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Abstract: Due to a wide band gap and large exciton binding energy, zinc oxide (ZnO) is currently
receiving much attention in various areas, and can be prepared in various forms including nanorods,
nanowires, nanoflowers, and so on. The reliability of ZnO produced by a single dopant is unstable,
which in turn promotes the development of co-doping techniques. Co-doping is a very promising
technique to effectively modulate the optical, electrical, magnetic, and photocatalytic properties of
ZnO, as well as the ability to form various structures. In this paper, the important advances in co-
doped ZnO nanomaterials are summarized, as well as the preparation of co-doped ZnO nanomaterials
by using different methods, including hydrothermal, solvothermal, sol-gel, and acoustic chemistry.
In addition, the wide range of applications of co-doped ZnO nanomaterials in photocatalysis, solar
cells, gas sensors, and biomedicine are discussed. Finally, the challenges and future prospects in the
field of co-doped ZnO nanomaterials are also elucidated.
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1. Introduction

As human society has entered industrial civilization, the development model has
become increasingly highly dependent on the input of fossil energy and material resources,
which has generated numerous ecological and environmental problems, thereby leading to
global climate change. Carbon neutrality was proposed at the 75th General Debate of the
United Nations General Assembly to actively address the major global challenge of climate
change. As a result, there is growing concern about the ecological environment and issues
such as water pollution.

At present, semiconductor oxides such as ZnO [1], TiO2 [2], SnO2 [3], Fe2O3 [4],
WO3 [5], and In2O3 [6] have received a lot of attention from researchers because of their
high photocatalytic efficiency [7]. Among them, ZnO, as a broad-band-gap semiconductor
material, has been favored by many researchers for its wide band gap (3.37 eV), large
exciton binding energy (60 meV), and non-toxicity and non-hazardous properties [8]. How-
ever, the rapid complexation of photogenerated electron-and-hole pairs of ZnO limits its
intensive application in photocatalysis, as well as in other fields including solar cells, gas
sensors, optoelectronic devices, and biomedicine [9]. After continuous research, it has
been found that doping is one of the best methods to promote carrier separation and thus
improve the performance of ZnO nanostructures [10]. This is principally because doping
has three effects: (i) narrowing the band gap and promoting adsorption; (ii) improving the
electrical conductivity and carrier mobility of ZnO; and (iii) changing the conduction band
(CB) position and valence band (VB) of ZnO [11]. Especially, the co-doping technique is a
very promising strategy to effectively tune the optical, electrical, magnetic, and photocat-
alytic properties of ZnO, which has become a current research hotspot. The incorporation
of a single dopant produces ZnO with unstable reliability, thus facilitating the study of
co-doping techniques [12]. Currently, there are many studies on the optical, electrical, and
photocatalytic properties of co-doped ZnO. For example, Petronela Pascariu et al. [13]
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synthesized Ni-Co-doped ZnO nanoparticles with enhanced photocatalytic activity using
co-precipitation method. The photocatalytic degradation activity of rhodamine B (RhB) was
enhanced at Ni-Co doping levels of ~0.2%. O.F. Kolomys et al. [14] used the light furnace
method to grow co-doped ZnO particles. Optical and structural properties of co-doped
ZnO particles were systematically investigated using optical absorption spectroscopy. In ad-
dition, co-doped ZnO has good ferromagnetism due to the fact that the unpaired electrons
in the d or f states of transition or rare earth metals can induce magnetism in non-magnetic
semiconductors. Hu et al. [15] demonstrated that the magnetic properties were transformed
from paramagnetic to room temperature ferromagnetic upon the addition of Zn0.98Co0.02O
by co-doping at 2%. First-principle calculations further showed that the strong hybridiza-
tion between the Co three-dimensional state and the Cu-induced donor impurity band at
the Fermi energy level effectively enhances the indirect ferromagnetic superexchange be-
tween Co ions and is responsible for the emergence of ferromagnetism in Co-Cu-co-doped
ZnO. In addition, the energy preference orientation of ZnO along the (001) direction (the
c-axis of the fibrillated ZnO structure) originates from the lowest surface energy in the (002)
plane. The c-axis growth direction is perpendicular to the substrate surface, and the piezo-
electric properties of the film along this direction can be used in acoustic wave devices [16].
For instance, the Ni-V-co-doped ZnO prepared by the hydrothermal method by Kiruthika
Ramany et al. [17] has a greatly reduced internal resistance, resulting in a better conducting
p-n junction, which can be used to fabricate an enhanced self-powered ZnO piezoelectric
accelerometer with significant sensitivity for applications in nano-electromechanical system
accelerometers. ZnO is a promising semiconductor material, but despite breakthroughs in
some areas, it has not yet been commercialized due to some co-doping technology gaps and
economic constraints. However, both challenges and opportunities exist, and key factors
such as the further improvement and refinement of co-doping techniques, new preparation
techniques, accurate characterization techniques, and advanced computational simulations
still need to be further investigated.

In this paper, the advances of co-doped ZnO nanomaterials have been summarized in
detail, focusing on the various preparation methods of co-doped ZnO nanomaterials. In
addition, the applications in photocatalysis, solar cells, gas sensors, and biomedicine are
also discussed. Meanwhile, the challenges and prospects facing the field of co-doped ZnO
nanomaterials are elucidated (Figure 1).
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2. Preparation Methods of Co-Doped ZnO

In general, the physical characteristics and applications of co-doped ZnO depends
on factors such as particle size, impurity, morphology, band gap, number of surface-
active sites, dopant type, and dopant concentration [10,11], which in turn are related to its
preparation methods. In order to continually explore the applications of co-doped ZnO, var-
ious methods have been developed to prepare co-doped ZnO nanocomposites, including
hydrothermal [17,30–33], solvothermal [34], sol-gel [35,36], combustion [37], spray pyroly-
sis [38], wet chemical “liquid ceramics” [39], chemical [40], radio frequency (RF) magnetron
sputtering [8,41], acoustic chemistry [42], and electron beam evaporation deposition [43].
Different types of morphologies and nanostructures can be obtained using different synthe-
sis methods. These nanostructures include thin films, nanoplates, nanospheres, nanowires,
nanorods, nanotubes, nanoflowers, nanofibers, and nanoribbons [44–49].

