Molecular-Network Transformations in Tetra-Arsenic Triselenide Glassy Alloys Tuned within Nanomilling Platform
Abstract
:1. Introduction
2. Results and Discussion
2.1. Medium-Range Structural Correlations in MQ-Derived g-As4Se3
2.2. Medium-Range Structure Response in g-As4Se3 on Nanomilling-Driven Reamorphization
2.3. Thermophysical Heat-Transfer Phenomena and Micro-RS Response in g-As4Se3 Undergoing Nanomilling-Driven Molecular-to-Network Transition
2.4. Cluster Modeling of Molecular-Network Conformations Related to As4Se3 Thioarsenide
3. Materials and Methods
3.1. Glass Samples Preparation, Nanomilling Treatment and Preliminary Characterization
3.2. Medium-Range Structural Research in Molecular-Network Glassy Arsenoselenides
3.3. Complementary Microstructural Research on Glassy Arsenoselenides
3.4. Cluster Modeling of Molecular-Network Conformations in As-Se Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vollath, D. Nanomaterials: An Iintroduction to Synthesis, Properties and Applications, 2nd ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 1–375. [Google Scholar]
- Baláž, P.; Baláž, M.; Achimovičová, M.; Bujňáková, Z.; Dutková, E. Chalcogenide mechanochemistry in materials science: Insight into synthesis and applications (a review). J. Mater. Sci. 2017, 52, 11851–11890. [Google Scholar] [CrossRef]
- Yadav, T.P.; Yadav, R.M.; Singh, D.P. Mechanical Milling: A Top Down Approach for the Synthesis of Nanomaterials and Nanocomposites. Nanosci. Nanotechnol. 2012, 2, 22–48. [Google Scholar] [CrossRef]
- Cangialosi, D.; Alegria, A.; Colmenero, J. Effect of nanostructure on the thermal glass transition and physical aging in polymer materials. Progr. Polymer Sci. 2016, 54–55, 128–147. [Google Scholar] [CrossRef]
- Feltz, A. Amorphous Inorganic Materials and Glasses; VCH: Weinheim, Germany, 1993; pp. 1–446. [Google Scholar]
- Adam, J.-L.; Zhang, X. Chalcogenide Glasses: Preparation, Properties and Application; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: New Delhi, India, 2013; pp. 209–264. [Google Scholar]
- Yang, G.; Bureau, B.; Rouxel, T.; Gueguen, Y.; Gulbiten, O.; Roiland, C.; Soignard, E.; Yarger, J.L.; Troles, J.; Sangleboeuf, J.C.; et al. Correlation between structure and physical properties of chalcogenide glasses in the AsxSe1−x system. Phys. Rev. B 2010, 82, 195206. [Google Scholar] [CrossRef]
- Shpotyuk, Y.; Boussard-Pledel, C.; Bureau, B.; Demchenko, P.; Szlezak, J.; Cebulski, J.; Bujňáková, Z.; Baláž, P.; Shpotyuk, O. Effect of high-energy mechanical milling on the FSDP-related XRPD correlations in Se-rich glassy arsenic selenides. J. Phys. Chem. Sol. 2019, 124, 318–326. [Google Scholar] [CrossRef]
- Shpotyuk, Y.; Demchenko, P.; Bujňáková, Z.; Baláž, P.; Boussard-Pledel, C.; Bureau, B.; Shpotyuk, O. Effect of high-energy mechanical milling on the medium-range ordering in glassy As-Se. J. Am. Ceram. Soc. 2020, 103, 1631–1646. [Google Scholar] [CrossRef]
- Minaev, V.S.; Timoshenkov, P.; Kalugin, V.J. Structural and Phase Transformations in Condensed Selenium. J. Optoelectron. Adv. Mater. 2005, 7, 1717–1741. [Google Scholar]
- Shpotyuk, Y.; Shpotyuk, O.; Lukáčová Bujňáková, Z.; Baláž, P.; Hyla, M.; Boussard-Pledel, C.; Bureau, B. Tailoring Se-rich glassy arsenoselenides employing the nanomilling platform. Mater. Sci. Eng. B 2024, 300, 117069. [Google Scholar] [CrossRef]
- Shpotyuk, Y.; Demchenko, P.; Shpotyuk, O.; Balitska, V.; Boussard-Pledel, C.; Bureau, B.; Lukáčová Bujňáková, Z.; Baláž, P. High-energy mechanical milling-driven reamorphization in glassy arsenic monoselenide g-AsSe: On the path tailoring special molecular-network glasses. Materials 2021, 14, 4478. [Google Scholar] [CrossRef]
- Bastow, T.J.; Whitfied, H.J. Crystal data and nuclear quadrupole resonance spectra of tetra-arsenic triselenide. J. Chem. Soc. Dalton Trans. 1977, 10, 959–961. [Google Scholar] [CrossRef]
- Blachnik, R.; Hoppe, A.; Wickel, U. Die Systeme Arsen-Schwefel und Arsen-Selen und die thermodynamischen Daten ihrer Verbindungen. Z. Anorg. Allg. Chem. 1980, 468, 78–90. [Google Scholar] [CrossRef]
- Blachnik, R.; Wickel, U. Thermal behaviour of A4B3 cage molecules (A = P, As; B = S, Se). Thermochim. Acta 1984, 81, 185–196. [Google Scholar] [CrossRef]
- Shpotyuk, O.; Hyla, M.; Boyko, V. Structural-topological genesis of network-forming nano-clusters in chalcogenide semiconductor glasses. J. Optoelectron. Adv. Mater. 2013, 15, 1429–1437. Available online: https://joam.inoe.ro/articles/structural-topological-genesis-of-network-forming-nanoclusters-in-chalcogenide-semiconductor-glasses/ (accessed on 1 July 2024).
