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Abstract: Inhibiting MDM2-p53 interaction is considered an efficient mode of cancer treatment. In our
current study, Gaussian-accelerated molecular dynamics (GaMD), deep learning (DL), and binding
free energy calculations were combined together to probe the binding mechanism of non-peptide
inhibitors K23 and 0Y7 and peptide ones PDI6W and PDI to MDM2. The GaMD trajectory-based DL
approach successfully identified significant functional domains, predominantly located at the helixes
a2 and o2’, as well as the (3-strands and loops between a2 and «2’. The post-processing analysis of
the GaMD simulations indicated that inhibitor binding highly influences the structural flexibility and
collective motions of MDM2. Calculations of molecular mechanics—generalized Born surface area
(MM-GBSA) and solvated interaction energy (SIE) not only suggest that the ranking of the calculated
binding free energies is in agreement with that of the experimental results, but also verify that van der
Walls interactions are the primary forces responsible for inhibitor-MDM2 binding. Our findings also
indicate that peptide inhibitors yield more interaction contacts with MDM2 compared to non-peptide
inhibitors. Principal component analysis (PCA) and free energy landscape (FEL) analysis indicated
that the piperidinone inhibitor 0Y7 shows the most pronounced impact on the free energy profiles of
MDM2, with the piperidinone inhibitor demonstrating higher fluctuation amplitudes along primary
eigenvectors. The hot spots of MDM2 revealed by residue-based free energy estimation provide
target sites for drug design toward MDM2. This study is expected to provide useful theoretical aid
for the development of selective inhibitors of MDM2 family members.

Keywords: MDM?2; peptide inhibitors; Gaussian-accelerated dynamics simulations; deep learning;
binding free energy

1. Introduction

The tumor suppressor protein p53 plays a crucial role in regulating the cell cycle,
promoting apoptosis, and repairing DNA damage, thereby safeguarding cells against
malignant transformation [1,2]. The active form of p53 is highly effective in suppressing
the development of tumors. Notably, approximately 50% of all human cancers exhibit
malfunctions in p53 function due to deletions or mutations in its DNA-binding domain [3].
A host of strategies targeting the p53 pathway have emerged due to its inhibitory effects
against tumors [4,5]. Numerous proteins play critical roles in regulating the function
of p53, such as MDM2 [6-10] and MDMX [11-13]. In fact, inactivated p53 fails to yield
appropriate responses to external stimuli, substantially increasing the risk of tumorigenesis.
The overexpression of MDM2/MDMX and p53-MDM?2 interactions leads to the inactivation
of p53, controlled by negative feedback mechanisms or p53-MDM2. Thus, it is of high
significance to probe effective approaches to hold back the MDM2-p53 interaction.

Despite significant sequence variations, all MDM2 proteins exhibit a consistent topo-
logical structure featuring a left-handed bundle of four alpha helixes (x1, a2, x1’, x2’),
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interconnected by 3-strands and loops that dictate substrate specificity [14,15]. The sec-
ondary structures of MDM2 bound to the inhibitor and the binding pocket are illustrated in
Figure 1A,B, respectively. The hydrophobic sidechains of residues Phe19’, Trp23’, and Leu26’
from p53 play a crucial role in mediating the interaction between p53 and MDM2 [16-18].
These residues directly disrupt the binding of p53 to MDM2, making them a promising
target for potential anticancer therapies. Various drug candidates, including small-molecule
inhibitors and peptide inhibitors, have been developed to target the p53-MDM2 interaction.
Peptide inhibitors that disrupt the interactions between p53 and its negative regulator
MDM2 have the potential to activate p53 [19-23]. Additionally, lots of small-molecule
inhibitors have been designed using structure-based approaches [24-29]. Some of these
inhibitors are undergoing clinical evaluation for anticancer treatment [30-34]. There is ongo-
ing research focused on developing potent inhibitors that target the MDM2-p53 interaction.
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Figure 1. Molecular structures: (A) inhibitor-bound MDM?2, in which secondary structures are labeled;
(B) binding pocket of MDM2 protein; (C) K23; (D) 0Y7; (E) PDI6W; and (F) PDIL.

Enhancing our understanding of how these inhibitors bind to MDM?2 at atomic levels
is helpful for the development of potent inhibitors that disrupt the MDM2-p53 interaction,
and also provides crucial insight into the structure-affinity relationships of MDM2-inhibitor
complexes. Various tools are currently available to probe the conformational dynamics
of targets, such as conventional molecular dynamics (cMD) [35-39], Gaussian-accelerated
molecular dynamics (GaMD) simulations [21,40-43], and calculations of binding free en-
ergies [44-47]. These methods have been extensively utilized to uncover the molecular
mechanisms and free energy bases of target-ligand identification [48-53]. GaMD simula-
tions, particularly, effectively overcoming energy barriers in protein systems, have shown
successes in studying changes in conformational dynamics and the free energy profiles of
targets. To extract valuable information from cMD or GaMD trajectories, MD simulations
and machine learning (ML) have been used to deepen our understanding of the functions
of targets and ligand-target binding mechanisms [54-58]. Miao’s group developed a GaMD
trajectory-based deep learning (DL) approach called the GaMD, DL, and free energy profil-
ing workflow (GLOW) to effectively decode the molecular mechanisms related to GPCR
activation and allosteric modulation [59,60]. Furthermore, the GaMD trajectory-based DL
approach also obtained successes in the ligand-target identification of molecular mech-
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anisms and the exploration of significant structural domains of targets [61,62]. Binding
free energy calculations are powerful tools for elucidating the interaction mechanisms
between inhibitors and their targets. The MM-GBSA and SIE methods have been iden-
tified as effective approaches for calculating the binding free energies of inhibitors to
proteins [63-66]. They have been successfully applied to elucidate protein—protein and
protein-inhibitor interactions.

In this study, we focus on investigating the binding mechanisms of four inhibitors
to MDM2, including two non-peptide inhibitors K23 and 0Y7, and peptide inhibitors
PDI6W and PDI Regarding the two non-peptide inhibitors, K23 and 0Y7, K23 comprises
four aromatic groups, efficiently occupying the binding pockets of MDM2 with a median
inhibitory concentration (IC50) value of 1.71 uM [67], while 0Y7 is a piperidinone inhibitor
that interacts favorably with the N-terminus of human MDM2, with an IC50 value of
50 nM [68]. With respect to the two peptide inhibitors, PDI6W and PDI, PDI6W has a
residue sequence (LTFEHWWAQLTS) with an IC50 value of 36 nM toward MDM?2 [22]; the
other peptide inhibitor, PDI, possesses a residue sequence (LTFEHYWAQLTS) showing
inhibiting ability on MDM2 with an IC50 of 44 nM [23]. The structures of these inhibitors are
depicted in Figure 1C-F. Multiple independent Gaussian-accelerated molecular dynamics
(MI-GaMD) simulations were conducted to improve conformational sampling, and deep
learning (DL) was utilized to identify critical structural domains. Additionally, principal
component analysis (PCA) [69-72] and the construction of free energy landscapes (FELs)
were performed to explore conformational spaces and the free energy profile of MDM2.
Calculations of binding free energies and energy decomposition analysis were conducted to
evaluate the binding difference between the two types of inhibitors of MDM2 and identify
hot spots of MDM2 inhibitors. We expect that this work can offer valuable insights into the
mechanisms underlying the inhibition of the p53-MDM2 interaction.