2.1. Hydrothermal

The hydrothermal method is a simple and well-established synthetic technique that
mimics the growth of crystals during natural mineralization, using water as a solvent
and reacting in a closed system at a certain temperature and pressure. It is considered
to be one of the most attractive methods for the preparation of ZnO due to its ease of
set-up, controllability, cost-effectiveness, relatively low temperature, and environmental
friendliness. Moreover, the hydrothermal method can be used to obtain different forms of
co-doped ZnO by adjusting parameters such as the reagent concentration, temperature,
reaction time, pH, additives, and surfactants [50–56]. To date, hydrothermal synthesis, as
an important preparation technique, has been extensively used to prepare co-doped ZnO
systems. It has the potential to be studied both in the degradation of organic dyes and in
the magnetic studies of co-doped ZnO, among others.

Yang et al. [57] prepared Zn1−2xFexCexO (x = 0, 0.01, 0.03, 0.04) composites; Fe(NO3)3·9H2O,
Ce(NO3)3·6H2O, and LiOH·H2O were used as the Fe, Ce, and base sources, respectively.
Varying ratios of Fe(NO3)3·9H2O and Ce(NO3)3·6H2O (0, 0.03, 0.09, and 0.12 mmol) and
3 mmol of Zn(NO3)2·6H2O were added to 50 mL of deionized water and stirred for 1 h.
Then, 0.004 g of hexadecyl trimethyl ammonium bromide (CTAB) was added as a surfactant
and stirring was continued for 2 h to mix the reagents uniformly. The mixed solution was
poured into a Teflon-lined stainless steel autoclave of 100 mL capacity and heated at 150 ◦C
for 2 h. After natural cooling, the sample was removed, washed with deionized water and
pure ethanol 3 times, and placed in a vacuum-drying oven at 80 ◦C for 8 h. After cooling,
the sample was ground, placed in a muffle furnace, and sintered at 600 ◦C for 2.5 h to
obtain the final sample, and then the photocatalytic efficiency of Fe-Ce-co-doped ZnO on
the organic dye methylene blue under simulated sunlight was investigated. Moreover,
Santanu Das et al. [58] reported the presence of ferromagnetic ordering and paramagnetic
contribution in Cu-Co-co-doped ZnO nanoparticles prepared by the hydrothermal method.

2.2. Solvothermal

Based on the hydrothermal method, the solvothermal method is based on the re-
placement of water with other solvents as a way to achieve the experimental purpose.
The solvothermal method is favored by researchers because of its simple process, low
equipment requirements, high purity, controllable particle size, and morphology of the
prepared material [59]. In order to investigate the effect of mobile electrons on the magnetic
properties of transition-metal-substituted ZnO nanocrystals, Anzelms Zukuls et al. [60]
synthesized zinc acetate dihydrate (99.5%), manganese acetate tetrahydrate (99.0%), nickel
acetate tetrahydrate (99.0%), and ferric chloride (98%); diolol® (anhydrous ethanol de-
natured by addition of 2% isopropanol and 2% methyl ethyl ketone), 0.5 M anhydrous
ethanol gallium chloride (99.99%) solution, and sodium hydroxide (98.0%) were used as
the raw materials for the synthesis. Beginning with Solution A, 2 mmol of Me precursor
salt was dissolved in 15 mL of ethanol (diol) and heated to 60 ◦C. In a two-necked flask
with a round bottom, Solution B was made by combining 30 milliliters of ethanol (diol)
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with 0.6 g of NaOH, then heating it while stirring to reflux boiling. Next, using a syringe
with a needle through a perforated rubber stopper, Solution A was introduced to Solution
B. After 30 min of reflux stirring, the mixture was moved to an autoclave reactor vessel and
heated to 150 ◦C for a whole day. After that, the autoclave was allowed to cool to ambient
temperature. To remove by-products that included salt, the resulting nanocrystals were
carefully cleaned three times using methanol and centrifugation. In the last stage, hexane
was utilized for storage rather than methanol in order to prevent zinc oxide from degrading
prematurely.

Also, Andris Šutka et al. [61] prepared dilute magnetic and plasma Co-Ga-co-doped
ZnO nanocrystals by solvothermal synthesis in ethanol. When the co-dopant Ga3+ gradu-
ally replaces Zn2+ in Zn0.95Co0.05O, it appears that free electrons make it difficult for zincate
ions to diffuse to the crystal surface due to Coulomb repulsion.

2.3. Sol-Gel

The sol-gel method has various advantages, such as a low cost, simple equipment,
low operating temperature, and easy adjustment of composition and dopants [62,63].
Specifically, the sol-gel method has the following characteristics [64]: (i) the process is
simple, the equipment requirements are low, and the material preparation process is easy
to control, which allows for the preparation of some materials that cannot be prepared
by traditional methods; (ii) the chemical composition of the material can also be precisely
controlled, and it is easy to carry out precise doping, thus controlling its microstructure;
(iii) the composition of the prepared material is uniform, and the concentration of the
product is high; (iv) the sol-sintering temperature of the gel method is not very high and
the film area formed on the substrate is large. The process of the sol-gel method can be
divided into four steps: precursor dissolution, solution gelation, gel solidification, and
solid sintering.

Abdullah S. Alshammari et al. [65] prepared co-doped ZnO nanostructured thin
films of Cd and 1, 2, and 3 wt.% Na on a glass substrate by using sol-gel spin-coating
technique. It was found that the band gap of the co-doped films increased with increasing
Na concentration, and not only did the band gap of the co-doped nanostructured films
change, but the grain size and morphology of the films were also considerably affected.
Chien-Yie Tsay et al. [66] reported the preparation of Ga-N-co-doped ZnO thin films on
alkali-free glass substrates using a sol-gel spin-coating process. The doping of Ga and N
resulted in significant changes in the microstructure of the films, with a decrease in the
roughness of the surface and an increase in the transparency in the visible range.

2.4. Other Methods
2.4.1. Combustion

The combustion method is favored by many researchers for its advantages of a simple
production process, fast reaction speed, high product purity, energy savings, and cost
reduction [37,67,68]. P. Sathish et al. [69] prepared 2 at.% Ag (3, 6 at.%)-Fe-co-doped ZnO.
With the increase in Fe doping concentration, the lattice parameters a and c marginally
decreased as a result of the nanoparticles’ decreasing size. The decrease in the size of the
nanoparticles was due to the increase in Fe doping concentration. The reduced crystal
size meant that the Ag-Fe co-doping played a vital role in the study of improving the
antimicrobial properties of ZnO nanopowders.