- Shpotyuk, O.; Hyla, M.; Boyko, V. Compositionally-dependent structural variations in glassy chalcogenides: The case of binary As-Se system. Comput. Mater. Sci. 2015, 110, 144–151. [Google Scholar] [CrossRef]
- Zeidler, A.; Salmon, P.S. Pressure-driven transformation of the ordering in amorphous network-forming materials. Phys. Rev. B 2016, 93, 214204. [Google Scholar] [CrossRef]
- Renninger, A.L.; Averbach, B.L. Crystalline structures of As2Se3 and As4Se4. Acta Cryst. B 1973, 29, 1583–1589. [Google Scholar] [CrossRef]
- Bastow, T.J.; Whitfield, H.J.J. Crystal structure of tetra-arsenic tetraselenide. Chem. Soc. Dalton Trans. 1973, 17, 1739–1740. [Google Scholar] [CrossRef]
- Smail, E.J.; Sheldrick, G.M. Tetra-arsenic tetraselenide. Acta Cryst. B 1973, 29, 2014–2016. [Google Scholar] [CrossRef]
- Stergiou, A.C.; Rentzeperis, P.J. The crystal structure of arsenic selenide. As2Se3. Zeitsch. Krist. 1985, 173, 185–191. [Google Scholar] [CrossRef]
- Bonazzi, P.; Bindi, L. A crystallographic review of arsenic sulfides: Effects of chemical variations and changes induced by exposure to light. Z. Kristallogr. 2008, 223, 132–147. [Google Scholar] [CrossRef]
- Sozin, Y.I. Diffractometry of coordination spheres. Crystallogr. Rep. 1994, 39, 6–13. [Google Scholar]
- Rachek, O.P. X-ray diffraction study of amorphous alloys Al-Ni-Ce-Sc with using Ehrenfest’s formula. J. Non-Cryst. Solids 2006, 352, 3781–3786. [Google Scholar] [CrossRef]
- Feng, R.; Stachurski, Z.H.; Rodrigues, M.D.; Kluth, P.; Araujo, L.L.; Bulla, D.; Ridway, M.C. X-ray scattering from amorphous solids. J. Non-Cryst. Solids 2013, 383, 21–27. [Google Scholar] [CrossRef]
- Ehrenfest, P. On interference phenomena to be expected when Roentgen rays pass through a diatomic gas. Proc. KNAW 1915, 17, 1184–1190. [Google Scholar]
- Popescu, M. Medium range order in chalcogenide glasses. In Physics and Application of Non-Crystalline Semiconductors in Optoelectronics; Andriesh, A., Bertolotti, M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1997; pp. 215–232. [Google Scholar]
- Properzi, L.; Santoro, M.; Minicucci, M.; Iesari, F.; Ciambezi, M.; Nataf, L.; Le Godec, Y.; Irifune, T.; Baudelet, F.; Di Cicco, A. Structural evolution mechanisms of amorphous and liquid As2Se3 at high pressures. Phys. Rev. B 2016, 93, 214205. [Google Scholar] [CrossRef]
- Soyer Uzun, S.; Gaudio, S.J.; Sen, S.; Mei, Q.; Benmore, C.J.; Tulk, C.A.; Xud, J.; Aitken, B.G. In situ high-pressure X-ray diffraction study of densification of a molecular chalcogenide glass. J. Phys. Chem. Sol. 2008, 69, 2336–2340. [Google Scholar] [CrossRef]