2. Results and Discussion
2.1. Differences in the Contacts of Structural Domains Revealed by Deep Learning

The DL procedure involved several steps: (1) the conformations extracted from the
GaMD trajectories were converted into images suitable for DL analysis; (2) these images were
randomly split into a training set and a validation set to conduct DL; (3) the outcomes of
the DL training were visualized, as shown in Figure 2. Figure 2A shows the classification
information and Figure 2B depicts the learning curves of the training and validation datasets.

For the inhibitor-bound MDM?2, the overall accuracy reached 91.12% in the validation
set after 200 epochs (Figure 2B). Using 8000 snapshots for the validation of each system, four
systems were correctly identified (Figure 2A). Specifically, 7786 snapshots of K23-MDM2,
7894 snapshots of 0Y7-MDM?2, 6824 snapshots of PDI6W-MDM?2, and 6515 snapshots of
PDI-MDM2 were accurately recognized. However, there were instances of misidentification.
In detail, 142, 70, and 2 snapshots from 8000 of K23-MDM2 were inaccurately classified as
PDI-MDM?2, PDI6W-MDM?2, and 0Y7-MDM2, respectively. Similarly, 9 and 7 snapshots
from 8000 of 0Y7-MDM?2 were erroneously categorized as PDI-MDM2 and PDI6W-MDM?2,
respectively. Furthermore, 1100, 74, and 2 snapshots from 8000 of PDI6W-MDM?2 were
misidentified as PDI-MDM?2, K23-MDM?2, and 0Y7-MDM2, respectively. Additionally, 1351,
132, and 1 snapshots from 8000 of PDI-MDM?2 were mistakenly recognized as PDI6W-
MDM2, K23-MDM2, and 0Y7-MDM2, respectively. It is observed that a higher inaccuracy
of identification occurs between two peptide inhibitors, which may be due to the highly
similar binding modes of PDI6W and PDI to MDM2.

The pixel-attributed residue contact gradient maps of the most populated MDM2
structures are depicted in Figure 2C-F. Overall, the characteristic residue contacts of K23-
MDM?2 are situated between helix o2 and «2’, 3-turn 33 and loop L2, and (3-strand 31’and
loop L3. Similarly, the characteristic residue contacts of 0Y7-MDM2 are found between
helix «2 and «2’, 3-turn 33 and loop L2, 3-turn 33 and 3-strand 31’, B-strand 31" and loop
L3, and p-strand 31" and helix o2’. In comparison to K23-MDM?2, 0Y7-MDM?2 reveals new
contacts between 33 and 31/, as well as 31" and «2’.



Molecules 2024, 29, 3377

4 0f 22

True Class

K23-MDM2

0Y7-MDM2

PDI6W-MDM2

PDI-MDM2

A

Residue Index

100

0.0092

0.0165

B oD v @2 pepsa @2 o

0.0001

0.0009

K23-MDM2 0Y7-MDM2 PDI6W-MDM2 PDI-MDM2
Predicted Class

[

40

g2

Residue Index

60

@ P o @ o7

1.0 10 —— 0.80
Validation
0.0088 0.0177 W 0.8 0.75
0.8 8 os 40
S 0.70
0.4 x
0.0011 % 0.65
0.6 02 —_— 2 o i
100 125 150 175 200 g 0.60
- —— 3
0.1375 0.4 > 3 0.55
E 08 < 80
0.50
0.2 o7
0.1689 0.8145 z 06 — Train 0.45
Validation 100
0.0 05— - - - - T r r r 0.40
B 0 25 50 75 100 125 150 175 200 c 40 60 80 :
Epoch Residue Index
0:80 BB VR @ PRe e @ @ 686 B @ VR @ Prgs e g @ 0.80
0.75 0.75 0.75
0.70 0.70 0.70
3 3
0.65 L] 0.65 T 0.65
£ S
0.60 g 0.60 g 0.60
- -
0.55 a 0.55 g 0.55
-4 ©
0.50 0.50 0.50
0.45 i 0.45 0.45
100 100
0.40 0.40 0.40
80 100 E 40 60 80 40 60 80
Residue Index F Residue Index

Figure 2. Classification and saliency map of residue contact gradients: (A) classification of K23-MDM2,
0Y7-MDM2, PDI6W-MDM?2 and PDI-MDM?2; (B) learning curves of the training and validation
datasets; and (C-F) the saliency map of residue contact gradients for K23-MDM?2, 0Y7-MDM2,
PDI6W-MDM?2 and PDI-MDM2.

The characteristic residue contacts of PDI6W-MDM2 are observed between helix «2’
and (3-strand 2’, 3-turn 33 and loop L2, 3-strand 1’ and loop L3, and p-strand 1" and
2. Meanwhile, the characteristic residue contacts of PDI-MDM2 are noted between helix
a2 and «2’, 3-turn 33 and loop L2, and 3-strand 31" and loop L3. In contrast to PDI6W-
MDM2, PDI-MDM2 introduces new contacts between o2 and «2’, losing contacts between
«2” and 32, and 31" and 32’. Prior experimental studies have highlighted the significance
of a2, «2’, 33, L2, f1’, L3, and 2’ in the binding of inhibitors to MDM2 [22,23,67,68],
aligning with our current findings.

2.2. Free Energy Profiles and Structural Dynamics of MDM?2

To gain insights into the dynamic behavior of MDM2, PCA was conducted on the GaMD
trajectories of inhibitor-bound MDM?2, with the Coc atom coordinates saved in the single GaMD
trajectory (SGT) integrated by using three independent GaMD trajectories. The function of
eigenvalues over eigenvector indexes was estimated (Figure S1). An eigenvalue is commonly
employed to characterize the structural fluctuations of proteins along an eigenvector. The
first six eigenvalues accounted for 57.27, 67.96, 56.12, and 51.23% of the total movements of
the K23-, 0Y7-, PDI6W-, and PDI-bound MDM2 structures, respectively. Notably, the first
eigenvalue of 0Y7-MDM2 is much greater than that of the other inhibitor-bound MDM?2
structures, suggesting a greater structural fluctuation amplitude of the 0Y7-bound MDM2
structure along the primary eigenvectors relative to the three other complexes (Figure S1).