2.4.2. Spray Pyrolysis

Spray pyrolysis is an ideal method for growing thin films because of the simple
equipment required, low cost, easy doping of multiple elements, fast film growth rates, and
short preparation cycles, and it also combines the features of both vapor- and liquid-phase
methods for large-scale production. In addition, it provides an efficient method to grow
and coat films using almost any element and does not require vacuum or high-quality
targets or substrates [70–73]. B. Askri et al. [74] found that indium doping enhanced blue
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light emission intensity by increasing the carrier concentration at the oxygen vacancy level.
Toshiyuki Fujimoto et al. [75] used an ultrasonic spray pyrolysis method. It was shown that
ZnO particles loaded with 0.1% Au had the best photocatalytic activity, while ultrasonic
spray pyrolysis could generate particles in one simple step.

2.4.3. Wet Chemical “Liquid Ceramic”

B.B. Straumal et al. [76] prepared pure ZnO films using a wet chemical “liquid ceramic”
method and concluded that the high-temperature ferromagnetic phenomenon of pure ZnO
nanoparticles was often defect-driven, showing that the grain boundaries of ZnO ferro-
magnetic nanoparticle films prepared by the “liquid ceramic” method were surrounded by
amorphous layers.

2.4.4. Chemical

Eu-Ce-co-doped ZnO nanorods were successfully synthesized by a chemical precipita-
tion method using polyvinylpyrrolidone as a surfactant by G. Murugadoss et al. [40]. The
doping of Eu and Ce into the ZnO matrix caused the single-cell volume of the doped ZnO
nanocrystals to expand, modulating the band gap of bulk ZnO (3.4 eV). It was shown that
the product had good crystallinity and a nanoscale structure.

2.4.5. RF Magnetron Sputtering

Liu et al. [41] found that the annealing temperature had a great influence on the
crystal structure and optical properties of Al-Eu-doped ZnO films; thus, Al-Eu-doped ZnO
annealed at 500 ◦C had good film quality.

2.4.6. Acoustic Chemical

The acoustic chemical method provides ZnO nanoparticles with lamellar morphology.
N.F. Andrade Neto et al. [42] prepared Co-Mn-co-doped ZnO nanoparticles by the acoustic
chemical method. It was found that the ZnO powder did not form a secondary phase
and had the initial morphology of a nanoplate. This morphology was lost after doping,
forming small hemispherical nanoparticles, reducing the size of the ZnO nanoparticles and
increasing their surface area.

2.4.7. Electron Beam Evaporation Deposition

Li et al. [43] prepared Co-Cu-co-doped ZnO polycrystalline films on single-crystal Si
(111) substrates using an electron beam evaporation deposition film-forming process. The
Co-Cu co-doping of ZnO changed the forbidden bandwidth of ZnO, which promoted exci-
ton complex luminescence. It was shown that a certain amount of Co-Cu co-doping affected
the concentration of zinc vacancies and zinc gap-filling defects in the ZnO films, which
resulted in a significant enhancement of the intensity of the violet, blue, and green peaks.

3. Performance Study of ZnO
3.1. Optical Performance

The presence of both substances in zinc oxide is also a good alternative to achieving
optical stability [77]. In order to use ZnO as a photocatalyst in the visible region, the wide
band gap of ZnO and its optical properties need to be reduced by techniques such as
the introduction of appropriate dopants [78–80]. For example, the ionic radii of Ni2+ and
Co2+ are comparable to those of Zn2+, so Lubna Mustafa et al. comfortably modulated the
dopant ions at the host site, thus significantly affecting the optical properties without much
impact on the structure [81]. In addition, Al-Eu-ZnO [82], V-La-ZnO [83], S-N-ZnO [84],
Co-Ni-ZnO [24], etc. also effectively enhanced the optical properties of ZnO.

The co-dopant atoms and defects can effectively modulate the band gap of ZnO and
will change the material properties in different ways, which is attractive for UV–visible
technology [85,86]. J. El Ghoul [87] reported the structural and optical properties of V-Er-
co-doped ZnO nanoparticles. The doping of Er and V ions in the ZnO crystal structure
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changed the morphology of the ZnO crystal structure. The structure is characterized as a
fibrillated zincite structure with a grain size of about 45 nm, and secondary phases were
detected. It has strong reflectivity in the visible range and high absorption in the UV
spectral range (Figure 2a–c). The optical properties of ZnO nanostructures have attracted
much attention due to the fascinating optoelectronic properties and the corresponding
structural and dimensional diversity [88]. For example, Liu et al. [41] investigated the
optical properties of Al-Eu-co-doped ZnO using first-principle and magnetron-sputtering
techniques. Different models of Al, Eu, and Al-Eu-doped ZnO were constructed based
on the energy principle. The transmittances of Al-Eu-co-doped ZnO films were all lower
compared to pure ZnO, while the 500 ◦C-annealed Al-Eu-co-doped ZnO showed a lower
transmittance in the wavelength range of 320~680 nm, indicating better absorption, which
was in agreement with the simulation results (Figures 2d and 3a). 
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Figure 2. (a) SEM micrographs and (b) TEM micrographs of ZnV4Er4; (c) reflectance spectra 
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transmittance and wavelength [41] (© 2021 Published by Elsevier B.V). 

Figure 2. (a) SEM micrographs and (b) TEM micrographs of ZnV4Er4; (c) reflectance spectra measured
at 300 K [87] (copyright © 2017, American Chemical Society); (d) relationship between transmittance
and wavelength [41] (© 2021 Published by Elsevier B.V).

