Graphene Oxide Nanosheets for Bone Tissue Regeneration
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Graphene Oxide
Fourier Transform Infrared Spectroscopy (FTIR)
2.2. Diffractogram for the Different GO
2.3. RS for the Different GOs
2.4. X-ray Photoelectron Spectroscopy
2.5. SEM Analysis for the Graphene Oxide Samples
2.6. Histology (In Vivo Studies)
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Graphene Oxide (GO)
3.3. Characterization of GO
3.3.1. Fourier Transform Infrared Spectroscopy
3.3.2. X-ray Diffraction
3.3.3. X-ray Photoelectron Spectroscopy
3.3.4. Raman Spectroscopy
3.3.5. Scanning Electron Microscopy
- In vivo biocompatibility study of the different graphene oxide
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Cheng, J.; Chen, F.; Hou, F.; Bai, D.; Xi, P.; Zeng, Z. Biomimetic and cell-mediated mineralization of hydroxyapatite by carrageenan functionalized graphene oxide. ACS Appl. Mater. Interfaces 2014, 6, 3132–3140. [Google Scholar] [CrossRef]
- Gong, T.; Xie, J.; Liao, J.; Zhang, T.; Lin, S.; Lin, Y. Nanomaterials and bone regeneration. Bone Res. 2015, 3, 15029. [Google Scholar] [CrossRef]
- Velasco, M.A.; Narváez-Tovar, C.A.; Garzón-Alvarado, D.A. Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. BioMed Res. Int. 2015, 2015, 729076. [Google Scholar] [CrossRef] [PubMed]
- Dhivya, S.; Ajita, J.; Selvamurugan, N. Metallic nanomaterials for bone tissue engineering. J. Biomed. Nanotechnol. 2015, 11, 1675–1700. [Google Scholar] [CrossRef]
- Locs, J.; Li, W.; Sokolova, M.; Roether, J.A.; Loca, D.; Boccaccini, A.R. Zoledronic acid impregnated and poly (L-lactic acid) coated 45S5 Bioglass®-based scaffolds. Mater. Lett. 2015, 156, 180–182. [Google Scholar] [CrossRef]
- Berger, J.; Reist, M.; Mayer, J.M.; Felt, O.; Peppas, N.A.; Gurny, R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm. 2004, 57, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, M.; Cheng, S.; Zhang, H.; Yang, W.; Yi, Z.; Zeng, Q.; Tang, B.; Ahmad, S.; Sun, T. Polarization independent tunable bandwidth absorber based on single-layer graphene. Diam. Relat. Mater. 2024, 142, 110793. [Google Scholar] [CrossRef]
- Jiang, B.; Hou, Y.; Wu, J.; Ma, Y.; Gan, X.; Zhao, J. In-fiber photoelectric device based on graphene-coated tilted fiber grating. Opto-Electron. Sci. 2023, 2, 230011–230012. [Google Scholar] [CrossRef]
- Kumar, S.; Raj, S.; Sarkar, K.; Chatterjee, K. Engineering a multi-biofunctional composite using poly (ethylenimine) decorated graphene oxide for bone tissue regeneration. Nanoscale 2016, 8, 6820–6836. [Google Scholar] [CrossRef]
- Chung, C.; Kim, Y.-K.; Shin, D.; Ryoo, S.-R.; Hong, B.H.; Min, D.-H. Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 2013, 46, 2211–2224. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.Y.; Tai, Z.X.; Sun, D.F.; Chen, J.T.; Ma, H.B.; Yan, X.B.; Liu, B.; Xue, Q.J. Fabrication and characterization of poly (vinyl alcohol)/graphene oxide nanofibrous biocomposite scaffolds. J. Appl. Polym. Sci. 2013, 127, 1885–1894. [Google Scholar] [CrossRef]
- Sontakke, A.D.; Tiwari, S.; Purkait, M.K. A comprehensive review on graphene oxide-based nanocarriers: Synthesis, functionalization and biomedical applications. FlatChem 2023, 38, 100484. [Google Scholar] [CrossRef]
- Motiee, E.-S.; Karbasi, S.; Bidram, E.; Sheikholeslam, M. Investigation of physical, mechanical and biological properties of polyhydroxybutyrate-chitosan/graphene oxide nanocomposite scaffolds for bone tissue engineering applications. Int. J. Biol. Macromol. 2023, 247, 125593. [Google Scholar] [CrossRef] [PubMed]
