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Abstract: The volume of difficult-to-process keratin waste is increasing as a result of rising global
meat production. If not properly managed, this waste can contribute to environmental pollution
and pose a threat to human and animal welfare. An interesting and more sustainable alternative is
therefore the bioconversion of keratin using microorganisms and their enzymes. This work aimed to
isolate bacteria from soil samples and zoonotic keratins and to evaluate their enzymatic capacity to
degrade α- and β-keratin wastes. A total of 113 bacterial strains were isolated from environmental
samples and subjected to taxonomic identification using the MALDI-TOF MS technique and to a
two-step screening for proteolytic and keratinolytic activity. The ability to degrade a β-rich keratin
substrate was observed in almost all of the strains isolated from soil and horsehairs. In contrast,
when an α-rich keratin substrate was used, the highest levels of hydrolysis were observed only for
Ker39, Ker66, Ker85, Ker100, and Ker101. Strains with the highest biodegradation potential were
identified using molecular biology methods. Phylogenetic analysis of 16S rDNA gene sequences
allowed the assignment of selected keratinolytic microorganisms to the genera Exiguobacterium,
Priestia, Curtobacterium, Stenotrophomonas, Bacillus, Kocuria, or Pseudomonas. The results of this study
are a promising precursor for the development of new, more sustainable methods of managing keratin
waste to produce high-value hydrolysates.
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1. Introduction

Human civilization, with its numerous activities, results in the accumulation of a
vast amount of solid waste in the environment. One of the fastest-growing types of waste
is keratinous materials, estimated to be several million tonnes per year [1]. Keratins are
primarily derived from animal body parts and serve as waste byproducts of industrial
processes, mainly from slaughterhouses, poultry farms, and leather industries [2]. If not
managed properly, keratin waste can significantly impact ecosystems, contributing to
environmental pollution, and pose serious hazards to human and livestock health [3].

Keratins constitute a heterogeneous family of proteins and are the third most abundant
biomass in nature, after chitin and cellulose. This polymer forms solid structures, held
together by disulfide bonds formed between the thiol groups (–SH) of cysteine amino acid
residues, as well as hydrogen bonds and hydrophobic interactions [4]. They are character-
ized based on their secondary structures (mainly α-helices and β-sheets), sulfur content
(soft and hard), amino acid composition (basic, acidic, or neutral), molecular weight, and
source of origin [5]. The multi-level structure and high number of cross-linkages between
various types of keratins result in a high resistance to mechanical, chemical, and physical
factors [6]. These hard-to-degrade proteins are mostly disposed of through landfilling or
incineration, which is ecologically disadvantageous due to the apparent energy loss and
the production of large amounts of carbon dioxide [7]. The most promising alternatives to
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these techniques are biotechnological methods using keratinolytic microorganisms or more
controlled hydrolysis with cell-free keratinase extracts and purified keratinases [8]. The
complex and recalcitrant structure of keratin requires synergistic interactions of different
types of keratinolytic enzymes to be effectively decomposed.

Keratinases (E.C. 3.4.21) are extracellular enzymes capable of degrading keratin [9].
They are produced by microorganisms, including bacteria, and filamentous fungi, including
dermatophytic species. The main industrial producers of keratinases are strains belonging
to the genus Bacillus (e.g., B. cereus, B. subtilis, B. pumilus, B. stearothermophilus, B. licheni-
formis, B. coagulans). Other promising producers include Gram-positive bacteria such as
Lysobacter, Nesternokia, Kocuria, Microbacterium, and Streptomyces and some Gram-negative
bacteria, e.g., Xanthomonas, Aeromonas, Stenotrophomonas, Serratia, Chryseobacterium, and
Vibrio [8,10–12]. Keratinolytic proteases have also been isolated from extremophilic mi-
croorganisms, including representatives such as Pseudoalteromonas, Colwellia, Flavobacterium,
Shewanella, Fervidobacterium, Thermoanaerobacter, and Nesternokia [8,9].

The industry has a keen interest in microorganisms capable of producing large
amounts of efficient extracellular keratinases. However, the utility of these enzymes
is currently underexploited due to the limited availability of keratinolytic protease pro-
ducers. Isolating novel strains that produce significant yields of well-performing enzymes
with versatile substrate specificity, increased stability at elevated temperatures and/or
pH values, and higher tolerance to feedback inhibition is essential for the development of a
viable industrial fermentation [9,13].

