 g/h was used. Maleic acid (MA) was purchased from
Shanghai Macklin Biochemical Technology Co., Ltd., Shanghai, China.

3.2. Pretreatment Procedure with MA/O3

The ball-milled wheat straw was homogeneously mixed with liquids (60 wt% MA,
H2O, or 60% H2SO4) at a controlled concentration of 30%. The O3 holding time (0, 3, 6, or
9 min) and reaction temperature (50, 60, 70, or 80 ◦C) during the liquid pretreatments were
adjusted accordingly. After that, the samples were centrifuged and washed to neutral. The
remaining water-insoluble solids (WISs) were recovered by vacuum freeze-drying. DL was
obtained by dialysis of the supernatant, rotary evaporation, and lyophilization.

3.3. Chemical Composition

The chemical compositions of the wheat straw raw material and final products (WISs)
were determined according to the method of the U.S. Department of Energy NREL/TP-
510-42618 [54]. The amount of acid-soluble lignin was measured by its absorption at
205 nm using a UV spectrophotometer (TU-1900, Beijing General Instrument Co., Beijing,
China). The glycosyl content was detected and analyzed using an HPLC system (Agilent
1200 Series, Santa Clara, CA, USA) equipped with a BioRad Aminex HPX-87H column
(300 mm × 7.8 mm) and a refractive index detector (RID) (RI-101, Shodex, Tokyo, Japan).
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The contents of lignin, glucan, xylan, and extractives in the ground wheat straw were
obtained as 21.95 ± 0.2%, 36.8 ± 0.3%, 20.9 ± 0.2%, and 3.49 ± 0.1%, respectively.

3.4. Analytical Procedures

Crystallinity was determined using a combined multifunctional X-ray diffractometer
(XRD Ultima IV, Tokyo, Japan) for the ground wheat straw and the 6 h ball-milled wheat
straw. The 2θ angles ranged from 10◦ to 40◦.

The particle size and zeta potential were determined by dynamic light scattering (DLS).
Here, 10 mg of samples was dispersed in 150 mL of deionized water and sonicated for
30 min until completely dissolved. Then, an appropriate amount of this solution was taken
to measure the particle size and zeta potential of the lignin by DLS.

Conductivity titration was used to determine the carboxyl group content in lignin [55].

3.5. Lignin Structure Analysis

MWL was isolated based on previous studies [28]. A total of 6–8 mg of the sample was
weighed in a crucible and its thermal stability was measured using a thermogravimetric
analyzer (TG) in a N2 environment. The temperature range was set between 30 and 800 ◦C,
with a gas flow rate of 20 mL/min and a heating rate of 10 K/min.

UV spectra were obtained with a UV spectrophotometer (TU-1900, Beijing General
Instrument, Beijing, China) in the wavelength range of 200–600 nm. The FTIR spectra of the
lignin were measured by an FT-IR spectrometer (VERTEX 80V, Bruker, Berlin, Germany).
The 2D-HSQC-NMR of lignin was conducted using Bruker AVANCE 600 MHz spectrome-
ter, following our previous work [56]. The 2D-HSQC-NMR spectra obtained were analyzed
using MestRenova-14.0.0-23239 software. The semi-quantitative calculation of lignin struc-
tural units was based on existing references [57,58].

Gel permeation chromatography analysis (GPC, LC-20A, Shimadzu Co., Kyoto, Japan)
was used to determine the molecular weight of the lignin to obtain the weight-average
molecular weight (MW), number-average molecular weight (Mn), and polydispersity index
(PI, MW/Mn). The acetylated lignin was dissolved in THF at a 1 mg/mL concentration [28].
The gel column, which was 300 mm × 8.0 mm in size, was calibrated using polystyrene
standards with peak average molecular weights of 43,600, 30,000, 20,000, 10,000, 4050,
and 2400 Da. The elution rate of THF was maintained at 1 mL/min, while the column
temperature was set at 40 ◦C.

4. Conclusions

In this study, a novel biomass refining method was developed under the following
experimental conditions: ball-milling for 6 h, MA concentration of 60%, wheat straw
concentration of 30%, and O3 holding time of 9 min. Under these conditions, the lignin,
dextran, and xylan removal ratios from the wheat straw were 38.07 ± 0.2%, 71.98 ± 0.1%,
and 31.44 ± 0.1%, respectively. The results demonstrated the feasibility of using the MA/O3
system to separate components of lignocellulosic raw materials. The lignin obtained from
this separation process introduced a substantial number of carboxyl groups through the
esterification by MA and oxidation by O3, with a carboxyl group content of approximately
2.96 mmol/g. Due to the presence of O3, the lignin phenolic ring opened and the side
chains were oxidized, preventing the condensation of G and S units. As a result, the β-β
and β-5 condensation bonds almost disappeared. The lignin obtained in this study had a
small average molecular weight of 7758 and a particle size of only 221.6 nm. This nanoscale
lignin has the potential to be used in functional materials. However, this study is only a
theoretical study of lignin and did not perform effective application research, which needs
to be further explored.
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