- Ahmad, A.S.; Lou, H.-B.; Lin, C.-L.; Li, A.-G.; Yang, K.; Glazyrin, K.; Liermann, H.P.; Franz, H.; Stahl, K.; Cui, S.; et al. Reversible devitrification in amorphous As2Se3 under pressure. Phys. Rev. B 2016, 94, 195211. [Google Scholar] [CrossRef]
- Ahmad, A.S.; Glazyrin, K.; Liermann, H.P.; Franz, H.; Wang, X.D.; Cao, Q.P.; Zhang, D.X.; Jiang, J.Z. Breakdown of intermediate range order in AsSe chalcogenide glass. J. Appl. Phys. 2016, 120, 145901. [Google Scholar] [CrossRef]
- Sen, S.; Gaudio, S.; Aitken, B.G.; Lesher, C.E. Observation of a pressure-induced first-order polyamorphic transition in a chalcogenide glass at ambient temperature. Phys. Rev. Lett. 2006, 97, 025504. [Google Scholar] [CrossRef]
- Shpotyuk, O.; Kozdras, A.; Baláz, P.; Bujnáková, Z.; Shpotyuk, Y. Thermal-alteration interphase transformations in natural and synthetic arsenic sulfide polymorphs. J. Chem. Thermodyn. 2019, 128, 110–118. [Google Scholar] [CrossRef]
- Kozdras, A.; Shpotyuk, O.; Mahlovanyi, B.; Shpotyuk, Y.; Kovalskiy, A. Thermodynamic heat-transfer phenomena in nanostructured glassy substances: A comparative study on g-As5Se95 and g-As55Se45. J. Therm. Anal. Calorim. 2023, 148, 2265–2271. [Google Scholar] [CrossRef]
- Kovanda, V.; Vlcek, M.; Jain, H. Structure of As-Se and As-P-Se glasses studied by Raman spectroscopy. J. Non-Cryst. Solids 2003, 326–327, 88–92. [Google Scholar] [CrossRef]
- Golovchak, R.; Oelgoetz, J.; Vlcek, M.; Esposito, A.; Saiter, A.; Saiter, J.-M.; Jain, H. Complex structural rearrangements in As-Se glasses. J. Chem. Phys. 2014, 140, 054505. [Google Scholar] [CrossRef] [PubMed]
- Ystenes, M.; Menzel, F.; Brockner, W. Ab initio quantum mechanical calculations of energy, geometry, vibrational frequencies and IR intensities of tetraphosphorus tetrasulphide, α-P4S4 (D2d), and vibrational analysis of As4S4 and As4Se4. Spectrochim. Acta A 1994, 50, 225–231. [Google Scholar] [CrossRef]
- Ystenes, M.; Brockner, W.; Menzel, F. Scaled quantum mechanical (SQM) calculations and vibrational analyses of the cage-like molecules P4S3, As4Se3, P4Se3, As4S3, and PAs3S3. Vib. Spectrosc. 1993, 5, 195–204. [Google Scholar] [CrossRef]
- Lannin, J.S. Raman scattering properties of amorphous As and Sb. Phys. Rev. B 1977, 15, 3863–3871. [Google Scholar] [CrossRef]
- Whitfield, H.J. The crystal structure of tetra-arsenic trisulphide. J. Chem. Soc. A 1970, 1800–1803. [Google Scholar] [CrossRef]
- Whitfield, H.J. Crystal structure of the β-form of tetra-arsenic trisulphide. J. Chem. Soc. Dalton 1973, 17, 1737–1738. [Google Scholar] [CrossRef]
- Wright, A.C.; Aitken, B.G.; Cuello, G.; Haworth, R.; Sinclar, R.N.; Stewart, J.R.; Taylor, J.W. Neutron studies of an inorganic plastic glass. J. Non-Cryst. Solids 2011, 357, 2502–2510. [Google Scholar] [CrossRef]