To analyze the variations in the free energy profiles of MDM2, SGTs were projected
onto the first two eigenvectors, and these projections were used as the reaction coordinates
(RCs) to construct FELs, which are illustrated in Figure 3. The GaMD simulations recognized
two, four, four, and two energy basins (EBs) in the K23-, 0Y7-, PDI6W-, and PDI-bound
MDM2 structures (Figure 3A,C,E,G), respectively, with 0Y7 showing the most pronounced
impact on the free energy profiles of MDM2. To investigate the structural variances within
different EBs, the representative structures falling into the EBs were superimposed together
(Figure 3B,D,EH). The 3-strands and loops located between «2 and «1’ of the 0Y7-bound
MDM2 structure, including 33, L2, 31’, and L3, exhibited the most highly obvious deviation
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among the various energy states; moreover, this deviation induced changes in the binding
poses of 0Y7. It is observed that 0Y7 has four different binding poses (Figure 3D). Although
the structures of K23-bound MDM?2 in EB1 and EB2 are aligned well, the binding poses of
K23 yield sliding and rotation, which induces two different binding orientations (Figure 3B).
In spite of the four energy basins (EB1-EB4) of PDI6W-bound MDM2, their representative
structures hardly produce obvious deviations; moreover, three key residues (Phel9’, Trp23’,
and Leu26’) in PDI6W are also aligned well (Figure 3F). In the PDI-MDM?2 complexes, loop L1
deviates between the presentative structures EB1 and EB2; correspondingly, two key residues,
Trp23” and Leu26’ in PDI, generate obvious sliding (Figure 3H). The aforementioned changes
certainly impact the binding of the peptide and non-peptide inhibitors to MDM2.

Phel9'

0
PC1
Figure 3. Free energy profiles and representative structures of inhibitor-bound MDM2: (A,CE,G)
correspond to the FELs of K23-MDM2, 0Y7-MDM2, PDI6W-MDM?2, and PDI-MDM2, respectively;

(B,D,F,H) indicate the superimposition of representative structures of MDM2 and inhibitors trapped
in different EBs. The free energy is scaled in kcal/mol.
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In order to probe the effects of the two types of inhibitors on the collective motions of
MDM2, the first eigenvector was visualized using the VMD program [73] and the results
are depicted in Figure 4. Except for the N- and C-terminals of MDM2, the binding of
peptide and non-peptide inhibitors has an obvious effect on the conformations of loops
L2 and L1 from MDM2. Compared to the two non-peptide inhibitors (Figure 4A,B), the
binding of the two peptide inhibitors, PDI6W and PDI, inhibits the collective motions of
loop L2, which implies that these two peptide inhibitors possibly yield interactions with
L2, B1’, and B3 (Figure 4C,D). In comparison with K23 and 0Y7, the binding of PDI6W
changes the fluctuation tendency of loop L1 from MDM?2 along the first eigenvector, but the
binding of PDI hardly affects the concerted motions of this loop (Figure 4D). In addition,
the concerted motions of helix 2" are also affected by inhibitor binding (Figure 4).

Figure 4. Concerted motions of MDM?2 revealed by the first eigenvector via PCA: (A) K23-MDM2,
(B) 0Y7-MDM2, (C) PDI6W-MDM2, and (D) PDI-MDM2.
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Based on the above information, the binding of peptide and non-peptide inhibitors
exerts different influences on the free energy profiles of MDM2, the binding poses of
inhibitors, and the concerted motions of structural domains. The structural information
revealed by the PCA and FELs is in basic agreement with the results from the DL approach.
Meanwhile, our current findings are also consistent with the previous results revealed by
MD simulations [37,38]. According to their structural information, peptide and non-peptide
inhibitors bind to the hydrophobic cleft of MDM2 and occupy the binding position of p53
in MDM2, which not only leads to conformational changes in the binding cleft of MDM2,
but also effectively prevents p53 from going into the binding pocket of MDM2. The changes
in the concerted motions of the structural domains and free energy profiles due to the
presence of the two types of inhibitors can impact inhibitor-MDM2 binding.

2.3. Structural Property of MDM?2

To investigate the structural stability of MDM2, root-mean-square deviations (RMSDs)
of backbone atoms from MDM2 were computed throughout the GaMD simulations, with
reference to the initially optimized structures (Figure 5A,B). The time course of the RMSDs
indicates that the structures of MDM2 in the four systems are stable (Figure 5A). The
distributions of RMSDs are estimated in Figure 5B. For the two non-peptide inhibitors,
the RMSD of K23-MDMR2 is distributed at ~2.75 A, and that of 0Y7-MDM2 at the peaks of
2.75 and 3.43 A (Figure 5B). As for the two peptide inhibitors, the RMSDs of PDI6W-MDM2
and PDI-MDM2 are populated at the peaks of 1.61 and 2.98 A, respectively (Figure 5B).
Compared to the two non-peptide inhibitors, the binding of peptide inhibitors decreases
the RMSDs of MDM2. This result suggests that the binding of peptide inhibitors is more
favorable for the structural stability of MDM2 than non-peptide inhibitors, implying that
PDI6W and PDI should generate more interaction contacts with MDM2 than K23 and 0Y7.
Meanwhile, our results also show that the GaMD trajectories of the four complexes are
reliable for the post-processing analyses.

——K23-MDM2 0.304 —— K23-MDM2
——0Y7-MDM2 —— 0Y7-MDM2
5 ——PDI6W-MDM2 025 —— PDI6W-MDM2
——PDI-MDM2 7 —— PDI-MDM2
z o 2 020
2 =
172} [
§ 2 0.154
[
3 o
0.10
24 0.05 4
0.00 4
1 T T T T T T T T T T T T T: T
A 0 100 200 300 400 500 600 B 0 1 2 3 4 5 6
Time(ns)
4 S ——
——K23-MDM2
—— 0Y7-MDM2
—— PDI6W-MDM2
31 |—PDI-MDM2
=
= 24
172}
=
<
14
S1 S2 S3

0 T T T T
C 20 40 60 80 100 D

Residue Index

Figure 5. The RMSD and RMSF values of MDM2 in GaMD simulations: (A) the time course of RMSDs
for MDM2; (B) the probability distribution of RMSDs for MDM2; (C) the RMSFs of the Cx atoms
from MDM2; and (D) the flexibility domains revealed by GaMD simulations.
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To understand the inhibitor-mediated effect on structure flexibility, root-mean-square
fluctuations (RMSFs) of MDM2 were estimated using the coordinates of Cx atoms (Figure 5C).
In Figure 5C, S1 represents loop L1, and S2 corresponds to the 3-strands and loops between
a2 and «1’, while S3 refers to 32’ and the loops between «1” and «2’. It was observed that
the 51, S2, and S3 regions of MDM?2 exhibit high flexibility, particularly in the case of S2.
The analysis highlights that the mobility of the S1, 52, and S3 domains is more pronounced
in the 0Y7-MDM2 structure compared to the other structures. With reference to K23-MDM?2,
the binding of 0Y7 largely enhances the structural flexibility of the structural domains S1,
52, and S3, while the presence of the two peptide inhibitors, PDI6W and PDI, obviously
weakens the structural flexibility of these two structural domains (Figure 5C,D), implying
the different binding abilities of the four inhibitors to MDM2.