The growing demand for information traffic urgently requires the development of
light sources and optical amplifiers. Especially with the arrival of the 5G era, infrastructure
development has put forward higher requirements for the entire optical communication
industry. Traditional photodetectors may not be able to meet the requirements of cer-
tain special application scenarios due to their simple detection functions [89–91]. In 2020,
Dong et al. [90] found that thermal treatment improves the quality of ZnO films and acti-
vates Tm3+ and Er3+ ions. Thereby, the emission lifetimes associated with rare earth ions
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increased significantly with the annealing temperature, and then the lifetimes and lumi-
nescence intensities increased significantly with the annealing temperature when the rare
earth ions were directly excited. These results help to explore ways to increase Tm- and-Er
related IR emission and point the way to the practical application of Er-Tm-co-doped ZnO
thin films as photoemitters and IR broadband optical amplifiers (Figure 3b,c).
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B.V.); (b) PL spectra of the Er-Tm-co-doped ZnO films annealed at 900 ◦C and measured at different
temperatures in the range of 10–350 K (Er3+: 4I13/2–4I15/2 and Tm3+: 3F4–3H6: energy level jump
process of Er3+ and Tm3+) and (c) temperature dependencies of the normalized PL intensity of the Er-
Tm-co-doped ZnO films [90] (copyright © 2020, American Chemical Society); (d) dielectric properties
of Zn(1−2x)(Li-In)xO samples sintered at 1548 K [92] (© 2016 Elsevier B.V. All rights reserved).

3.2. Electrical Performance

The different behaviors (dielectric constant, modulus, conductivity, impedance, ca-
pacitance, etc.) of ZnO-based oxides have been extensively studied to understand the
electrical properties of ZnO-based materials [93]. Ohmic and Schottky contacts have been
demonstrated, but native point defects and surface chemistry strongly influence their
properties [94]. For example, Li et al. [95] found that carriers were introduced in the ZnO
crystal matrix due to the substitution of Gd3+ ions and Al3+ ions for Zn2+. As a result, the
ZnO films have higher conductivity and carrier concentration with increasing Al doping.
The high exciton binding energy is a special property of ZnO that is closely related to
the dielectric constant of the material, and the eventual decrease in the dielectric constant
increases the Coulomb interaction energy between electrons and holes, which may lead to
an enhancement of the exciton binding energy [96]. The development of the dielectric prop-
erties is due to defects in the interstitial position of Zn excess and lack of oxidation, as pure
ZnO is sensitive to oxidation and oxygen (O2) uptake tends to reduce its dielectric proper-
ties [97]. The enhanced dielectric properties of ZnO nanoparticles are due to (i) rotational
directional polarization and space charge polarization due to a large number of oxygen
vacancies and nano-size effects; (ii) the electronegativity of the doped atom being less than
that of Zn; (iii) the movement of defect charges generating microcapacitance according to
the grain boundary layer mechanism [92,97,98]. For example, Huang et al. [92] reported
that Li-In-co-doped ZnO ceramics Zn(1−2x)(Li-In)xO obtained huge dielectric constants up
to 3800 at an x of 0.5% (Figure 3d). The dielectric constant ε′ decreased with increasing
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application frequency, and remained constant at higher frequencies for the co-doped ZnO
samples, while it decreased at higher frequencies for the pure ZnO samples. From Figure 4a,
it can be seen that the relaxation process occurred in the dielectric constant ε′ of all ZnO
samples [99].

Doping improves the electrical properties of ZnO, such as in Ag-Cu-co-doped ZnO,
Mg-Al-co-doped ZnO, and Tb-Yb-co-doped ZnO [96,100–105], which have shown good
results in terms of electrical properties. Various factors affect electrical conductivity, includ-
ing the number of carriers, the mobility of free charges, and the availability of connected
polar domains as conduction pathways [99]. In ZnO nanomaterials, depending on the
synthesis process and post-annihilation treatment, native point defects such as zinc gaps
and oxygen vacancies are induced as donors in the nanostructures, leading to different
conduction mechanisms of free charge carriers and the formation of inhomogeneous di-
electric structures [106]. Gao et al. [107] established a 2 × 2 × 2 super monolithic model
of Ga-Eu-co-doped ZnO based on the density functional theory and investigated the en-
ergy band structure (Figure 4b) and density of states of Ga-Eu-co-doped ZnO structures
(Figure 4c). The results showed that the energy band structure of the Ga-Eu-co-doped
ZnO indicates that the electrons could move from the valence band to the conduction
band more efficiently, which in turn led to the increase in the conductivity and the carrier
concentration; the doped density of states shifted to the low-energy direction and the band
gap became wider due to the dopant-generated carriers that changed the electronic state
of ZnO.
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3.3. Magnetic Properties

High magnetic fields have been used in the preparation of various materials for ex-
treme conditions with high energy, indirect contact, and controllability. Similarly, in the
preparation of ZnO-based dilute magnetic semiconductor materials, high magnetic fields
are utilized to modulate the microstructure and magnetic properties, such as increasing
the Curie temperature, inducing the transition from paramagnetic or antimagnetic to fer-
romagnetic, and increasing the ferromagnetism, as well as exploring the ferromagnetism
mechanism from another angle [108]. Ferromagnetism is not an intrinsic property of the
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ZnO lattice, but of the ZnO/ZnO grain boundaries. Though the ZnO polycrystal can be
converted to the ferromagnetic state even without doping with “magnetic atoms” such as
Mn, Co, Fe, or Ni, this doping promotes the appearance of ZnO ferromagnetism, increases
saturation magnetization, and decreases the amount of critical grain boundaries required
for frequency modulation [109]. Co-doping affects the local structure and subsequent
ferromagnetic ordering of transition-metal-doped ZnO [110]. The more traditional diluted
magnetic semiconductor (DMS) materials, such as GaMnAs, InMnAs, and GaMnSb, show
relatively low magnetic ordering temperatures (~170 K for GaMnAs). These traditional
DMS materials provide a rich environment for the fundamental studies of semiconductor
magnetism, but the lower Curie temperatures limit their potential applications. The wide-
band materials GaMnN and ZnMnO promise strong room temperature ferromagnetism.
Figure 5a shows that wider-band-gap semiconductors with smaller lattice constants, larger
p-d hybridization, and smaller spin–orbit interactions are expected to have higher Curie
temperatures [111]. Researchers have explained the observed magnetic properties through
different mechanisms such as defects, secondary phases, TM clusters, impurity phases,
bound magnetic polaritons, and vacancies [78]. For example, Wu et al. [112] used the
hydrothermal method to synthesize the DMS Zn0.95Fe0.05Ni0.05O; Figure 5b shows the
magnetic hysteresis loops of the Zn0.95Fe0.05−xNixO samples measured at room tempera-
ture. The results showed that the pure ZnO nanorods had minor paramagnetism at room
temperature, while the Fe-Ni-co-doped ZnO exhibited significant ferromagnetism. The
coercivity and saturation magnetization intensity of the co-doped samples were greater
than those of the singly doped and pure ZnO samples.