In this study, keratinolytic bacteria were isolated from soil and horsehair samples.
This report describes the identification of these bacteria based on MALDI-TOF MS and the
molecular 16S rDNA method. The studies also determined the abilities of microorganisms
to hydrolyze casein and keratin waste substrates, such as chicken feathers (CHFs), horsehair
(HH), and dog hair (DH). The highest keratinolytic activity was observed in Exiguobacterium,
Bacillus and Kocuria genera. Strains isolated within this research, thanks to their enzymatic
abilities, can be regarded as innovative and environmentally friendly tools with potential
application in the rational management of keratin waste and associated technologies. Such
strategies are in line with the principles of green chemistry and a circular economy.

2. Results
2.1. Isolation and Preliminary Identification of Microorganisms

Bacterial colonies were isolated from environmental samples (Table 1) during cultiva-
tion on an LB medium in various temperatures (10 ◦C, 20 ◦C, and 30 ◦C).

Table 1. Environmental samples used for the isolation of microorganisms with keratinolytic potential.

Sample Name Sample Type Description

KGMa Winter coat horsehair Collected during spring shedding from Lesser Poland warm-blooded horse
(Equus caballus); height 164 cm, bay with slight feathers, born in 1998

KGHa Winter coat horsehair Collected during spring shedding from Polish noble half-blood horse (Equus
caballus), height 172 cm, seal brown; born in 1997

KPMa Fetlock horsehair Collected during spring shedding from Lesser Poland warm-blooded horse
(Equus caballus); height 164 cm, bay with slight feathers, born in 1998

KPH Fetlock horsehair Collected during spring shedding from Polish noble half-blood horse (Equus
caballus), 172 cm, seal brown; born in 1997

KSMa Full body swab
Full body swab with sterile gauze soaked in 0.9% NaCl from neck, groin, back,
withers, and upper rump of Lesser Poland warm-blooded horse (Equus caballus);
height 164 cm, bay with slight feathers, born in 1998

KSHa Full body swab
Full body swab with sterile gauze soaked in 0.9% NaCl from neck, groin, back,
withers, and upper rump of Polish noble half-blood horse (Equus caballus),
height 172 cm, seal brown; born in 1997

GA1 Soil Small greenhouse, burial place of fallow deer (Dama dama) pelts, Lodz (Lodzkie
voivodeship, Central Poland), depth 30 cm
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Table 1. Cont.

Sample Name Sample Type Description

GA2 Soil Small greenhouse, burial place of fallow deer (Dama dama) pelts, Lodz (Lodzkie
voivodeship, Central Poland), depth 70 cm

GB1 Soil Small greenhouse, burial place of fallow deer (Dama dama) pelts, Lodz (Lodzkie
voivodeship, Central Poland), depth 30 cm, 5 m away from GA site

GB2 Soil Small greenhouse, burial place of fallow deer (Dama dama) pelts, Lodz (Lodzkie
voivodeship, Central Poland), depth 70 cm, 5 m away from GA site

GC1 Soil Small greenhouse, burial place of fallow deer (Dama dama) pelts, Lodz (Lodzkie
voivodeship, Central Poland), depth 30 cm, 1 m away from GA site

GC2 Soil Small greenhouse, burial place of fallow deer (Dama dama) pelts, Lodz (Lodzkie
voivodeship, Central Poland), depth 70 cm, 1 m away from GA site

The total number represented 113 bacterial strains: 55 isolated from horsehair samples
and 58 from soil. In the presented research, the highest numbers of bacterial strains were
obtained from winter coat sample KGMa (23 strains), greenhouse soil samples GB1 and GC1
(15 and 11 strains, respectively), and fetlock horsehair sample KPMa (also 11 strains). While
soil samples are commonly used to isolate new microbial strains, horsehair microbiome
studies tend to focus on identifying pathogens in sick animals for veterinary purposes,
because the isolates are tested almost exclusively for antibiotic resistance [14]. Studies
focusing on other properties of microorganisms isolated from horses are quite rare. The
highest number of strains was isolated at 30 ◦C and consisted of 76 isolates. Significantly
lower numbers of isolates were obtained at 20 ◦C and 10 ◦C, which were 29 and 8 isolates,
respectively (Figure 1). The further testing of strains was carried out at the temperatures of
their isolation.
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MS). The MALDI-TOF protein mass fingerprinting was implemented in this research as a 
relatively fast and cost-effective technique, gaining more recognition in the field of 

Figure 1. Temperature- and isolation-site-dependent number of isolated strains. Horsehair (KGHa,
KGMa, KPH, KPMa, KSHa, KSMa) and soil samples (GA1, GA2, GB1, GB2, GC1, GC2).