- Sahafnejad-Mohammadi, I.; Rahmati, S.; Najmoddin, N.; Bodaghi, M. Biomimetic polycaprolactone-graphene oxide composites for 3D printing bone scaffolds. Macromol. Mater. Eng. 2023, 308, 2200558. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Qu, Q.; Pan, S.; Yu, K.; Liu, Y. Graphene oxide modified sodium alginate/polyethylene glycol phase change material hydrogel scaffold composite with photothermal temperature control for potential bone tissue regeneration. J. Mater. Res. Technol. 2024, 30, 2446–2457. [Google Scholar] [CrossRef]
- de Melo-Diogo, D.; Lima-Sousa, R.; Alves, C.G.; Costa, E.C.; Louro, R.O.; Correia, I.J. Functionalization of graphene family nanomaterials for application in cancer therapy. Colloids Surf. B Biointerfaces 2018, 171, 260–275. [Google Scholar] [CrossRef] [PubMed]
- Ou, L.; Song, B.; Liang, H.; Liu, J.; Feng, X.; Deng, B.; Sun, T.; Shao, L. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part. Fibre Toxicol. 2016, 13, 57. [Google Scholar] [CrossRef] [PubMed]
- Fuente, E.; Menéndez, J.A.; Díez, M.A.; Suárez, D.; Montes-Morán, M.A. Infrared spectroscopy of carbon materials: A quantum chemical study of model compounds. J. Phys. Chem. B 2003, 107, 6350–6359. [Google Scholar] [CrossRef]
- Guerrero-Contreras, J.; Caballero-Briones, F. Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater. Chem. Phys. 2015, 153, 209–220. [Google Scholar] [CrossRef]
- Claramunt, S.; Varea, A.; López-Díaz, D.; Velázquez, M.M.; Cornet, A.; Cirera, A. The importance of interbands on the interpretation of the raman spectrum of graphene oxide. J. Phys. Chem. C 2015, 119, 10123–10129. [Google Scholar] [CrossRef]
- Santamaría-juarez, G.; Gómez-Barojas, E.; Quiroga-González, E.; Sánchez-Mora, E.; Quintana-Ruiz, M.; Santamaría-Juárez, J.D. Safer modified Hummer’s method for the synthesis of graphene oxide with high quality and high yield. Mater. Res. Express 2020, 6, 125631. [Google Scholar] [CrossRef]
- Muzyka, R.; Kwoka, M.; Smȩdowski, Ł.; Díez, N.; Gryglewicz, G. Oxidation of graphite by different modified Hummers methods. Xinxing Tan Cailiao/New Carbon Mater. 2017, 32, 15–20. [Google Scholar] [CrossRef]
- Al-Gaashani, R.; Najjar, A.; Zakaria, Y.; Mansour, S.; Atieh, M.A. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 2019, 45, 14439–14448. [Google Scholar] [CrossRef]
- Schmitz, J.P.; Hollinger, J.O. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin. Orthop. Relat. Res. 1986, 205, 299–308. [Google Scholar] [CrossRef]
- Vajgel, A.; Mardas, N.; Farias, B.C.; Petrie, A.; Cimões, R.; Donos, N. A systematic review on the critical size defect model. Clin. Oral Implant. Res. 2014, 25, 879–893. [Google Scholar] [CrossRef]
- Li, Y.; Chen, S.K.; Li, L.; Qin, L.; Wang, X.L.; Lai, Y.X. Bone defect animal models for testing efficacy of bone substitute biomaterials. J. Orthop. Transl. 2015, 3, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Llano, C.H.; López-Tenorio, D.; Saavedra, M.; Zapata, P.A.; Grande-Tovar, C.D. Comparison of Two Bovine Commercial Xenografts in the Regeneration of Critical Cranial Defects. Molecules 2022, 27, 5745. [Google Scholar] [CrossRef] [PubMed]
- Dill, L.K.; Sims, N.A.; Shad, A.; Anyaegbu, C.; Warnock, A.; Mao, Y.; Fitzgerald, M.; Semple, B.D. Localized, time-dependent responses of rat cranial bone to repeated mild traumatic brain injuries. Sci. Rep. 2022, 12, 14175. [Google Scholar] [CrossRef]
- Fernandez, T.; Valencia, C.H.; Li, Y.; Thouas, G.A.; Newgreen, D.F.; Chen, Q.; Chen, Q. Influence of Degrading Calcium Phosphate on the Remodelling and Mineralisation of Avascular Osseous Tissue in a Rat Calvaria Model. Am. J. Biochem. Biotechnol. 2015, 11, 25–36. [Google Scholar] [CrossRef]
- Sung, W.S.; Mclaughlin, A.; Gabizon, S. Pediatric Hydrocephalus; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9781624177255. [Google Scholar]
- Ran, A.; Guo, S.; Chunyang, Z. Effect of dura mater on enhancement of cranial osteogenesis in rats. Chin. J. Tissue Eng. Res. 2024, 28, 3478–3483. [Google Scholar] [CrossRef]
