Unveiling the Impact of Eco-Friendly Synthesized Nanoparticles on Vegetative Growth and Gene Expression in Pelargonium graveolens and Sinapis alba L.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Nanomaterial
2.2. Effect of Nanoparticles Mg NP/GW and GW NPs on Sinapis alba Seed Germination
2.3. Morphological Parameters of Pelargonium graveolens
2.4. Effect of Nanoparticle on Mitotic Division
2.5. Effect of Nanoparticle on Gene Expression
2.5.1. FPPS1 Gene Expression Analysis Result
2.5.2. GPPS1 Gene Expression Analysis Result
2.6. Potential Applications of Mg NP/GW Nanoparticles
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Collection of the Plant Material
3.3. Preparation of Mg NP/GW Nanocomposite and Zero-Valent Mg NPs
3.4. Characterization of Nanoparticles
3.5. Soil Analysis and Pot Experiment
3.6. Effect of Nanoparticles on S. alba Seed Germination
3.7. Effect of Nanoparticles on P. graveolens Morphological Parameters
3.8. Effect of Nanoparticles on Mitosis of Allium cepa Root Tips Using Mg NP/GW
3.9. Effect of Nanoparticles on Gene Expression
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agarwal, H.; Shanmugam, V. A review on anti-inflammatory activity of green synthesized zinc oxide nanoparticle: Mechanism-based approach. Bioorg. Chem. 2020, 94, 103423. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, E.W.; Bandeira, N.; Sharma, V.; Perez-Riverol, Y.; Carver, J.J.; Kundu, D.J.; García-Seisdedos, D.; Jarnuczak, A.F.; Hewapathirana, S.; Pullman, B.S. The ProteomeXchange consortium in 2020: Enabling ‘big data’approaches in proteomics. Nucleic Acids Res. 2020, 48, D1145–D1152. [Google Scholar] [CrossRef] [PubMed]
- Akintelu, S.A.; Folorunso, A.S.; Folorunso, F.A.; Oyebamiji, A.K. Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon 2020, 6, e04508. [Google Scholar] [CrossRef] [PubMed]
- Dhar, U.; Manjkhola, S.; Joshi, M.; Bhatt, A.; Bisht, A.; Joshi, M. Current status and future strategy for development of medicinal plants sector in Uttaranchal, India. Curr. Sci. 2002, 83, 956–964. [Google Scholar]
- Larsen, H.O.; Olsen, C.S. Unsustainable collection and unfair trade? Uncovering and assessing assumptions regarding Central Himalayan medicinal plant conservation. Biodivers. Conserv. 2007, 16, 1679–1697. [Google Scholar] [CrossRef]
- Pauls, T.; Franz, M. Trading in the dark–The medicinal plants production network in U ttarakhand. Singap. J. Trop. Geogr. 2013, 34, 229–243. [Google Scholar] [CrossRef]
- Labeeb, M.; Badr, A.; Haroun, S.A.; Mattar, M.Z.; El-Kholy, A.S.; El-Mehasseb, I.M. Ecofriendly synthesis of silver nanoparticles and their effects on early growth and cell division in roots of green pea (Pisum sativum L.). Gesunde Pflanz 2020, 72, 113–127. [Google Scholar] [CrossRef]
- Labeeb, M.; Badr, A.; Haroun, S.A.; Mattar, M.Z.; El-Kholy, A.S. Ultrastructural and molecular implications of ecofriendly made silver nanoparticles treatments in pea (Pisum sativum L.). J. Genet. Eng. Biotechnol. 2022, 20, 5. [Google Scholar] [CrossRef] [PubMed]
- Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanoparticle Res. 2008, 10, 507–517. [Google Scholar] [CrossRef]