- Shpotyuk, O.; Hyla, M.; Shpotyuk, Y.; Balitska, V.; Boyko, V. Computational insight on molecular-network disproportionality in over-stoichiometric AsxS100-x nanoarsenicals (57<x<67). Comput. Mater. Sci. 2021, 198, 110715. [Google Scholar] [CrossRef]
- Shpotyuk, O.; Hyla, M.; Shpotyuk, Y.; Balitska, V.; Kozdras, A.; Boyko, V. Cluster modeling of network-forming amorphization pathways in AsxS100-x arsenicals (50≤x≤57) driven by nanomilling. J. Cluster Sci. 2022, 33, 1525–1541. [Google Scholar] [CrossRef]
- Shpotyuk, O.; Hyla, M.; Boyko, V.; Shpotyuk, Y.; Balitska, V. Cluster modeling of nanostructurization-driven reamorphization pathways in glassy arsenoselenides: A case study of arsenic monoselenide g-AsSe. J. Nanoparticle Res. 2022, 24, 64. [Google Scholar] [CrossRef]
- Tkacova, K. Mechanical Activation of Minerals; Elsevier: Amsterdam, The Netherlands, 1989; pp. 1–155. [Google Scholar]
- Burgio, N.; Iasonna, A.; Magini, M.; Padella, F. Mechanical alloying of the Fe-Zr system in different milling conditions. J. Phys. Colloq. 1990, 51, C4-265–C4-271. [Google Scholar] [CrossRef]
- Heegn, H. Muhlen als Mechanoreaktoren. Chem. Ing. Tech. 2001, 73, 1529–1539. [Google Scholar] [CrossRef]
- Baláž, P.; Achimovicova, M.; Baláž, M.; Billik, P.; Cherkezova-Zheleva, Z.; Manuel Criado, J.; Delogu, F.; Dutkova, E.; Gaffet, E.; Gotor, F.J.; et al. Hallmarks of mechanochemistry: From nanoparticles to technology. Chem. Soc. Rev. 2013, 42, 7571–7637. [Google Scholar] [CrossRef]
- Elliott, S.R. Extended-range order, interstitial voids and the first sharp diffraction peak of network glasses. J. Non-Cryst. Solids 1995, 182, 40–48. [Google Scholar] [CrossRef]
- Elliott, S.R. Second sharp diffraction peak in the structure factor of binary covalent network glasses. Phys. Rev. B 1995, 51, 8599–8601. [Google Scholar] [CrossRef]
- Vaipolin, A.A.; Porai-Koshits, E.A. Structural models of glasses and the structures of crystalline chalcogenides. Sov. Phys. Solid State 1963, 5, 497–500. [Google Scholar]
- Renninger, A.L.; Averbach, B.L. Atomic radial distribution functions in As-Se glasses. Phys. Rev. B 1973, 8, 1507–1514. [Google Scholar] [CrossRef]
- Tanaka, K. Pressure dependence of the first sharp diffraction peak in chalcogenide and oxide glasses. Phil. Mag. Lett. 1988, 57, 183–187. [Google Scholar] [CrossRef]
- Okamoto, H. As-Se (Arsenic-Selenium). J. Phase Equilibria 1998, 19, 488. [Google Scholar] [CrossRef]
- Downs, R.T.; Hall-Wallace, M. The American mineralogist crystal structure database. Am. Mineral. 2003, 88, 247–250. Available online: http://minsocam.org/msa/ammin/toc/Abstracts/2003_Abstracts/Jan03_Abstracts/Downs_p247_03.pdf (accessed on 1 July 2024).