All isolated strains were subjected to preliminary taxonomic identification using matrix-
assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The
MALDI-TOF protein mass fingerprinting was implemented in this research as a rela-
tively fast and cost-effective technique, gaining more recognition in the field of microbial
identification [15–17]. The results obtained in this step are available in Supplementary Table S1.
Only strains with MALDI identification (ID) score ≥ 70% were regarded as sufficient and
used for the generation of biodiversity plots (Figure 2).
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Figure 2. The biodiversity of strains isolated from horsehair (KGHa, KGMa, KPH, KPMa, KSHa,
KSMa) and soil samples (GA1, GA2, GB1, GB2, GC1, GC2). The isolates were identified using
matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Only
identification scores ≥ 70% were regarded as sufficient and used for biodiversity plots.

Identified bacteria were representatives of classes Bacilli (44 strains), Gammapro-
teobacteria (11 strains), and Actinomycetes (1 strain). The majority (86%) of Bacilli class
isolates belonged to the genus Bacillus—common constituent of animal, plant, water, and
soil microbiomes, similarly to the identified Aeromonas (5 strains) [18], Kocuria (1 strain) [19],
Serratia (1 strain) [20], Pseudomonas (2 strains) [21], and Priestia (2 strains) isolates [22].
Moreover, many isolated strains, belonging to the Pseudomonas, Staphylococcus and Acine-
tobacter genera, have been previously recognized as part of a healthy and wound-related
horse microbiome [23–25]. Bacteria from Bacillus, Priestia, Kocuria and Pseudomonas genera
have already been associated with positive ecological roles, including the development of
soil fertility [26,27], nitrogen fixation [28], the bioremediation of hydrocarbon compounds
and heavy metals [19,29], and animal and plant health and growth promotion [28,30–32].
However, as with many representatives of Aeromonas, Staphylococcus, and Serratia [33], some
of the Bacillus and Pseudomonas species are also known as pathogenic and opportunistic
microorganisms [34,35]. Of all isolated bacterial strains, almost 51% (57 strains) were not
identified with the chosen preliminary method. This can be the result of the high diversity
of environmental isolates and significant differences in their proteomic makeup in compari-
son to reference (often collection or clinical) strains, typically used for the development of
MALDI-TOF databases [36,37]. To increase the efficiency and reliability of MALDI-TOF MS
identification, different methods or more specific, custom-made databases could be used or
developed [16,37–39].
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2.2. Evaluation of Proteolytic Activity of Isolated Strains

In the search for strains exhibiting keratinolytic activity, cultivation on a medium
enriched with skimmed milk is a well-established method of primary selection [40–43].
Most of the identified keratinase producers also show the ability to hydrolyze simple
protein substrates, including casein [44–46]. This strategy was also implemented in the
present study. A screening test on agar plates containing skimmed milk was conducted, and
the enzymatic activity index (EAI) values were calculated. A total of 106 out of 113 isolates
were observed to exhibit proteolytic activity after 48 h of cultivation (Figure 3). Only
for seven strains were clear zones around colonies not observed, including six horsehair
isolates and one soil isolate.
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Figure 3. Selected strains exhibiting proteolytic activity on LB agar medium supplemented with
skimmed milk after 24 h and 48 h of incubation at 30 ◦C. Ker96 showed low proteolytic activity after
(a) 24 h (EAI = 0.19) and (b) 48 h (EAI = 0.26). Ker107b exhibited medium proteolytic activity after
(c) 24 h (EAI = 0.65) and (d) 48 h (EAI = 1.10). Ker11 revealed high proteolytic activity after (e) 24 h
(EAI = 1.94) and (f) 48 h (EAI = 2.50). Strain Ker103 also demonstrated high proteolytic activity within
(g) 24 h (EAI = 1.87) and (h) 48 h (EAI = 2.94).

A predominant majority (~98%) of the soil-derived isolates showed some degree
of proteolytic activity. The ability to produce soil proteases is characteristic not only for
pathogenic microorganisms, but also for typical destruents living in such environments [47].
Proteases of microbial origin are the most abundant among proteolytic enzymes in the
soil [48]. Due to their unique kinetic properties and responses to environmental factors
in different ecosystems, proteases are considered important in protein mineralization pro-
cesses, resulting in an improvement in soil properties [47,49]. In many ecosystems, proteol-
ysis plays a crucial role in nitrogen cycling by converting nitrogen from large biopolymers
into a simpler form, which is more accessible for microbial and plant uptake [49]. Microbial
proteases are also involved in carbon cycling, which is likely to be their primary function.
Around 85–90% of all organic carbon decomposition is attributed to microorganisms living
in the soil, making them an inherent part of most ecosystems [50]. Furthermore, protease
production by microbes is essential for multispecies interactions, including symbiotic and
antagonistic behaviors [51–53].