- Petrie, C.; Tholpady, S.; Ogle, R.; Botchwey, E. Proliferative capacity and osteogenic potential of novel dura mater stem cells on poly-lactic-co-glycolic acid. J. Biomed. Mater. Res. Part A 2008, 85, 61–71. [Google Scholar] [CrossRef]
- Pannarale, L.; Morini, S.; D’Ubaldo, E.; Gaudio, E.; Marinozzi, G. SEM corrosion-casts study of the microcirculation of the flat bones in the rat. Anat. Rec. 1997, 247, 462–471. [Google Scholar] [CrossRef]
- Barba-Rosado, L.V.; Carrascal-Hernández, D.C.; Insuasty, D.; Grande-Tovar, C.D. Graphene Oxide (GO) for the Treatment of Bone Cancer: A Systematic Review and Bibliometric Analysis. Nanomaterials 2024, 14, 186. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Pu, K.; Dong, B.; Liu, Y.; Zhang, L.; Zhang, Z.; Duan, W.; Zhu, Y. Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells. J. Appl. Toxicol. 2013, 33, 1156–1164. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, O.; Ghaderi, E.; Akhavan, A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 2012, 33, 8017–8025. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Shin, Y.C.; Jin, O.S.; Kang, S.H.; Hwang, Y.-S.; Park, J.-C.; Hong, S.W.; Han, D.-W. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells. Nanoscale 2015, 7, 11642–11651. [Google Scholar] [CrossRef]
- Fang, H.; Luo, C.; Liu, S.; Zhou, M.; Zeng, Y.; Hou, J.; Chen, L.; Mou, S.; Sun, J.; Wang, Z. A biocompatible vascularized graphene oxide (GO)-collagen chamber with osteoinductive and anti-fibrosis effects promotes bone regeneration in vivo. Theranostics 2020, 10, 2759. [Google Scholar] [CrossRef]
- Nosrati, H.; Mamoory, R.S.; Le, D.Q.S.; Bünger, C.E. Fabrication of gelatin/hydroxyapatite/3D-graphene scaffolds by a hydrogel 3D-printing method. Mater. Chem. Phys. 2020, 239, 122305. [Google Scholar] [CrossRef]
- Jung, H.S.; Lee, T.; Kwon, I.K.; Kim, H.S.; Hahn, S.K.; Lee, C.S. Surface modification of multipass caliber-rolled Ti alloy with dexamethasone-loaded graphene for dental applications. ACS Appl. Mater. Interfaces 2015, 7, 9598–9607. [Google Scholar] [CrossRef]
- Ettorre, V.; De Marco, P.; Zara, S.; Perrotti, V.; Scarano, A.; Di Crescenzo, A.; Petrini, M.; Hadad, C.; Bosco, D.; Zavan, B. In vitro and in vivo characterization of graphene oxide coated porcine bone granules. Carbon 2016, 103, 291–298. [Google Scholar] [CrossRef]
- Xie, H.; Chua, M.; Islam, I.; Bentini, R.; Cao, T.; Viana-Gomes, J.C.; Neto, A.H.C.; Rosa, V. CVD-grown monolayer graphene induces osteogenic but not odontoblastic differentiation of dental pulp stem cells. Dent. Mater. 2017, 33, e13–e21. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Lozano, F.J.; García-Bernal, D.; Aznar-Cervantes, S.; Ros-Roca, M.A.; Algueró, M.C.; Atucha, N.M.; Lozano-García, A.A.; Moraleda, J.M.; Cenis, J.L. Effects of composite films of silk fibroin and graphene oxide on the proliferation, cell viability and mesenchymal phenotype of periodontal ligament stem cells. J. Mater. Sci. Mater. Med. 2014, 25, 2731–2741. [Google Scholar] [CrossRef] [PubMed]
- Grande-Tovar, C.D.; Castro, J.I.; Valencia Llano, C.H.; Tenorio, D.L.; Saavedra, M.; Zapata, P.A.; Chaur, M.N. Polycaprolactone (PCL)-Polylactic acid (PLA)-Glycerol (Gly) Composites Incorporated with Zinc Oxide Nanoparticles (ZnO-NPs) and Tea Tree Essential Oil (TTEO) for Tissue Engineering Applications. Pharmaceutics 2023, 15, 43. [Google Scholar] [CrossRef]
- Castro, J.I.; Valencia-llano, C.H.; Eliana, M.; Zapata, V.; Restrepo, Y.J.; Mina, H.; Navia-porras, D.P.; Valencia, Y.; Valencia, C.; Grande-tovar, C.D. Chitosan/Polyvinyl Alcohol/Tea Tree Essential Oil Composite Films for Biomedical Applications. Polymers 2021, 13, 3753. [Google Scholar] [CrossRef]
- UNE-EN 30993-6:1995; AEN/CTN Evaluación Biológica de los Productos Sanitarios Parte: Parte 6: Ensayos Relativos a los Efectos Locales Después de la Implantación. UNE Normalización Española: Madrid, Spain, 1995; Volume 51.