To assess alterations in the secondary structures of MDM2 and the peptide inhibitors,
a combination of the program CPPTRA]J and DSSP second-structure analysis [74] was used
to investigate the changes in the secondary structures in three separate GaMD simulations.
The time evolutions of the secondary structures for the K23-, 0Y7-, PDI6W- and PDI-bound
MDM2 structures are displayed in Figure 6A-D, individually. The time evolutions of the
secondary structures for the peptide inhibitors PDI6W and PDI are displayed in Figure 6E,F,
individually. It is observed that the secondary structures of MDM2 and the peptide
inhibitors hardly change throughout three separate GaMD simulations. The stability of
these structures is favorable for the binding of inhibitors.

Residue Index
Residue Index

Residue Index
Residue Index

Residue Index
Residue Index

E o we o eo oo e a0 F w0 wo e Towo om0
Figure 6. Stability of secondary structures of MDM?2 and peptide inhibitors: (A) time evolution of
secondary structure for MDM2 in the K23-MDM2 complex; (B) time evolution of secondary structure
for MDM2 in the 0Y7-MDM2 complex; (C) time evolution of secondary structure for MDM2 in the
PDI6W-MDM2 complex; (D) time evolution of secondary structure for MDM2 in the PDI-MDM2
complex; (E) time evolution of secondary structure for the peptide inhibitor PDI6W; (F) time evolution
of secondary structure for the peptide inhibitor PDIL
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Based on the above analyses, the binding of peptide and non-peptide inhibitors yields
different impacts on conformations of MDM2: (1) the binding of peptide inhibitors leads to
more stable structures of MDM2 than non-peptide inhibitors; (2) the presence of peptide
inhibitors induces more rigid structures in the S1, S2, and S3 domains. These results are in
basic agreement with previous studies [35-38].

2.4. Comparative Calculations of Binding Free Energies

The binding free energies of K23, 0Y7, PDI6W, and PDI to MDM2 were assessed through
MM-GBSA and SIE calculations so as to understand the binding preferences of the two types
of inhibitors, and the results are shown in Tables 1 and 2. In our calculations, 400 snapshots
were extracted from the equilibrated cMD trajectories. It was found that the ranking of
the calculated binding free energies was consistent with that determined by the known
experimental data, implying the reliability of our free energy analyses [22,23,35,36,67,68].

Table 1. Binding free energies of inhibitors to MDM?2 obtained by MM-GBSA method.

Complex K23-MDM2 0Y7-MDM2 PDI-MDM2 PDI6W-MDM2
Average Std Average Std Average Std Average Std
AE,, —105.32 9.38 —2.43 7.63 —222.94 36.30 —250.13 33.93
AE,aw —37.68 3.46 —34.25 4.05 —61.75 4.29 —63.96 4.94
Ang 119.19 9.40 12.76 6.45 244.68 34.79 272.15 32.41
AGgyrf —4.63 0.38 —4.48 0.58 —7.80 0.57 —8.10 0.60
“Angele 13.87 1.67 10.33 2.96 21.73 3.55 22.03 4.00
—TAS —18.12 4.63 —15.80 5.37 —25.86 6.28 —25.38 6.14
P AGyina -10.31 1261 —21.96 —24.67
“AGexp —7.89 —9.98 —10.01 —10.18
Note: Standard errors are given in parentheses. *AGgpere = AEy, + AGgy. YAGying = AEq, + AGgp + AEys +
AGgyrp — TAS. "AGexp: The experimental values were derived from the experimental Ki values in reference
[22,67,68] using the equation AGeyp = —RTInICsp.
Table 2. Binding free energies of MDM?2 to inhibitors calculated by SIE method.
Complex K23-MDM2 0Y7-MDM2 PDI-MDM2 PDI6W-MDM2
Average Std Average Std Average Std Average Std
AE,aw —36.07 297 —36.96 3.79 —62.01 421 —63.96 4.94
AE; —47.60 4.02 —3.06 4.14 —99.20 17.98 —111.21 15.07
v-AMSA —6.59 0.30 —-7.14 0.48 —10.85 0.65 —-11.33 0.63
AGR 49.23 4.16 5.56 2.71 99.09 16.43 111.10 13.82
AGyping -7.19 —7.25 —10.53 —10.79
AGexp —7.89 —9.98 —10.01 —10.18

Note: Standard errors are given in parentheses. *AG,yp: The experimental values were derived from the experimental
Ki values in reference [22,67,68] using the equation AGexp = —RTInICsp.

As illustrated in Table 1, the binding free energies of K23, 0Y7, PDI, and PDI6W to
MDM?2 were —10.31, —12.61, —21.96, and —24.67 kcal-mol 1, respectively. Analysis of
the energy components revealed that van der Waals energies (AE, ;) are the primary
favorable contributors to inhibitor binding. Non-polar solvation energies (AG;,,f) also
provide favorable contributions to the binding process. However, the contributions of
entropy changes (—TAS) to free energies greatly impair the binding of the four inhibitors to
MDM2. Electrostatic terms (AE,;,) also favor inhibitor binding, but polar solvation energies
(AGgyp) provide opposite contributions for the binding of inhibitors. On the whole, the sum
of AE,, and AGygy, in the current complexes is unfavorable for the binding of inhibitors.
Therefore, two favorable forces, AE 4y and AGg,, ¢, mostly drive the binding of the four
inhibitors to MDM2, which agrees well with previous experimental analyses [35-38]. This
result suggests that the optimization of van der Waals interactions and non-polar solvation
energies may lead to the potent inhibition of MDM2.
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According to Table 2, the calculated binding free energies for K23, 0Y7, PDI, and
PDI6W to MDM2 using the SIE method are —7.19, —7.25, —10.53, and —10.79 kcal-mol 1,
respectively. More importantly, the ranking of binding free energies predicted by the
SIE method also agrees with that of the experimental values, which further verifies the
reliability of our current results. The reaction energy (AGR) associated with the desolvation
of polar groups always impedes inhibitor bindings (Table 2). As seen in Table 2, the
unfavorable reaction energy of the polar groups is partially compensated by the favorable
intermolecular Coulomb interaction (AE.). Additionally, intermolecular VDWIs (AE ;)
also provide partial compensation to this unfavorable effect.