Among the isolated strains, approximately 94% exhibited the ability to synthesize pep-
tidases of varying activity (Figure 4). The highest proteolytic activity, exceeding EAI = 1.8,
was observed for ten isolates: seven corresponded to horse-related samples (Ker2, Ker4,
Ker7, Ker10a, Ker12, Ker25, Ker48) and three to soil samples (Ker68, Ker97, Ker103).
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Seven strains, Ker9c, Ker10b, Ker14, Ker24, Ker26, Ker35, and Ker98, were regarded as
non-proteolytic (EAI = 0 after 48 h at given temperature; Supplementary Table S1). How-
ever, they might exhibit such activity after a longer incubation time or when cultured
with proteinaceous substrates other than casein (present in skimmed milk), e.g., albumin,
gelatine, fibrin, elastin, and collagen [54,55]. This might be connected to various substrate
specificities of known keratinolytic enzymes [56]. Therefore, in the next stage of this re-
search, all isolated strains were tested for keratinolytic activity by submerged cultivation
with keratin waste substrates.
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(EAI > 0) (B). The proteolytic activity was measured by the translucence around grown bacterial
colonies on agar plates containing skimmed milk and expressed as enzymatic activity index (EAI)
after 48 h of incubation.

2.3. Evaluation of Keratinolytic Aptitude in the Degradation of Waste Substrates

The second stage of screening involved the cultivation of isolated strains on media
containing keratin substrates, such as chicken feathers (CHFs), horsehair (HH), and dog
hair (DH). After seven days of incubation (140 rpm at 10 ◦C, 20 ◦C, or 30 ◦C), 16 of the
113 isolates were regarded as incapable of hydrolyzing any of the used substrates (85.8%
active strains) (Figure 5). In the case of DH decomposition, a semi-positive result was
obtained for four isolates derived from soil (Ker75, Ker76, Ker79, Ker81), for which we only
observed a higher turbidity of the culture medium. The remaining strains showed no ability
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to hydrolyze this substrate. Significantly, 84% of the tested strains were able to degrade
the β–keratin substrate (CHFs). Most of those strains were soil bacteria. With HH as the
carbon source, the only macroscopic changes that were observed were hair fragmentation,
as well as a change in the color and turbidity of post-culture liquid. Complete degradation
of this α-keratin-rich substrate was not observed for any strain.
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Figure 5. Keratinolytic activity of isolated strains on two different substrates (chicken feathers and
horsehair) (A). The ability to degrade α- and β-rich keratin substrate was measured macroscopically,
scaled from 0 to 3 (B).

There is a noticeable difference between isolates derived from soil and horsehair
samples. The latter are mostly unable to degrade horsehair. This can correlate significantly
with their origin, as healthy animal microbiota should not exhibit substantial keratinolytic
abilities towards host organisms and can be related to inhibitory effects of the metabolism
of the host organism and its cutaneous microbiota on the growth and spread of potentially
pathogenic microorganisms utilizing proteases and keratinases as virulence factors. The
only exception was strain Ker39, which was revealed to possess a higher ability to degrade
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horsehair than other horse-derived isolates. In contrast, most of the soil isolates were
able to degrade this α-keratin-rich HH substrate to various extents. Moreover, Ker66,
Ker71, Ker85, and Ker101 strains were able to catalyze the hydrolysis of both α- and
β-rich keratin substrates (HH and CHFs, respectively). Of all 113, only 15 isolates did not
exhibit a keratinolytic potential in response to any substrate under tested conditions, six
of which did not possess observable proteolytic activity during cultivation on agar test
plates with skimmed milk (see Section 2.2). Furthermore, two isolates Ker39 and Ker41
with low proteolytic activity (not exceeding EAI = 0.09) exhibited keratinolytic activity
towards at least one keratin waste substrate. Strain Ker39 had high and medium activities
towards CHFs and HH, respectively, and strain Ker41 had a medium activity towards
CHFs. Interestingly, even though clear zones around colonies of isolate Ker24 were not
observed when cultivated on skimmed milk agar, the strain showed the ability to hydrolyze
CHFs. This indicates that the skimmed milk agar plate test, though commonly used,
might not always allow for the elimination of non-keratinolytic strains in the preliminary
screening stages.