For a clearer and more intuitive understanding, studies on the magnetic properties of
co-doped ZnO are summarized in the table as shown in Table 1.

Table 1. Review of reported co-doped ZnO ferromagnets.

Composition TM Content Magnetism TC (K) Fabrication Method References

Fe-Nd-ZnO Fe: 2.00%
Nd: 1.00~5.00% 0.003 µB 5–380 hydrothermal [18]

Co-Ga-ZnO Co: 5.00%
Ga: 1.00% −0.800 emu/g 500 PLD [113]

Mn-P-ZnO Mn: 0.05%
P: 0.02% 0.050 emu/g 300 PLD [114]

Co-Al-ZnO Co: 0.04%
Al: 0.01% 0.830 µB/Co2+ 5–350 molecular beam

epitaxy [115]

Mn-Ni-ZnO Mn: 0.02%
Ni: 0.01% 0.005 emu/g 50–350 hydrothermal [19]

Na-Co-ZnO Na: 0.03%
Co: 0.05% 0.023 emu/g 300 sol-gel [116]

Mn-Fe-ZnO Mn: 0.02%
Fe: 1.00% ~0.035 emu/g 2–350 in situ vapor-phase

transport approach [117]

Ag-N-ZnO Ag: 3.00%
N: 5.00% 2.300 emu/cm3 4300 RF sputtering [118]

Fe-Mg-ZnO Fe: 0.86%
Mg: 0.04% - 5–400 sol-gel [119]

Mn-N-ZnO Mn: 4.13%
N: 1.88%

0.120 and
0.170 kA·m−1 300 sol-gel [120]

Bi-Cu-ZnO Bi: Below detection limit
Cu: 0.60% ~0.500 emu/cm3 10–300 a vapor-phase

transport [121]

Cr-Co-ZnO Cr: 0.09%
Co: 0.03% 0.010 emu/g 10–300 citric gel route [122]
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Table 1. Cont.

Composition TM Content Magnetism TC (K) Fabrication Method References

Fe-Co-ZnO Fe: 0.05%
Co: 0.05% - 5–300 sol-gel [123]

Al-Mn-ZnO Al: 0.03%
Mn: 0.03% 0.019 emu/g 300–503 sol-gel [124]

In-Mn-ZnO In: 0.10%
Mn: 0.10% 0.080 emu/g 2–300 solvothermal [125]

Mn-Ni-ZnO Mn: 0.04%
Ni: 0.03%

0.015 × 10−9

emu/g - sol-gel [126]

Na-F-ZnO Na: 0.01%
F: 0.01%

3.020 × 10−4

emu/g - sol-gel [127]

Cr-Ni-ZnO Cr: 1.00%
Ni: 1.00% 0.010 emu/g 20–300 hydrothermal [128]

Ni-Na-ZnO Ni: 3.00%
Na: 3.00% 0.160 emu/g - pulsed

laser deposition [129]

Cu-Co-ZnO Cu: 0.02%
Co: 0.02% - - RF magnetron

sputtering technique [130]

Mn-Sn-ZnO Mn: 3.00%
Sn: 5.00% 6.000 × 10−5 emu 250 vapor transport [131]

Nd-Mn-ZnO Nd: 1.00%
Mn: 1.00% - 5–290 PLD [132]

Mn-Na-ZnO Mn: 0.05%
Na: 0.05% 1.520 µB 300 PLD [133]

Co-Eu-ZnO Co: 0.04%
Eu: 0.04% 65.000 emu/cm3 77 ion implantation [134]

F-Na-ZnO F: 0.03%
Na: 0.03% 0.053 emu/g 300 MEMS [135]

Fe-Co-ZnO Fe: 2.00%
Co: 2.00% 0.960 emu/cm3 30–300 CVD [136]

Li-Co-ZnO Li: 0.10%
Co: 0.05% ~0.480 µB/Co 5–300 soft chemical [137]

Co-Ga-ZnO Co: 5.00%
Ga: 1.00% 0.420 µB/Co 300 PLD [138]

Ni-Li-ZnO Ni: 0.03%
Li: 0.03% 0.800 emu/g 25–290 solvothermal [139]

Cu-Al-ZnO Cu: 0.02%
Al: 3.00% 6.800 emu/cm3 5–300 PLD [140]

3.4. Photocatalytic

Photocatalytic degradation is considered to be the best method for degrading or-
ganic waste pollutants without any toxic by-products compared to other conventional
wastewater treatment methods due to its biological and chemical inertness, high capacity,
cost-effectiveness, and long-term stability against photocorrosion and chemical corro-
sion [141–143]. Up to now, several oxide-based photocatalysts have been studied, including
TiO2, ZnO, SnO2, Fe2O3, In2O3, and WO3 [144–149]. Among them, ZnO strongly supports
the photocatalytic degradation of dyes, even though doping ZnO can improve the degra-
dation efficiency [150]. Recently, A. Ferreiro et al. [151] investigated the photocatalytic
properties of Nd-Li-co-doped ZnO nanoparticles synthesized by the polyol method, and
the highest photocatalytic activity of the ZNL0.5 samples in rhodamine B (2.5 ppm) solution
was due to the synergistic effect of the energy levels close to the conduction bands and the
higher specific surface area (Figure 5c,d).
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Figure 5. (a) Predicted Curie temperature as a function of lattice constant for a variety of semiconduc-
tors (S.C. Erwin (Naval Research Laboratory)). The materials predicted to have high Tc′s have large
p-d hybridization and small spin–orbit interaction [111] (copyright © 2006, TMS); (b) M–H loops of
Fe-and-Ni-doped ZnO samples [112] (copyright © 2014 Elsevier Ltd. and Techna Group s.r.l. All
rights reserved); (c) time evolution of UV–Vis absorption spectra according to RhB degradation by
ZNL0.5 and (d) RhB degradation rate during the photocatalytic process [151] (© 2023 Published by
Elsevier Ltd.).