Through the above results, the binding free energies predicted by the MM-GBSA and
SIE methods show that the four current inhibitors yield tight associations with MDM2,
implying that they have strong competitive ability in binding to MDM2 relative to p53.
Furthermore, the VDWIs of the inhibitors with MDM?2 play key roles in the binding of the
two types of inhibitors, which implies that the hydrophobic groups of the peptide and non-
peptide inhibitors, such as alkyls and aromatic rings, are significant molecular structures
to be considered in future drug design in relation to p53-MDM?2 interactions. Meanwhile,
VDWIs should be paid more attention in the development of clinically available inhibitors
targeting p53-MDM2 interactions.

2.5. Interaction Network of Inhibitors with MDM?2

To understand the contributions of individual residues to inhibitor-MDM2 binding, a
residue-based free energy decomposition method was utilized to estimate inhibitor-residue
interactions and residue-residue interactions (Figures 7, 8, S2 and S3). The probability
distributions of the distances associated with crucial inhibitor-residue interactions were
analyzed (Figures 9 and S4). Furthermore, the geometric aspects of hydrophobic inter-
actions and hydrogen bonding interactions (HBIs) were visually illustrated for better
comprehension (Figures 7C,D, 8A,B and S3A,B).

In the K23-MDM2 complex, K23 establishes interactions of strength exceeding 1 kcal/mol
with six residues, specifically Leu54, Leu57, Gly58, lle61, Val93, and 11e99 (Figures 7A,B and S2A).
As illustrated in Figure 7C, the alkyl groups of residues Leu54 and I1e99 are close to the
hydrophobic ring R1 of K23, leading to the formation of CH-7t interactions between them.
The respective interaction energies for these interactions are —3.03 and —1.46 kcal/mol
for Leu54 and I1e99 (Figure 7A). The distances for the mass centers of the sidechains of
Leu54 and 1199 away from the mass center of the ring R1 are, respectively, distributed
at 4.63 and 5.68 A (Figure 7E), which verifies the hydrophobic interactions of these two
residues with K23. The alkyl groups of Leu57 and the CH group of Gly58 form multiple
CH-7t contacts with the R2 ring of K23 (Figure 7C), leading to CH-7 interaction energies of
—1.52 and —1.37 kcal/mol for residues Leu57 and Gly58, respectively (Figure 7A,B). The
distances for the carbon atoms of the alkyl groups of Leu57 and Gly58 from the mass center
of the ring R2 are distributed at 5.68 and 4.28 A (Figure 7E), respectively, which verifies
the existence of CH-mt interactions. The alkyl group of Val93 engages in the CH-mt contacts
with the hydrophobic ring R3 of K23, while the alkyl moiety of Ile61 forms CH-m contacts
with the hydrophobic group R4 of K23 (Figure 7C). As a result, Val93 and Ile61 separately
provide the interaction energies of —2.07 and —1.78 kcal/mol for the K23-MDM2 binding
(Figure 7A,B). The distance between the center of mass of the alkyl group from Val93 and
that of ring R3 is situated at 4.28 A (Figure 7E), indicating the presence of a CH-rt interaction
between K23 and Val93. Similarly, the distance between the center of mass of the alkyl
group from Tle61 and that of ring R4 is 4.98 A (Figure 7E), demonstrating the existence of the
CH-m interaction between K23 and Ile61. Moreover, K23 establishes a hydrogen bonding
interaction with Leu54 with an occupancy exceeding 98.58%, suggesting the stability of
this hydrogen bond throughout the GaMD simulations (Table 3). These analyses align with
previous statistical examinations and other research findings [35-38].
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Figure 7. Interaction network of inhibitors K23 and 0Y7 with MDM2: (A) the key residues playing
important roles in the binding of inhibitors to MDM2; (B) the radar representation of inhibitor-residue
interactions in MDM2; (C) hydrophobic interactions of inhibitors with residues in the K23-MDM2
complex; (D) hydrophobic interactions of inhibitors with residues in the 0Y7-MDM2 complex;
(E) the probability distribution of the distances between K23 and the key residues in MDM2; and
(F) the probability distribution of the distances between 0Y7 and the key residues in MDM2.

Table 3. The hydrogen bonds formed between key residues and inhibitors of MDM2.

Inhibitor Donor Acceptor 2 Distance(A) 2 Angle(°) b Occupied(%)
K23 K23:N8-H4 Leu54:0 2.89 157.08 98.58
PDI6W Phel9”: N-H GIn72: OE1 2.98 154.03 76.31
Trp23’: NE1- HE1 Leu54: O 2.89 148.67 97.62
PDI Phel9’: N-H GIn72: OE1 2.98 154.83 81.36
Trp23’: NE1- HE1 Leu54: O 292 149.58 95.73

a The hydrogen bonds are determined by a donor-acceptor atom distance of <3.5 A and acceptor-H-donor angle
of >120°. P Occupancy is used to evaluate the stability and strength of the hydrogen bond.
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In the 0Y7-MDM2 complex, 0Y7 produces interactions stronger than 1.0 kcal /mol with
six residues, including Leu54, Leu57, Gly58, Ile61, Val93, and 11e99 (Figures 7A and S2B).
The alkyl groups of Leu57, Gly58, ILE61, and ILE99 establish several CH-7t contacts with
the hydrophobic ring R2 of 0Y7, resulting in interaction energies of —1.12, —1.14, —1.46,
and —1.65 kcal/mol for Leu57, Gly58, ILE61, and ILE99, respectively (Figure 7A,B,D). The
distances of the mass centers for the alkyl groups of Leu57, Gly58, ILE61, and ILE99 away
from the ring R2 are situated at 5.33, 4.63, 4.63, and 4.63 A, individually, as depicted in
Figure 7F. The alkyl group of Leu54 forms CH-m contacts with the ring R1 of 0Y7, and its
corresponding interaction energy is —2.04 kcal /mol (Figure 7A,B). The distance between the
center of mass of the alkyl group from Leu54 and that of ring R1 is 4.98 A (Figure 7F). The
alkyl of Val93 structurally forms a CH-CH interaction with that of 0Y7, which provides an
energy contribution of —1.65 kcal/mol to the 0Y7-MDM2 binding (Figure 7A,D). Moreover,
the distance of 3.93 A between the carbon atom of the alkyl group from Val93 and that of
0Y7 verifies the existence of the CH-CH interaction (Figure 7F).