This may be related to non-optimal test conditions for the sought-after enzymatic
activity or with different molecular mechanisms of keratin degradation, based on the
presence and cooperation of enzymes from various families and classes [44,57,58] with
their substrate specificity determining the efficiency of degradation of waste keratins.
In future studies, the effect of temperature, pH, time of incubation, specificity towards
other keratin-rich substrates, or the role of substrate form (e.g., the size of the pieces
used) could be further examined. Although the biochemical activity can vary greatly
between keratinases, typically temperatures between 40 and 60 ◦C and neutral or alkaline
pH (7–10) are considered optimal [59]. The changes in medium composition during the
biodegradation process could also influence its kinetics. A study of several Aphanoascus
keratinophilus strains suggests the presence of a weak correlation between the accumulation
of the liberated ammonia in the medium and the inhibition of fungal keratinases after
3 weeks of culturing [60]. The above indicates that monitoring of the carbon-to-nitrogen
ratio throughout the keratin degradation process might improve its effectiveness.

Based on the results from screening on proteolytic and keratinolytic activity followed
by MALDI-TOF, 29 strains, 8 of which were from horsehair samples and 21 were from soil
samples, were selected for molecular taxonomic identification as potential producers of
keratinolytic enzymes with 16S rDNA sequencing.

2.4. Molecular Identification and Phylogenetic Analysis of Selected Strains

Molecular identification based on sequencing of the 16S rDNA fragment was per-
formed to accurately confirm the taxonomic affiliation of the selected 29 bacterial strains
(Supplementary Table S2). The horse isolates with keratolytic potential belonged to gen-
era Exiguobacterium, Mammalicoccus (formerly Staphylococcus), Curtobacterium, and Priestia.
Among the soil isolates, 12 corresponded to the genus Bacillus and the remaining were
classified as Pseudomonas, Areomonas, Kocuria, and Stenotrophomonas. Molecular identi-
fication confirmed the results obtained with MALDI-TOF MS. Even though 21 isolates
were not identified by mass spectrometry (MALDI ID score lower than 70%), some strains,
such as Stenotrophomonas Ker107b, Pseudomonas Ker87, and Bacillus Ker85, were classified
correctly on the genus level and later confirmed by 16S rDNA sequencing. Moreover,
none of the strains were misidentified. The microbial collection acquired during this study
will enrich the in-house database of mass spectra of the keratinolytic strain, enabling the
more accurate and efficient identification of related strains in the future. While marker
gene sequencing remains the golden standard of taxonomic classification, both methods
cannot be regarded as highly reliable for species-level identification without additional
biochemical or bioinformatic analyses, as many close-related bacteria generate almost
identical MALDI-TOF spectra and possess highly similar 16S rDNA sequences, especially
in the Bacillus genus [39,61].
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Phylogenetic analyses showed that all newly identified strains are phylogenetically
related to the other known species of the respective genus (Figures 6 and 7). The Curto-
bacterium sp. Ker43 isolated in this study, which is closely related to Curtobacterium allii,
was the first strain with keratinolytic potential from this genus identified to date. This is in
contrast to strains Mammaliicoccus sp. Ker33, Priestia sp. Ker37, and all new isolates that
belong to genus Exiguobacterium, for which numerous literature reports indicate their ker-
atinolytic activity. It was shown that strains of the genus Exiguobcterium isolated from soil
samples, such as Exiguobacterium sp. DG1 [62] and Exiguobacterium indicum AKAL11 [63],
were able to degrade chicken feather. None of the isolated strains belonging to this genus
were closely related to keratinolytic strains described in earlier research.
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Phylogenetic analysis of the strains of the genus Bacillus has shown that they are
mostly members of the Bacillus cereus group (Figure 7). Only one strain, Ker79, is closely
related to B. licheniformis, B. subtilis, and B. amyloliquefaciens, which are some of the best
known and studied keratinolytic bacteria. The distinctiveness of the Bacillus cereus group
from Bacillus cluster was previously demonstrated [61]. Bacteria of the genus Bacillus
constitute a substantial group among all keratinase-producing bacteria with many strains
for which high keratinolytic activity has been proven [64–68].
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Keratinolytic activity has been previously described in strains of the genus Kocuria [69,70],
with one representative being Kocuria rosea LPB-3 [71] isolated from the soil of poultry
processing plants or Kocuria rizhophila p3-3 [8]. The phylogenetic analysis of the Ker103
strain isolated in this study showed that it is closely related to the Kocuria arsenatis. An
actinobacterial strain isolated from the Prosopis laegivata roots, growing on mine tailings,
was resistant to a high concentration of arsenic (20 mM) [72]. However, studies showed
that the isolates with keratinolytic activity also included Gram-negative bacteria. These
belong to the following genera: Pseudomonas, Aeromonas, and Stenotrophomonas. Among
Gram-negative keratinolytic isolates, 5 corresponded to the genus Pseudomonas, but only 2
to Aeromonas and 1 to Stenotrophomonas. The ability to hydrolyze keratin substrates has been
observed in many Pseudomonas bacteria, among which P. stutzeri K4, isolated from detergent
contaminated pond, is notable for its ability to degrade feathers within 5 days. Interestingly,
the strain’s crude keratinase preparation was also used for the complete dehairing of goat
skin in less than 24 h [73]. Moreover, phylogenetic analysis revealed a relatedness between
Ker62 and Aeromonas hydrophila K12, a proteolytic and keratinolytic strain isolated from
Brazilian soils of Atlantic Forest and exhibiting high enzyme secretion in minimal media
supplemented with feather meal at various temperatures (from 30 ◦C to 55 ◦C) [7,10,74].
All the newly isolated strains represent different and equally interesting sources of potential
keratinolytic enzymes that could form the basis for the development of biosynthesis of
bioactive compounds from waste products, thus linking green chemistry and sustainable
waste management together.