ZnO nanostructures are potential candidates for water treatment. Umair Alam et al.
developed an ultrasound-assisted sol-gel method to synthesize spindle-shaped Nd-V-co-
doped ZnO for the reduction of organic pollutants (Figure 6a). The results showed that
the photocatalytic activity of co-doped ZnO was more significant than that of mono- and
undoped ZnO. In addition, 4% Nd-V-co-doped ZnO showed excellent performance in
degrading methyl orange and RhB due to its effective carrier separation and extended
light absorption (Figure 6b–e) [152]. The simultaneous doping of two metals in oxide
semiconductor materials is considered an effective strategy for mitigating carrier complex-
ation and enhancing photocatalytic activity. Under UV light, Muhammad Mubeen Tahir
et al. [153] investigated the rate at which Cu+2/Fe+3-co-doped zinc oxide degraded in dye
solutions. Moreover, based on dye degradation, the reaction kinetics and possible reaction
mechanisms were investigated. The findings demonstrated that the dye degradation rate
and photocatalytic activity were increased by the doping of Cu+2 and Fe+3 (Figure 7a,b).
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Figure 6. (a) Schematic illustration of the synthesis of Nd-and-V-co-doped ZnO; change in absorption
spectra of RhB (b) and change in concentration of RhB as a function of time in the absence and
presence of pure ZnO and different doped samples under visible light irradiation in (c); change in
absorption spectra of MO (d) and change in concentration of MO as a function of irradiation time in
the absence and presence of pure ZnO and different doped samples under visible light irradiation in
(e) [152] (© 2018 Elsevier B.V. All rights reserved).
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Figure 7. (a) Percentage degradation and (b) hypothesized mechanism for photocatalytic degradation
of disperse purple dyes [153] (© 2024 Elsevier B.V. All rights reserved); photodegradation of MB
with Zn0.975−xNaxF0.025O photocatalysts under (c) simulated sunlight irradiation and (d) UV light
irradiation. The insets are the corresponding plots of ln (C0/C) versus irradiation time for MB
photodegradation. (e) Gaussian deconvolution of PL spectra of Zn0.975−0.025Na0.025F0.025O nanocrys-
tals [154] (© 2019 Elsevier Ltd. and Techna Group s.r.l. All rights reserved); (f) potential catalytic
mechanism for Al-Ni-co-doped ZnO in organic dye degradation [155] (© 2018 Elsevier B.V. All
rights reserved).

For a clearer and more intuitive understanding, studies on the photocatalytic proper-
ties of co-doped ZnO are summarized as shown in Table 2.
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Table 2. A review of the main reported photocatalytic properties of ZnO.

Composition Light Source Pollutant Experimental
Conditions PE Fabrication Method References

Fe-Cu-
ZnO/GO UV Dark green dye CL = 0.05 g·L−1

tr = 90 min 99.28% sol-gel [156]

C-Ce-ZnO/
C-La-ZnO visible MB CL = 0.01 g·L−1

tr = 80 min
89%/
99% sol-gel [99]

Fe-Pb-ZnO UV MB tr = 90 min reduced microwave-assisted
hydrothermal [157]

Fe-Eu-ZnO solar light MO CL = 0.001 g·L−1

tr = 120 min 94% co-precipitation [158]

Al-Er-ZnO 450 W Xe arc
lamp RhB tr = 120 min above 90% hydrothermal [159]

Ni-Co-ZnO 100 W tungsten
lamp RhB tr = 360 min 42% co-precipitation [13]

Ag-Al-ZnO UV MB tr = 120 min 57%
microwave-assisted
chemical synthesis

technique
[150]

Mn-Cu-ZnO UV MB tr = 30 min - hydrothermal [160]

La-Ce-ZnO UV MB CL = 0.01 g·L−1

tr = 120 min 95.2% Solvothermal route. [161]

Cr-In-ZnO visible MB tr = 180 min 95% Spray pyrolysis
technique [162]

In-Mg-ZnO UV OR-II tr = 240 min 88.57% chemical
co-precipitation [28]

Ce-Ni-ZnO UV MB tr = 120 min 81.3% sol-gel [29]

Er-Al-ZnO UV RhB tr = 120 min 93% hydrothermal [163]

Eu-Tb-ZnO UV MB tr = 50 min 99.9% combustion [141]

Bi-N-ZnO UV RhB tr = 180 min 89% hydrothermal [164]

Gd-N-ZnO UV MB tr = 60 min 87% wet chemical
co-precipitation [142]

Ag-N-ZnO visible MO tr = 120 min 98.82% sol-gel [36]

Note. PE = photodegradation efficiency. CL = catalyst loading. tr = irradiation time.

In summary, the dopant had little impact on the structural integrity, and improving
dopant concentrations caused the ZnO nanorods’ diameter to grow but their density to
decrease. Furthermore, it was shown that when the dopant concentration increased, optical
transmittance often increased as well. The production of tailored nanomaterials appropri-
ate for a range of applications is made possible by the interplay of growth temperature,
dopant type, and concentration in adjusting the structural, morphological, optical, electrical,
magnetic, and photocatalytic features of ion-doped ZnO nanomaterials [165–168].

4. Application of ZnO Nanomaterials

ZnO is an adaptable material with properties such as a large specific area, non-toxicity,
good compatibility, and high isoelectric point, and these excellent properties represent a
wide range of applications for ZnO materials in many fields [169,170].

4.1. Photocatalyst

The applications of the catalysis of ZnO are mainly concerned with green energy and
environmental issues such as CO2 hydrogenation to fuel, methanol steam reforming to
hydrogen, biodiesel production, and the photodegradation of pollutants [171]. MB dye
is one of the most common organic pollutants in wastewater compared to all industrial
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wastewater and other textiles and is harmful to the human body as it causes vomiting,
cyanosis, increased heart rate, skin diseases, and intestinal problems. Therefore, the ap-
propriate techniques to degrade the toxic organic compounds in MB dyes have received
the attention of a wide range of researchers to provide an efficient and green solution to
environmental problems [172,173]. For example, Yuan et al. [154] prepared Na-F-co-doped
ZnO nanocrystals by a modified polymer network gel method and investigated their photo-
catalytic activity and defect-related photoluminescence at room temperature. It was shown
that Na-F-co-doped ZnO photocatalysts with different Na concentrations improved the
photocatalytic degradation efficiency of MB under UV irradiation and simulated sunlight.
Zn0.95Na0.025F0.025O induced the complete decomposition (more than 90%) of MB (4 mg/L)
in water after 40 min. The fluorescence intensity and photocatalytic activity increased
with the increasing concentration of Na doping, introducing receptor-related defects. In
practical applications, the PL test is a powerful means to quickly and concisely evaluate the
photocatalytic activity of ZnO-based materials (Figure 7c–e).