PDI6W-MDM2 interactions are illustrated with the relative positions between key
residues from PDI6W and MDM?2 (Figure 8). Seven residues of PDI6W can strongly
interact with MDM2. The Thr18’ of the PDI6W inhibitor engages in a significant CH-CH
interaction of —3.02 kcal/mol with GIn72 of MDM2 (Figure 8A,C), while the distance
between the center of mass of the alkyl group from GIn72 and that of Thr18' is 4.34 A
(Figure 9A). The Phel9’ of the PDI6W inhibitor exhibits strong interactions with four
MDM2 residues, including Ile61, Met62, Tyr67, and GIn72. Specifically, the interaction
energy between Phel9” and Tyr67 is —2.40 kcal/mol, aligning with the 7-7t interaction
between the benzene rings of these two residues in the spatial structure (Figure 8A,D).
The interaction energies between Phel9” and residues Ile61, Met62, and GIn72 are —1.61,
—1.23, and —3.32 kcal /mol, respectively (Figure 8D). These energy contributions primarily
arise from the CH-m interactions between the CH groups of residues Ile61, Met62, and
GIn72 and the benzene ring of Phel9’ (Figure 8A). As illustrated in Figure 9B, the distances
between the mass centers of the alkyl groups of Ile61, Met62, and Tyr67 and that of
Phel9’ are 3.88, 5.88, and 5.13A, respectively, which demonstrates the existence of the
aforementioned CH-mt interactions. A hydrogen bond with an occupancy of 76.31% appears
between Phel9” and GIn72 (Table 3 and Figure 8B), implying that this hydrogen bond
is stable. Structurally, the CH groups of GIn72, Val93, and Lys94 engage in the CH-
7 interactions with Trp22’ of the pDI6W inhibitor (Figure 8A), resulting in interaction
energies of —1.24, —1.41, and —2.18 kcal/mol, respectively (Figure 8E). His73 establishes
a 77t interaction of —2.47 kcal/mol with Trp22’ (Figure 8A,E). The distances for the mass
centers of the alkyl groups of GIn72, His73, Val93, and Lys94 from those of Trp22’ are
separately distributed at 4.88, 5.88, 6.13, and 4.88 A (Figure 9C). The most robust interaction
is observed between Trp23” and Leu54, with an interaction energy of —3.23 kcal/mol
(Figure 8F). This energy primarily originates from two sources: (1) the alkyl group of Leu54
forms a CH-m interaction with Trp23’ (Figure 8A), and (2) a hydrogen bond with a 97.62%
occupancy is formed between Leu54 and Trp23’ (Table 3 and Figure 8B). The interaction
energies between Trp23’ and Leu57, Gly58, Ile61, and Val93 are —1.47, —1.28, —1.14, and
—1.61 kcal/mol, respectively (Figure 8F), reflecting the structural agreement of the CH-nt
interactions between the CH groups of these four residues and the hydrophobic ring of
Trp23” (Figure 8A). The distances between the mass centers of the alkyl groups of Leu54,
Leu57, Gly58, Ile61, and Val93 and those of Trp23” are populated at 5.13, 5.13, 4.63, 4.38,
and 5.13 A (Figure 9D), which supports the abovementioned CH-rt interactions involving
Trp23’. The Leu26’ residue of the PDI6W inhibitor exhibits significant interactions with
five MDM2 residues, including Leu54, Val93, His96, 11e99, and Tyr100. The interaction
energies between Leu26’ and Leu54, Val93, and I1e99 are —1.33, —1.30, and —1.20 kcal /mol,
respectively (Figure 8G), and are predominantly driven by the CH-CH interaction between
the alkyl groups of Leu54, Val93, and 1le99 and the alkyl group of Leu26’ (Figure 8A).
Additionally, the interaction energies between Leu26” and His96 and Tyr100 are —1.94 and
—1.89 kcal/mol (Figure 8G), which is consistent with the CH-m interaction of His96 and
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Tyr100 with the alkyl groups of Leu26’ (Figure 8A). In Figure 9E, the distances between
the mass centers of the hydrophobic groups of Leu54, Val93, His96, 1199, and Tyr100 and
those of Trp23’ are located at 5.13, 5.38, 5.13, 3.88, and 4.63 A, respectively, which further
reveals key residues interacting with Trp23’. The interaction energies of Thr27” in PDI6W
with residues Lys51 and Leu54 are —2.21 and —1.28 kcal/mol, coming structurally from
the CH-CH interactions (Figure 8A,H). The distances between the mass centers of the
alkyl groups of Lys51 and Leu54 from those of Trp26’ are 4.88 and 3.884, as illustrated in
Figure 9F, implying the existence of these key interactions.
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Figure 8. Interaction network of PDI6W inhibitor with MDM2: (A) relative geometric positions of the
key residues in the pDI6W-MDM2 complex; (B) hydrogen bonding interactions in the pDI6W-MDM2
complex; and (C-H) residue-residue interaction spectrum between the pDI6W inhibitor and MDM2.

As seen in Figures S3 and 5S4, the PDI inhibitor binds to MDM?2 in a mode similar to
pDI6W. A hydrogen bond with an occupancy of 81.36% appears between Phel9” and GIn72
(Table 3 and Figure S3B). Additionally, Leu54 forms a hydrogen bond with Trp23’, and its
occupancy is 95.73% (Table 3 and Figure S3B). Compared to the residue-residue interaction
in PDI6W, the interaction energy between Tyr22’ and Lys94 is lower than 1.0 kcal/mol,
which indicates that there is a weak CH-7t contact between the alkyl moiety of Lys94 and
Tyr22’ (Figure S3E). The probability distributions of the distances relating to key inhibitor—
residue interactions for PDI-MDM?2 are illustrated in Figure S4. The work by Liu et al.
showed that D-peptide inhibitors can form favorable interactions with residues Leu54,
Leu57, Ile61, Tyr67, Val93, His96, and Tyr100, which agrees well with our current calculated
results [75,76]. The study of Strizhak et al. revealed that a stapled peptide produces
interactions with Leub4, Ile61, Tyr67, GIn72, Val93, His96, and Ile99, supporting our current
findings [77].
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Figure 9. Probability distributions of the distances relating to key inhibitor-residue interactions for
the PDI6W-MDM2 complex: (A) the distance between Thr18” and the key residue in MDM2; (B) the
distances between Phel9” and the key residues in MDM2; (C) the distances between Trp22’ and the
key residues in MDM2; (D) the distances between Trp23” and the key residues in MDM2; (E) the
distances between Leu26” and the key residues in MDM2; and (F) the distances between Thr27’ and
the key residues in MDM2.