As the price of whole-genome sequencing has decreased significantly over the past few
years, the analysis and comparison of good-quality bacterial genomes, using open databases
and free bioinformatics tools, can provide an alternative for identification methods used in
this research (single-marker gene sequencing and MALDI-TOF protein mass fingerprinting)
and deliver more precise and reliable results as well as deeper insight into potential
enzymatic abilities of keratinolytic strains.

3. Materials and Methods
3.1. Sample Collection

All samples were collected during the spring of 2022 from a rural area on the outskirts
of Lodz (Lodzkie voivodeship, Central Poland). Six of them consisted of horsehair gathered
during the spring shedding season from two warm-blooded mares (Equus caballus). Both
horses were kept on straw and frequently paddocked throughout the year. For each sample,
either winter coat hair, fetlock, or gauze soaked in 0.85% NaCl and swabbed through
the entire body was taken from each animal. The six soil samples were collected from a
small greenhouse, where fallow deer (Dama dama) pelts had been buried approximately
18 months earlier. The soil was dug into 30 cm and 70 cm depths in three places—pelt
burial site, and 1 m and 5 m from it (see Table S1). After collection, all samples were stored
at 5 ◦C.

3.2. Isolation of Microorganisms

An amount of 0.5 g of each sample or an entire 5 cm × 5 cm gauze was incubated with
10 mL of sterile 5% glucose water for 24 h at 20 ◦C and 500 rpm. Serial dilutions with sterile
0.85% NaCl (from 10−1 to 10−6) were prepared for all the samples. Then, 20 µL of each
dilution was pipetted onto agar plates with solid Lysogeny Broth (LB) medium (10 g/L
tryptone peptone; 10 g/L NaCl; 5 g/L yeast extract; 20 g/L agar) and then 100 U/mL of
nystatin (POL-AURA, Morąg, Poland) for the inhibition of fungal growth. The plates were
incubated at 10 ◦C, 20 ◦C, and 30 ◦C for 72 h. Every 24 h, the growth of microbial cultures
was assessed macroscopically. Single colonies were transferred onto fresh LBP plates using
the streaking technique and incubated at temperatures of the original isolation. The process
was repeated until pure isolates were obtained. The single microbial colonies were used to
prepare glycerol stocks with LB medium (medium/glycerol 1:1 (v/v)) and frozen at −80 ◦C
until further analysis. Example 1 of an equation:
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3.3. MALDI-TOF MS—Preliminary Identification of Microorganisms