Photocatalysis is applied to many current environmental problems. Some researchers
proposed a possible photocatalytic degradation mechanism by performing free-radical-
scavenging experiments and explained the photocatalytic activity of the Al-Ni-co-doped
ZnO photocatalyst synthesized by the high-energy ball-milling method (Figure 7f) [155].
The photocatalytic degradation efficiency of the Nd-Gd-co-doped ZnO samples was im-
proved compared with that of pure ZnO. The same process can be repeated for all Nd-Gd-
co-doped ZnO samples by simply changing the doping concentration/concentration of
the precursor solution (Figure 8a) [174]. When the doping concentration is low, Ga and
Ti can replace the vacancies of Zn. As a result, the particle size of ZnO decreases, then
the absorption of visible light is enhanced, and then the catalytic degradation ability is
significantly improved (Figure 8b) [175]. Alkaline earth metal doping is more effective
than transition metal doping in reducing the optical threshold energy of semiconductors.
Sanakousar F. M. et al. [176] synthesized Mg-Sr-co-doped ZnO nanocrystals (0.03, 0.06,
and 0.09 M Mg) by a simple co-precipitation method and used them for the photocatalytic
degradation of leuko-olive reactive dyes. It was further demonstrated that the 0.06 M
Mg-Sr-co-doped ZnO photocatalyst was the most cost-effective, in an attempt to better
understand the charge transfer mechanism and to investigate the band edge positions of
the 0.06 Mg-Sr-co-doped ZnO (Figure 8c–e).
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Figure 8. (a) Schematic diagram for the preparation of Nd-Gd-co-doped ZnO by hydrothermal
method [174] (© 2020 Elsevier Ltd. and Techna Group s.r.l. All rights reserved); (b) UV–vis–NIR spec-
tra of ZnO, GZO, and TxG1.5Z nanopowders [175] (copyright © 2022, the author(s), under exclusive
license to Springer Science Business Media, LLC, part of Springer Nature); (c) the plots of ln(C0/C) vs.
reaction time for the photocatalytic degradation of LO and (d) the degradation efficiency of various
doses of 0.06 M Mg-Sr-co-doped ZnO nanocrystals, and (e) improved photocatalytic degradation
mechanism of 0.06 M Mg-Sr-co-doped ZnO in the presence of sunlight [176] (© 2023 Copyright
Clearance Center, Inc. All rights reserved).

4.2. Solar Cells

In order to protect the atmosphere and reduce carbon emissions, fossil fuels urgently
need to utilize solar energy as a carbon-free energy source to solve the problems of the
energy crisis, environmental pollution, and global warming [177,178]. Many researchers
have utilized the photovoltaic effect to convert sunlight into electricity, and various types
of solar cells have been developed due to their cleanliness, sustainability, and renewabil-
ity [179–181]. Conversion efficiency (η) is the most important parameter for evaluating
the performance of a solar cell and indicates the extent to which incident solar energy is
converted into maximum output power [177]. Losses in the energy conversion process
of solar cells are reduced by up-conversion (UC), down-conversion (DC), and down-shift
(DS) [182]. ZnO is considered one of the potential materials for solar cell applications
due to its high electrical conductivity, electron mobility, stability against photocorrosion,
and low-cost availability. Therefore, ZnO has many applications in emerging solar cells
(Figure 9a), such as dye-sensitized solar cells (DSSCs), chalcogenide sensitized solar cells
(PSCs), perovskite solar cells (PVSCs), etc. [180].
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The low photovoltaic performance of DSSCs based on ZnO-based photoelectrodes
is due to the fast compounding rate and narrow absorption spectral range. By doping
modified ZnO, the new energy levels formed in its d-orbitals can improve the optical
and electrical properties of ZnO by changing the band gap [184]. In 2019, researchers
reported the preparation of N-Ag-co-doped ZnO nanorod structures and their photovoltaic
applications. The synthesized N-Ag-co-doped ZnO nanorods were used as photoanodes
for dye-sensitized solar cells (DSSCs). The efficiency of the photoanode DSSC-co-doped
sample (S5) prepared under a 100 mW/cm2 light source was significantly improved by
5.105% (0.707%) as compared to the undoped ZnO (S1) (Figure 9b,c) [183]. Moreover, the
DSSCs formed by ZnO-based photoanodes co-doped with 1% Co and 1% Ga showed more
than 100% efficiency over pure ZnO-based cells (Figure 10a) [185].

The UC process is often referred to as a non-linear anti-Stokes process in which two
or more low-energy photons (near-infrared region) are absorbed and one high-energy
photon (UV–visible region) is emitted [182]. At the same time, DC is the exact opposite
process of UC (Figure 10b). The DC process is used to modify the incident solar radiation
in order to reduce the power loss of the solar cell [186]. The researchers found that the
Tb-Yb-co-doped ZnO solar conversion efficiencies increased by 4.98%, 8.60%, and 3.68%,
respectively, with increasing Yb3+ (1.5, 2, 3 mol%) concentration (Figure 10c) [187]. A.
Pramothkumar et al. [188] increased the optical absorbance and band gap position by
introducing Al-Sn (2 wt.% and 4 wt.%) as a co-dopant, thereby lowering the energy barrier
during electron extraction. It also hinders the interfacial complex loss between the electron
transport layer/calcite. The Al-Sn (2 wt.%)-co-doped ZnO had better power conversion
efficiency, which was maintained at 77.37% compared to the other layers (Figure 10d).
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license to Springer Science Business Media, LLC, part of Springer Nature).