- Villars, P.; Cenzual, K. (Eds.) Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds; Release 2014/15; ASM International: Materials Park, OH, USA, 2014. [Google Scholar]
- Cherin, P.; Unger, P. The Crystal Structure of Trigonal Selenium. Inorg. Chem. 1967, 6, 1589–1591. [Google Scholar] [CrossRef]
- Greaves, G.N.; Elliott, S.R.; Davis, E.A. Amorphous arsenic. Adv. Phys. 1979, 28, 49–141. [Google Scholar] [CrossRef]
- Hu, Y.; Liang, J.; Xia, Y.; Zhao, C.; Jiang, M.; Ma, J.; Tie, Z.; Jin, Z. 2D Arsenene and Arsenic Materials: Fundamental Properties, Preparation, and Applications. Small 2021, 18, 2104556. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, K. DIAMOND 3.2g, Crystal and Molecular Structure Visualization; Crystal Impact GbR: Bonn, Germany, 2011. [Google Scholar]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Roisnel, T.; Rodriguez-Carvajal, J. WinPLOTR: A Windows tool for powder diffraction pattern analysis. Mater. Sci. Forum 2001, 118, 378–381. Available online: http://www.ccp14.ac.uk/ccp/web-mirrors/plotr/Tutorials&Documents/WINPLOTR.pdf (accessed on 1 July 2024). [CrossRef]
- Kraus, W.; Nolze, G. POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Cryst. 1996, 29, 301–303. [Google Scholar] [CrossRef]
- Castellon, C.; Gunther, E.; Mehling, H.; Hiebler, S.; Cabeza, L.F. Determination of the enthalpy of PCM as a function of temperature using a heat-flux DSC—A study of different measurement procedures and their accuracy. Int. J. Energy Res. 2008, 32, 1258–1265. [Google Scholar] [CrossRef]
- Gabbott, P. Chapter 1: A Practical Introduction to Differential Scanning Calorimetry. In Principles and Applications of Thermal Analysis; Gabbott, P., Ed.; Blackwell Publishing Ltd: Oxford, UK, 2008; pp. 1–50. [Google Scholar] [CrossRef]
- Wagner, M. Thermal Analysis in Practice; Collected Applications, Thermal Analysis, Application Handbook; Mettler Toledo AG: Schwerzenbach, Switzerland, 2013; pp. 1–345. [Google Scholar]
- Hehre, W.J.; Stewart, R.F.; Pople, J.A. Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of slater-type atomic orbitals. J. Chem. Phys. 1969, 51, 2657–2665. [Google Scholar] [CrossRef]
- McLean, A.D.; Chandler, G.S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11-18. J. Chem. Phys. 1980, 72, 5639–5648. [Google Scholar] [CrossRef]
- Jackson, K. Electric fields in electronic structure calculations: Electric polarizabilities and IR and Raman spectra from first principles. Phys. Stat. Solidi B 2000, 217, 293–310. [Google Scholar] [CrossRef]
- Holomb, R.; Veres, M.; Mitsa, V. Ring-, branchy-, and cage-like AsnSm nanoclusters in the structure of amorphous semiconductors: Ab initio and Raman study. J. Optoelectron. Adv. Mater. 2009, 11, 917–923. Available online: https://dspace.uzhnu.edu.ua/jspui/bitstream/lib/4320/1/14_OptAdvMat-2009.pdf (accessed on 1 July 2024).
- Phillips, J.C. Topology of covalent non-crystalline solids. I: Short-range order in chalcogenide alloys. J. Non-Cryst. Solids 1979, 34, 153–181. [Google Scholar] [CrossRef]
- Thorpe, M.F. Continuous deformations in random networks. J. Non-Cryst. Solids 1983, 57, 355–370. [Google Scholar] [CrossRef]
- Thorpe, M.F. Bulk and surface floppy modes. J. Non-Cryst. Solids 1995, 182, 135–142. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shpotyuk, O.; Hyla, M.; Shpotyuk, Y.; Lukáčová Bujňáková, Z.; Baláž, P.; Demchenko, P.; Kozdraś, A.; Boyko, V.; Kovalskiy, A. Molecular-Network Transformations in Tetra-Arsenic Triselenide Glassy Alloys Tuned within Nanomilling Platform. Molecules 2024, 29, 3245. https://doi.org/10.3390/molecules29143245
Shpotyuk O, Hyla M, Shpotyuk Y, Lukáčová Bujňáková Z, Baláž P, Demchenko P, Kozdraś A, Boyko V, Kovalskiy A. Molecular-Network Transformations in Tetra-Arsenic Triselenide Glassy Alloys Tuned within Nanomilling Platform. Molecules. 2024; 29(14):3245. https://doi.org/10.3390/molecules29143245
Chicago/Turabian StyleShpotyuk, Oleh, Malgorzata Hyla, Yaroslav Shpotyuk, Zdenka Lukáčová Bujňáková, Peter Baláž, Pavlo Demchenko, Andrzej Kozdraś, Vitaliy Boyko, and Andriy Kovalskiy. 2024. "Molecular-Network Transformations in Tetra-Arsenic Triselenide Glassy Alloys Tuned within Nanomilling Platform" Molecules 29, no. 14: 3245. https://doi.org/10.3390/molecules29143245
APA StyleShpotyuk, O., Hyla, M., Shpotyuk, Y., Lukáčová Bujňáková, Z., Baláž, P., Demchenko, P., Kozdraś, A., Boyko, V., & Kovalskiy, A. (2024). Molecular-Network Transformations in Tetra-Arsenic Triselenide Glassy Alloys Tuned within Nanomilling Platform. Molecules, 29(14), 3245. https://doi.org/10.3390/molecules29143245