To discriminate potential pathogenic bacteria, isolates were cultured on LB agar plates
for 24 h or 48 h at temperatures corresponding to the isolation conditions. For microbial
identification with the MALDI-TOF MS technique and direct smear with the formic acid
method, a single colony from each isolate was transferred onto a dedicated steel target
plate using a sterile 1 µL inoculation loop. Then, 0.5 µL of 25% formic acid (MERCK,
Darmstadt, Germany) was added onto biomass, stirred gently, and left until almost dry.
Next, 1 µL of saturated matrix solution (40 mg α-cyano-4-hydroxycinnamic acid (α-CHCA;
MERCK, Darmstadt, Germany)) in 1 mL of acetonitrile/ethanol/water 1:1:1 (v/v) with the
final trifluoroacetic acid (TFA; MERCK, Darmstadt, Germany) concentration of 3% was
added, mixed in, and left to air-dry for 30 min. The dried samples were then analyzed with
an AXIMA-iD Plus Confidence MALDI-TOF mass spectrometer (Kratos Analytical Ltd.,
Manchester, UK and Shimadzu Corporation, Kyoto, Japan). The spectra were collected
using Launchpad 2.9 software (Kratos Analytical Ltd., Manchester, UK and Shimadzu
Corporation, Kyoto, Japan) in the linear positive ion mode in the mass-to-charge (m/z)
ratio range of 2000 to 20,000 Da, with a 50 Hz laser frequency and 90% of laser power. For
each sample, a mass spectrum of 200 profiles, each consisting of 5 laser shots, was acquired.
The E. coli DH5α (TAKARA BIO Inc., Kusatsu, Japan) cells cultivated overnight on an LB
agar plate at 30 ◦C were used as a control. The SARAMIS Premium 4.11 software (Spectral
ARchive and Microbial Identification System; bioMérieux, Craponne, France) was used
for comparative analysis of the obtained and reference spectra. Results of the analyses are
expressed as confidence scores values [%]. The results obtained in this work are listed in
Supplementary Table S1. Only scores ≥ 70% were regarded as sufficient for identification.
All potentially pathogenic microorganisms identified among isolates were excluded from
further study.

3.4. Screening for Proteolytic and Keratinolytic Enzymatic Activities
3.4.1. Activation of Isolates and Inoculum Preparation

Isolated strains were cultivated in 20 mL of standard LB medium, inoculated with
20 µL of previously prepared and thawed glycerol stocks, for 24 h or 48 h with 140 rpm
shaking at 20 ◦C or 30 ◦C (depending on the isolation temperature; strains isolated at 10 ◦C
were cultivated at 20 ◦C to shorten incubation time). After incubation, the optical density
(OD) of each culture was measured using a UV-VIS spectrophotometer (Shimadzu UV-1800,
Kyoto, Japan) at a 660 nm wavelength. The obtained cultures were then centrifuged for
5 min at 5000 rpm. The pellet was washed with sterile distilled water and centrifuged
again. The cells were then resuspended in an adequate volume of distilled water to
obtain OD660 = 1 and used as inoculum for a proteolytic activity assay and keratinolytic
activity screening.

3.4.2. Proteolytic Activity Assay

For the semi-quantitative assay of proteolytic activity, 2 µL of inoculum (OD660 = 1)
was spotted in triplicate on fresh LB agar plates enriched with 0% fat UHT cow’s milk in
a 4:1 (v/v) medium/milk ratio. The plates were incubated at 10 ◦C, 20 ◦C, or 30 ◦C and
observed after 24 and 48 h. The clear zones around microbial colonies were measured each
time and the enzymatic activity index (EAI) for proteolytic activity was calculated using
the provided formula:

EAI =
dz − dc

dc

where

dz—the average diameter of clear zones around colonies;
dc—the average diameter of colonies.
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For comparative analysis of proteolytic activity among the tested strains, it was
assumed that EAI values of ≤0.9, ≤1.8, and ≤2.9 correspond to low, medium, and high
enzymatic activities towards casein.