F1 | F2 | F3 | ||||
---|---|---|---|---|---|---|
Band | A | PB (cm−1) | A | PB (cm−1) | A | PB (cm−1) |
D* | 50.94 | 1295 | 33.7 | 1275 | 28.28 | 1252 |
D | 70.64 | 1359 | 55.0 | 1340 | 41.19 | 1348 |
D″ | 7.33 | 1456 | 54.6 | 1400 | 32.71 | 1362 |
G | 35.11 | 1597 | 42.3 | 1596 | 46.49 | 1591 |
D′ | 74.26 | 1558 | 49.1 | 1555 | 76.21 | 1521 |
AD/AG | 2.01 | 0.852 | 0.886 | |||
R2 | 0.999 | 0.997 | 0.998 | |||
X2 | 0.00007 | 0.00024 | 0.00014 |
Materials | Study Subject | Findings | Ref |
---|---|---|---|
Reduced graphene oxide/hydroxyapatite | Osteogenic differentiation of human mesenchymal stem cells (hMSCs). | The composite between r-GO and hydroxyapatite causes the differentiation of hMSCs and generates excellent bioactivity as a potential osteoinducer. | [38] |
GO/N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide. | This study hypothesizes that biocompatible GO–collagen is ideal for constructing osteoinductive and anti-fibrosis effects on tissue engineering chambers for bone tissue engineering. | The in vivo test in rats’ MSCs shows that using these systems increases bone mineralization, promotes osteogenic differentiation, improves angiogenic processes, and confers osteoinductive properties. | [39] |
GO/hydroxyapatite/gelatin | This study allows the realization of nanostructured powders to increase the GO reduction rate for forming a 3D structure with excellent mechanical properties. | Well-distributed hap particles facilitate cell growth and proliferation and increase mechanical compressive strength. | [40] |
Dexamethasone loaded and reduced graphene oxide-coated multipass caliber-rolled Ti alloy of Ti13Nb13Zr (Dex-rGO-MPCR-TNZ) | Graphene oxide for dental applications. | Dex-rGO-MPCR-TNZ results in the significantly enhanced growth and differentiation of MC3T3-E1 cells into osteoblasts. | [41] |
Graphene oxide | GO coating with appropriate characterization triggers osteogenic and odontogenic differentiation in stem cells and porcine bone formation. | The GO coating exhibits good mechanical properties, which is demonstrated by increased resistance to fracture loading. | [42] |
Monolayer of graphene | Monolayer graphene presents good biocompatibility properties for craniofacial bone tissue engineering research. | [43] | |
Composite of graphene oxide with silk fibroin | The composite exhibits excellent properties for applications in regenerative dentistry. | [44] |
Samples | F1 | F2 | F3 | Time (h) |
---|---|---|---|---|
Graphite (g) | 3 | 3 | 3 | - |
NaNO3 (g) | 3 | 3 | 3 | |
KMnO4 (g) | 3 | 3 | 3 | 24 h of reaction |
KMnO4 (g) | - | 3 | 3 | 48 h of reaction |
KMnO4 (g) | - | - | 3 | 72 h of reaction |
H2O2 3% (mL) | 180 | 180 | 180 | - |
H2SO4 (mL) | 90 | 90 | 90 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro, J.I.; Payan-Valero, A.; Valencia-Llano, C.-H.; Valencia Zapata, M.E.; Mina Hernández, J.H.; Zapata, P.A.; Grande-Tovar, C.D. Graphene Oxide Nanosheets for Bone Tissue Regeneration. Molecules 2024, 29, 3263. https://doi.org/10.3390/molecules29143263
Castro JI, Payan-Valero A, Valencia-Llano C-H, Valencia Zapata ME, Mina Hernández JH, Zapata PA, Grande-Tovar CD. Graphene Oxide Nanosheets for Bone Tissue Regeneration. Molecules. 2024; 29(14):3263. https://doi.org/10.3390/molecules29143263
Chicago/Turabian StyleCastro, Jorge Iván, Alana Payan-Valero, Carlos-Humberto Valencia-Llano, Mayra Eliana Valencia Zapata, Jose Herminsul Mina Hernández, Paula A. Zapata, and Carlos David Grande-Tovar. 2024. "Graphene Oxide Nanosheets for Bone Tissue Regeneration" Molecules 29, no. 14: 3263. https://doi.org/10.3390/molecules29143263
APA StyleCastro, J. I., Payan-Valero, A., Valencia-Llano, C. -H., Valencia Zapata, M. E., Mina Hernández, J. H., Zapata, P. A., & Grande-Tovar, C. D. (2024). Graphene Oxide Nanosheets for Bone Tissue Regeneration. Molecules, 29(14), 3263. https://doi.org/10.3390/molecules29143263