4.3. Gas Sensors

In recent years, gas sensors have received a lot of attention due to their important
role in atmospheric environmental monitoring, medical diagnostics, volatile organic com-
pounds (VOCs) and toxic gases, etc. Importantly, ZnO exhibits an abundance of interesting
nanostructures that have demonstrated the potential to achieve highly sensitive gas sensors.
Many factors affect the performance of ZnO material transducers, including various struc-
tural and performance parameters. Structural parameters mainly include morphology, size,
and porosity. In addition, some researchers proposed a highly selective acetone gas sensor
based on ZnO nanostructures coated with Pt and Nb using the DC pulse sputtering tech-
nique. The gas-sensitive properties of acetone, ethanol, and ethylene vapors were evaluated
at the operating temperatures of 275~450 ◦C. Meanwhile, the gas-sensitive measurement
principle was explored (Figure 11a–e) [44–49].
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Figure 11. (a) The schematic diagram of gas sensing measurement; (b) dynamic resistance response
characteristics of ZnO, ZnO:Pt, and ZnO:Nb sensors upon exposure to 1000 ppm acetone concentra-
tion at an operating temperature of 400 ◦C, and dynamic sensor response versus time, dependent
on exposure to (c) acetone, (d) ethanol, and (e) ethylene with concentrations ranging from 50 to
1000 ppm at the optimum operating temperatures [49] (© 2017 Elsevier Ltd. and Techna Group s.r.l.
All rights reserved).

Since gas sensitivity is a very important property of ZnO materials, Gao et al. [19]
fabricated Mn-Ni-co-doped ZnO NR as a gas sensor and measured its gas sensitivity.
Figure 12a shows the gas-sensing response of the Mn-Ni-co-doped ZnO sensor for 100 ppm
ethanol at different operating temperatures. The gas responses of the Mn-Ni-co-doped ZnO
NRs all reached a maximum at 270 ◦C. Figure 12b shows the real-time response curves of the
Mn-Ni-co-doped ZnO NR sensors at 270 ◦C and 100 ppm ethanol atmosphere. On the one
hand, Mn-Ni co-doping improved the performance of the ZnO sensors because transition
metal ion doping affected the defect state and microstructure of the ZnO nanorods; on the
other hand, Mn and Ni co-doping improved the performance of the ZnO sensors due to
the presence of effective surface-active sites for oxygen adsorption onto oxygen vacancies.



Molecules 2024, 29, 3373 20 of 28

Molecules 2024, 29, x FOR PEER REVIEW 21 of 29 
 

 

Since gas sensitivity is a very important property of ZnO materials, Gao et al. [19] 
fabricated Mn-Ni-co-doped ZnO NR as a gas sensor and measured its gas sensitivity. 
Figure 12a shows the gas-sensing response of the Mn-Ni-co-doped ZnO sensor for 100 
ppm ethanol at different operating temperatures. The gas responses of the Mn-Ni-co-
doped ZnO NRs all reached a maximum at 270 °C. Figure 12b shows the real-time 
response curves of the Mn-Ni-co-doped ZnO NR sensors at 270 °C and 100 ppm ethanol 
atmosphere. On the one hand, Mn-Ni co-doping improved the performance of the ZnO 
sensors because transition metal ion doping affected the defect state and microstructure 
of the ZnO nanorods; on the other hand, Mn and Ni co-doping improved the performance 
of the ZnO sensors due to the presence of effective surface-active sites for oxygen 
adsorption onto oxygen vacancies. 

 
Figure 12. (a) Sensor sensitivity vs. operating temperature curves and (b) plot of change in output 
voltage of Mn-Ni-co-doped ZnO NR gas sensors for different Ni concentrations [19] (copyright © 
2019, Elsevier); effect of carbon monoxide (c) and propane (d) concentration on sensing response of 

Figure 12. (a) Sensor sensitivity vs. operating temperature curves and (b) plot of change in output
voltage of Mn-Ni-co-doped ZnO NR gas sensors for different Ni concentrations [19] (copyright ©
2019, Elsevier); effect of carbon monoxide (c) and propane (d) concentration on sensing response of
ZnO films doped with 1.5 at.% Fe and Ni measured at 200 and 300 ◦C; (e) maximum sensing response
of all ZnO films measured at 300 ppm and 300 ◦C [189] (copyright © 2020, Springer Science Business
Media, LLC, part of Springer Nature); (f) inhibition halos against S. aureus and E. coli bacteria for the
ZnO samples [42] (copyright © 2019, The Minerals, Metals & Materials Society).

V. K. Jayaraman et al. [189] successfully prepared Fe-Ni-co-doped ZnO thin films using
the ultrasonic chemical spraying technique. For the co-doped ZnO films, the corresponding
diffraction peaks coincided with the hexagonal shape of fibrous zincite. The surface
morphology of the co-doped ZnO films changed significantly with the doping level. The
gas-sensing response of the Fe-Ni-co-doped ZnO films was tested in carbon monoxide
(Figure 12c) and propane (Figure 12d) gases and was found to be more pronounced at
higher concentrations than at lower concentrations. Figure 12e shows the maximum value
of the sensing response measured at 300 ◦C and a gas concentration of 300 ppm for CO and
C3H8. The results showed that Fe-Ni-co-doped ZnO films helped to improve the sensing
response up to less than 5%.
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4.4. Biomedicine

The deteriorating environment and rapidly aging population, leading to increased
diseases, health care issues, and medical costs, especially in developing countries, have
led to a high demand for better and lower-cost biomedical devices with novel biological
functions. Nanoparticles have been continuously evaluated and used in many industrial
applications. In particular, ZnO has received much attention due to its UV-filtering, anti-
inflammatory (medicine), antifungal, high catalytic, and antibacterial activities [190–192].

N.F. Andrade Neto et al. [42] prepared Co-Mn-co-doped ZnO nanoparticles using the
sonochemical method. The results showed that the inhibitory effect of the co-doped ZnO
nanoparticles on Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive)
was increased by 4 cm and 3 cm, respectively, as compared to pure ZnO (Figure 12f).

Above all, the availability of the wide band gap and the large exciton binding energy
are excellent characteristics of ZnO nanomaterials, but there are some limitations, which
can be improved by co-doping techniques. Due to the versatility of their synthesis methods,
ZnO nanostructures of various morphologies such as nanorods and nanoflowers can be
synthesized. Therefore, the morphology and properties of co-doped ZnO nanostructures
are of significant importance for potential applications.

5. Conclusions

ZnO is an adaptable material with the advantage of a wide band gap, large exciton
binding energy, high sensitivity, large specific area, and non-toxicity. The performance of
ZnO nanomaterials has been continuously improved by co-doping due to their excellent
properties in photocatalysis, solar cells, gas sensors, biomedicine, and other fields of
application. As a promising semiconductor material, although some breakthroughs have
been made in some fields, challenges and opportunities also exist, and new preparation
methods, precise characterization techniques, and key factors for computational simulation
still need to be further studied.
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