In previous experimental and theoretical works [14], p53 has yielded strong inter-
actions with Leu54, Leu57, Gly58, Ile61, Val93, 11e99, etc., which not only supports our
current results well, but also implies that four inhibitors occupy the binding sites of p53 in
MDM2, impairing the binding of p53. Moreover, the sidechains of key residues revealed by
our calculations play vital roles in the binding of inhibitors to MDM2. More importantly,
the CH-nt, CH-CH, and 7t-7t interactions between individual residues of MDM2 and the
inhibitors drive the binding of K23, 0Y7, PDI6W, and PDI to MDM2, which should be paid
special attention in future drug design in relation to p53-MDM?2 interactions. Therefore, it is
of high significance to rationally optimize the interactions of inhibitors with the sidechains
of key residues in MDM2 for the design of efficient inhibitors.

3. Materials and Methods
3.1. System Preparation

The initial atomic coordinates of the K23-, 0Y7-, PDI6W-, and PDI-MDM?2 complexes
were taken from the Protein Data Bank (PDB), corresponding to PDB entries 3LBK, 4HBM,
3JZR, and 3GO03, respectively. As there are differences in the residue sequences of MDM2,
residues of Thr26-Argl105 in MDM2 were utilized to construct our simulation systems.
The residues from the two peptide inhibitors, PDI6W and PDI, were canonical amino
acids. The protonation states of the MDM2 residues were validated using the H++ 3.0
program [78]. Rational protonation states were assigned to each MDM2 residue, and any
missing hydrogen atoms in the crystal structures were added using the Leap module
in Amber20 [79,80]. The structures of two inhibitors, K23 and 0Y7, were optimized at
a semi-empirical AM1 level, and subsequently, BCC charges [81] were assigned to each
atom of the two inhibitors using the Antechamber module in Amber20 [82]. The ff19SB
force field [83] was employed to parameterize MDM2, while the general Amber force field
(GAFEF2) [84,85] was used to derive force-field parameters for K23 and 0Y7. The system:s,
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comprising K23-MDM2, 0Y7-MDM?2, PDI6W-MDM?2, and PDI-MDM?2, were solvated in
an octahedral periodic water box with a 10.0 A buffer to mimic a solvent environment.
The force-field parameters for the water molecules were based on the TIP3P model [86,87].
To ensure neutral simulation systems, an appropriate number of sodium ions (Na*) and
chloride ions (CI7) at a concentration of 0.15 M NaCl were added to the water box. The
parameters for the Na* and Cl™ ions were adopted from the work of Joung et al. [88,89].

3.2. Multiple Independent Gaussian-Accelerated Molecular Dynamics

To address potential bad contacts between atoms arising from the initialization of
the four current MDM2-related systems, each system underwent a two-step minimization
process. This included a 5000-cycle steepest descent minimization followed by a 10,000-
cycle conjugate gradient minimization. The optimized systems were gradually heated
from 0 to 300 K over 1 ns in the canonical ensemble (NVT), utilizing a weak harmonic
restraint of 2 kcal-mol~!-A? on heavy atoms. Subsequently, the four systems were further
equilibrated at 300 K under an isothermal—isobaric ensemble (NPT). A 2 ns NPT simulation
was then conducted to maintain the system density at 1.01 g/cm?. Finally, three 2.4 ns
independent cMD simulations were separately performed on the four systems during the
NVT with periodic boundary conditions using the particle mesh Ewald method (PME). In
each independent cMD simulation, the initial atomic velocities were randomly assigned
with the Maxwell distribution.

The well-equilibrated systems served as the starting points for three independent
Gaussian-accelerated molecular dynamics (GaMD) simulations. GaMD simulations employ
a harmonic boost potential to reduce free energy barriers in biomolecules and enhance the

conformational sampling of systems. In GaMD 31mulat10ns if the potentlal energy V(r )
of the system is lower than a threshold energy E, V( ) is revised to V" ( ), according to
Equations (1) and (2) below:

N

VE(r)=V(r)+AV(r) (1)

Av(A) B 0, V(r)>E .
IWE-V(r)? V(r)<E

In the above equations, the parameter k represents the harmonic force constant. The
parameters E and k can be adjusted according to the enhanced sampling principles defined
in Equations (3) and (4), as shown below:

1
Vinax < E < Vmin + -

: )

1

k=ky—— 4

0 Vmaxf Vmin ( )

If E is designated as the lower bound (E = Vj;x), then kg can be determined using
Equation (5):

%) Vmux Vinin

ko = min(1.0, — ————

0 ( oy Vmax - Vavg

) )

On the contrary, if E is set as the upper bound (E = V,;,, + %), then kg is derived from
Equation (6):
Vinax — Vmin

ko (1 0~ 7) ( Vavg Vinin )

(6)
where the three energy parameters Viuax, Viyin, and Vo indicate the maximum, minimum,
and averaged potential energies of the simulated systems extracted from the previous
cMD simulations, respectively. The parameter oy represents the standard deviation of the
system’s potential energies, and oy is a user-defined upper limit for accurate reweighting.
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In our current study, 1.2 ps GaMD simulations, composed of three independent simulations
of 400 ns, were separately performed on four current MDM2-related systems. To facilitate
deep learning (DL) and post-processing analyses, three independent GaMD trajectories
were combined into a single GaMD trajectory (SGT), and the CPPTRA]J module integrated
with Amber was used to extract data for insights into the function of MDM2-related systems.
A program called PyReweighting, developed by Miao et al. [90], was utilized to accurately
reweight and identify the original free energy profiles of our current systems.

All cMD and GaMD simulations employed the SHAKE algorithm to constrain the
chemical bonds between the hydrogen atoms and heavy atoms [91]. The Langevin ther-
mostat, bringing a collision frequency of 2.0 ps~!, was utilized to tune the temperatures of
the four MDM2-related systems [92]. Non-bonded interactions were estimated using the
particle mesh Ewald (PME) method [93] with a 12 A cutoff. The simulations were executed
using the pmemd.cuda program implemented in Amber20 [94,95].