3.4.3. Screening for Keratinolytic Activity

For the qualitative screening of keratinolytic activity, strains were cultivated in 250 mL
flasks filled with 50 mL of minimal mineral medium (0.5 g/L NH4Cl, 0.5 g/L NaCl,
0.3 g/L K2HPO4, 0.4 g/L KH2PO4, 0.1 g/L MgSO4, 0.1 g/L yeast extract) with the ad-
dition of 1% (w/v) keratinolytic activity inducer. Each strain was screened with three types
of inducers—chicken feathers (CHFs), dog hair (DH), and horsehair (HH). All keratin
substrates were degreased beforehand by 30 min of incubation in a chloroform/ethanol 1:1
(v/v) mixture with intermittent stirring at room temperature and air-dried for 24 h. Keratin
inducers were sterilized with liquid media for 15 min at 121 ◦C. Cultures were inoculated
with 1 mL of cells washed and suspended in distilled water with OD660 = 1, and incubated
on a rotatory shaker (INFORS HT, Bottmingen, Switzerland) for 7 days at 140 rpm at 10 ◦C,
20 ◦C, or 30 ◦C. After incubation, the post-culture liquids were separated from keratin
residues using standard vacuum filtration on a Büchnel funnel with 70 mm Munktell
filter paper (Chem-Land, Stargard, Poland). The obtained filtrates were stored at −20 ◦C.
Keratin substrate residues were left to air-dry for at least 24 h. To qualitatively assess the
keratinolytic abilities of the isolated strains, the changes in the appearance of post-culture
liquids and the degree of keratin substrate degradation were observed macroscopically,
graded from 0 to 3. It was assumed that a value of 0.5 indicates only a higher turbidity of
culture medium; 1 and 1.5 corresponded to a lesser or greater degree of fragmentation of
the horsehairs; 2 indicates a significant decomposition and fragmentation of both used sub-
strates; 2.5 corresponds to a nearly complete decomposition of the feathers, where the only
remnants are quills; and 3 means complete degradation of the keratin substrate. The tested
strains were compared with the negative control samples (without microbial inoculation).

3.5. Molecular Identification

To identify or confirm the identification of 29 strains, selected based on their kerati-
nolytic and proteolytic activities, the growth rate and MALDI-TOF MS results were chosen
for molecular identification via the amplification and sequencing of the 16S rDNA gene
V3-V4 fragment with 27F (5′-AGAGTTTGATCMTGGCTCAG-3′) and 785R
(5′-CTACCAGGGTATCTAATCC-3′) primers. Genomic DNA (gDNA) was isolated from
overnight single colonies using the GeneMATRIX Bacterial & Yeast Genomic DNA Pu-
rification Kit (EURx, Gdańsk, Poland). Polymerase chain reaction (PCR) was performed
with OptiTaq DNA polymerase in a ready-to-use tiOptiTaq Master Mix (EURx, Poland)
solution. The obtained PCR products were purified with the GeneMATRIX Basic DNA
Purification Kit (EURx, Poland) and sequenced with Sanger DNA sequencing at Genomed
S.A. (Warsaw, Poland). The sequences were then trimmed and compared with reference
sequences from the GenBank database using the basic local alignment search tool (BLAST®,
NCBI, Bethesda, MD, USA). The sequences obtained in this work were deposited in the
GenBank database and their accession numbers are listed in Supplementary Table S2.

3.6. Phylogenetic Analysis

Phylogenetic analysis was based on the most accurate fragments of 16S rDNA re-
gion v3-v4, which was proven by [75]. A sequence dataset was created by trimming the
v3-v4 region from 16S rDNA genes downloaded from GenBank (Supplementary Table S3).
Alignments were performed using the MAFFT v.7 program using default parameters [76].
Phylogenetic analyses were performed in the MEGA-X program using the maximum
likelihood (ML) method. Bootstraps analyses were performed using ultrafast bootstrap
approximation with 1000 replicates.
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4. Conclusions

Sustainable waste management is an important part of pro-environmental practices.
The isolation and characterization of keratinolytic microorganisms are necessary for the
development of more feasible and greener keratin waste management technologies, which
corresponds perfectly with the findings presented in this article. The authors isolated
113 strains from soil and horsehair samples, which were screened for proteolytic and
keratinolytic activity. The keratinolytic strains identified in this study belong mainly to the
genera Bacillus, Pseudomonas, and Exiguobacterium with Kocuria and Stenotrophomonas. Based
on the obtained results, it can be concluded that the soil isolates have higher proteolytic and
keratinolytic activities compared to strains from horsehairs. In addition, strains derived
from soil can degrade waste substrates rich in α- and β-keratins. There is, however,
a marked difference in the degradation of these two substrates, with chicken feathers
being more favorable. It is therefore important to look for strains that show activity
against different keratin-rich substrates. In further research, a more in-depth genomic,
metabolomic, and proteomic characterization of identified keratinolytic strains must be
performed for the development of rational and environmentally friendly keratin waste
bioprocessing technologies.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/molecules29143380/s1. Table S1: Isolate identification
using MALDI-TOF MS and SARAMIS Premium database; Table S2: Taxonomic identification based
on v3-v4 16S rDNA fragment analysis with BLASTn® (NCBI); Table S3: The accession numbers of
16S rDNA genes used in the phylogenetic analysis.
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