- Nadaroglu, H.; Güngör, A.A.; Ince, S. Synthesis of nanoparticles by green synthesis method. Int. J. Innov. Res. Rev. 2017, 1, 6–9. [Google Scholar]
- Chen, H.; Roco, M.C.; Li, X.; Lin, Y. Trends in nanotechnology patents. Nat. Nanotechnol. 2008, 3, 123–125. [Google Scholar] [CrossRef]
- Das, S.; Parida, U.K.; Bindhani, B.K. Green biosynthesis of silver nanoparticles using Moringa oleifera L. leaf. Int. J. Nanotechnol. Appl. 2013, 3, 51–62. [Google Scholar]
- Yadav, V.K.; Gnanamoorthy, G.; Ali, D.; Bera, S.P.; Roy, A.; Kumar, G.; Choudhary, N.; Kalasariya, H.; Basnet, A. Cytotoxicity, removal of Congo red dye in aqueous solution using synthesized amorphous iron oxide nanoparticles from incense sticks ash waste. J. Nanomater. 2022, 2022, 5949595. [Google Scholar] [CrossRef]
- Ameen, F.; Alsamhary, K.; Alabdullatif, J.A.; ALNadhari, S. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicol. Environ. Saf. 2021, 213, 112027. [Google Scholar] [CrossRef] [PubMed]
- Tsekhmistrenko, S.C.; Bityutskyy, V.; Tsekhmistrenko, O.; Merzlo, S.; Tymoshok, N.; Melnichenko, A.; Polishcuk, S.; Demchenko, A.; Yakymenko, I. Bionanotechnologies: Synthesis of metals’ nanoparticles with using plants and their applications in the food industry: A review. J. Microbiol. Biotechnol. Food Sci. 2021, 10, e1513. [Google Scholar] [CrossRef]
- Soni, V.; Raizada, P.; Singh, P.; Cuong, H.N.; Rangabhashiyam, S.; Saini, A.; Saini, R.V.; Van Le, Q.; Nadda, A.K.; Le, T.-T. Sustainable and green trends in using plant extracts for the synthesis of biogenic metal nanoparticles toward environmental and pharmaceutical advances: A review. Environ. Res. 2021, 202, 111622. [Google Scholar] [CrossRef] [PubMed]
- Chopra, H.; Bibi, S.; Singh, I.; Hasan, M.M.; Khan, M.S.; Yousafi, Q.; Baig, A.A.; Rahman, M.M.; Islam, F.; Emran, T.B. Green metallic nanoparticles: Biosynthesis to applications. Front. Bioeng. Biotechnol. 2022, 10, 874742. [Google Scholar] [CrossRef]
- Marchiol, L. Synthesis of metal nanoparticles in living plants. Ital. J. Agron. 2012, 7, e37. [Google Scholar] [CrossRef]
- Kerketta, A.; Sahu, B. Nanomaterials synthesis from medicinal plant extract. In Phytochemicals in Medicinal Plants: Biodiversity, Bioactivity and Drug Discovery; De Gruyter: Berlin, Germany, 2023; p. 291. [Google Scholar]
- Sen, M. Green Synthesis: Introduction, Mechanism, and Effective Parameters. In Bioinspired and Green Synthesis of Nanostructures: A Sustainable Approach; Wiley: Hoboken, NJ, USA, 2023; pp. 1–24. [Google Scholar]
- Amargo, M.M.S.; Bucoya, E.A.M.; Fundador, E.O.V.; Fundador, N.G.V. Plant-mediated Synthesis of Silver Nanoparticles using Mangosteen Pericarp Extract and their Antimicrobial Potential. Nanosci. Nanotechnol.-Asia 2023, 13, 64–71. [Google Scholar] [CrossRef]
- Sorbiun, M.; Shayegan Mehr, E.; Ramazani, A.; Mashhadi Malekzadeh, A. Biosynthesis of metallic nanoparticles using plant extracts and evaluation of their antibacterial properties. Nanochem. Res. 2018, 3, 1–16. [Google Scholar]
- Kursawe, M.; Anselmann, R.; Hilarius, V.; Pfaff, G. Nano-particles by wet chemical processing in commercial applications. J. Sol-Gel Sci. Technol. 2005, 33, 71–74. [Google Scholar] [CrossRef]