3.3. Deep Learning

To investigate the impacts of inhibitor binding on the internal structures of MDM2, DL
was utilized to identify differences in residue contacts. The residue contact maps for each
snapshot of MDM2 were computed using the Python packages MDTraj and Contact Map
Explorer [96]. Contact was defined as <4.5 A between any C« atoms of two proteins. The
resulting 80 x 80 residue contacts were converted into grayscale images of 80 x 80 pixels for
analysis by a two-dimensional (2D) convolutional neural network (CNN). A total of 160,000
images were generated for each MDM2-related system, with 80% randomly selected for
training and the remaining 20% used for validation. The 2D-CNN model was constructed
using the PyTorch package, consisting of three convolutional layers with a 1 x 1 kernel
size and 16, 32, and 32 filters, followed by three fully connected layers. The first two fully
connected layers comprised 512 and 128 filters with a dropout rate of 0.5 each, while the
final fully connected layer served as the classification layer for inhibitor-bound MDM2.

Throughout the 2D-CNN architecture, the “ReLu” activation function was employed
in all layers, with the “softmax” activation function used at the classification layer. A
maximum pooling layer with a 2 x 2 kernel size was added after each convolutional
layer. Backpropagation via vanilla gradient-based pixel attribution [97] was utilized to
estimate an attention map of the residue contact gradients to aid in discriminating the
functional differences in MDM2 induced by inhibitor binding. The residue contact map
was represented using the most populated structural cluster of each MDM2-related system.
Our DL program was rewritten using PyTorch based on the work of Miao’s group [59].

3.4. Principal Component Analysis and Dynamic Cross-Correlation Maps

PCA is a crucial technique for deciphering conformational changes in proteins. In this
research, PCA was conducted by diagonalizing the covariance matrix C constructed from
the Cx atom coordinates of MDM2, as outlined in Equation (7):

C=<(gi—<q>)(g—<q>)"> 7)

where g; and g; represent the Cartesian coordinates of the ith and jth Coc atoms from MDM2,
while <g;> and <g;> denote their average positions across conformational ensembles
obtained from MIGaMD simulations. The eigenvector and the eigenvalue generated by
the diagonalization of the covariance matrix characterize the concerted movement of the
structural domains and the fluctuation amplitude along a given eigenvector, respectively.
For this study, PCA was conducted using the CPPTRA] program [98] in the Amber suite.

3.5. Construction of Free Energy Landscapes

To investigate the influences of peptide and non-peptide inhibitors on the free energy
profiles of MDM2, projections of GaMD trajectories onto the first two eigenvectors served
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as RCs for constructing free energy landscapes (FELs). During the reweighting process in
GaMD simulations, reweighted free energy F(A) = —kpTIn(p,) is calculated as

2

k

F(A) = F*(A) — E TG+ Ee (8)
k=1

where F'(A) = —kgTInp'(A) represents the modified free energy obtained from the GaMD
simulations, Fc denotes a constant, and = kzT. The probability distribution p"(A) of
the selected RCs from the GaMD simulations can be reweighted to match the canonical
ensemble distribution p 4. All free energy reweighting calculations were performed using
the PyReweighting program developed by Miao et al. A detailed description for the
reweighting is given in the work of Miao et al. [90].

3.6. Binding Free Energies

To evaluate the binding of the two types of inhibitors to MDM2, MM-GBSA and

SIE methods were adopted to calculate binding free energies. In the MM-GBSA method,

enthalpy changes (AH) and entropy changes (-TAS) play essential roles in ligand associa-

tions. The binding free energies of the non-peptide inhibitors K23 and 0Y7 and the peptide

inhibitors PDI6W and PDI to MDM2 were calculated using the MM-GBSA method based
on the following Equation (9):

AG = AH —TAS )

where AH is calculated using Equation (10):
AH = AE, + AEyqw + Ang + AGsu;’f (10)

where electrostatic interactions (Els, AE,;,) and van der Waals interactions (VDWIs, AE ;)
can be estimated using molecular mechanics and the ff19SB force field. Polar solvation free
energies (PSFEs, AGyy,) were estimated using the generalized Born (GB) model proposed
by Onufriev et al. [99]. Non-polar solvation free energies (NPSFEs, AGg,, r) were calculated
based on the following empirical Equation (11):

AGgy =7 x ASASA + B (11)

where the term ASASA represents the variation in the solvent-accessible surface area (SASA)
mediated by the binding of inhibitors. Entropy changes (-TAS) were computed using the
MMPBSA.py program within the Amber20 software [100]. The two parameters y and
were set as 0.0072 kcal-mol-A~2 and 0.0 kcal-mol 1, respectively [101].

In the SIE method, the SIE function [66] to calculate inhibitor—protein binding free
energies is expressed as follows in Equation (12):

AGpina (0, Din, &, 77, C) = & X [EC(DM) +AGR + Epgw + ryAMSA(p)} +C (12

where E; and E,;y represent the intermolecular Coulomb and van der Waals interaction
energies in the bound state, respectively. AGR signifies the change in the reaction field
energy caused by the binding of an inhibitor, which was determined by solving the Poisson
equation using the boundary element method (BRI BEM) [102,103] and a solvent probe
with a variable radius of 1.4 A [104]. v-AMSA corresponds to the change in the molecular
surface area upon binding. The parameters p, D;;, 7y, and C are the Amber van der Waals
radii linear scaling coefficient, the solute interior dielectric constant, the molecular surface
area coefficient, and a constant, respectively. The parameter « relates to the overall propor-
tionality coefficient associated with the loss of conformational entropy upon binding [105].
The optimized values of these parameters are as follows: « = 0.1048, D;;, = 2.25,p = 1.1,
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v = 0.0129%cal / (mol~A), and C = —2.89kcal-mol ! [66,106]. The SIE calculations were
performed with the program Sietraj [106].

4. Conclusions

Investigating the molecular mechanism inhibiting the MDM2-p53 interaction is pivotal
for a deeper understanding of the treatment approaches used for cancers. To enhance
the conformation sampling of the inhibitor-MDM2 complexes, three individual GaMD
simulations of 1.2 us, each running for 400 ns, were conducted on four MDM2-related
systems. Through GaMD trajectory-based deep learning, key functional domains of MDM2,
predominantly situated at helices x2 and «2’, as well as the (3-strands and loops between
a2 and o2’, were identified. The calculated binding free energies obtained through the
MM-GBSA and SIE methods not only highlight that VDWIs are the primary driving forces
in the binding of inhibitors to MDM2, but also indicate that peptide inhibitors establish
more interaction contacts with MDM2 than non-peptide inhibitors. The results of the PCA
and FELs suggest that the piperidinone inhibitor exerts a significant influence on free
energy profiles, exhibiting higher fluctuation amplitudes along primary eigenvectors. The
analysis of the interaction network reveals crucial residues involved in inhibitor binding
and identifies potential targeting sites for drug design in relation to MDM2. This work
is anticipated to contribute significant theoretical aid to the development of potential
inhibitors for inhibiting the p53-MDM2 interaction.
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