- Vergheese, M.; Vishal, S.K. Green synthesis of magnesium oxide nanoparticles using Trigonella foenum-graecum leaf extract and its antibacterial activity. J. Pharmacogn. Phytochem. 2018, 7, 1193–1200. [Google Scholar]
- Mastuli, M.S.; Kamarulzaman, N.; Nawawi, M.A.; Mahat, A.M.; Rusdi, R.; Kamarudin, N. Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents. Nanoscale Res. Lett. 2014, 9, 134. [Google Scholar] [CrossRef] [PubMed]
- Patra, J.K.; Baek, K.-H. Green nanobiotechnology: Factors affecting synthesis and characterization techniques. J. Nanomater. 2014, 2014, 417305. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Dave, P.N.; Shah, N.K. Applications of nano-catalyst in new era. J. Saudi Chem. Soc. 2012, 16, 307–325. [Google Scholar] [CrossRef]
- Narnoliya, L.K.; Kaushal, G.; Singh, S.P.; Sangwan, R.S. De novo transcriptome analysis of rose-scented geranium provides insights into the metabolic specificity of terpene and tartaric acid biosynthesis. BMC Genom. 2017, 18, 74. [Google Scholar] [CrossRef] [PubMed]
- Blerot, B.; Baudino, S.; Prunier, C.; Demarne, F.; Toulemonde, B.; Caissard, J.-C. Botany, agronomy and biotechnology of Pelargonium used for essential oil production. Phytochem. Rev. 2016, 15, 935–960. [Google Scholar] [CrossRef]
- Mitrović, P.M.; Stamenković, O.S.; Banković-Ilić, I.; Djalović, I.G.; Nježić, Z.B.; Farooq, M.; Siddique, K.H.; Veljković, V.B. White mustard (Sinapis alba L.) oil in biodiesel production: A review. Front. Plant Sci. 2020, 11, 299. [Google Scholar] [CrossRef] [PubMed]
- Balke, D.T.; Diosady, L.L. Rapid aqueous extraction of mucilage from whole white mustard seed. Food Res. Int. 2000, 33, 347–356. [Google Scholar] [CrossRef]
- Rahman, M.; Khatun, A.; Liu, L.; Barkla, B.J. Brassicaceae mustards: Traditional and agronomic uses in Australia and New Zealand. Molecules 2018, 23, 231. [Google Scholar] [CrossRef]
- Peng, C.; Zhao, S.-Q.; Zhang, J.; Huang, G.-Y.; Chen, L.-Y.; Zhao, F.-Y. Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chem. 2014, 165, 560–568. [Google Scholar] [CrossRef]
- Wuest, M.; Beck, T.; Mosandl, A. Biogenesis of geranium oil compounds: On the origin of oxygen in cis-/trans-rose oxide. J. Agric. Food Chem. 1998, 46, 3225–3229. [Google Scholar] [CrossRef]
- Rai, M.; Posten, C. Green Biosynthesis of Nanoparticles: Mechanisms and Applications; CABI: Wallingford, UK, 2013. [Google Scholar]
- Moustafa, N.E.; Alomari, A.A. Green synthesis and bactericidal activities of isotropic and anisotropic spherical gold nanoparticles produced using Peganum harmala L leaf and seed extracts. Biotechnol. Appl. Biochem. 2019, 66, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Ali, K.; Ahmed, B.; Dwivedi, S.; Saquib, Q.; Al-Khedhairy, A.A.; Musarrat, J. Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS ONE 2015, 10, e0131178. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Pei, J.; Du, W.; Zhao, Z.; Zhang, L.; Gao, J.; Bai, P.; Tie, D. Fabrication of magnesium-coated graphene and its effect on the microstructure of reinforced AZ91 magnesium-matrix composites. Adv. Compos. Hybrid Mater. 2022, 5, 504–512. [Google Scholar] [CrossRef]
- Naseem, K.; Zia Ur Rehman, M.; Ahmad, A.; Dubal, D.; AlGarni, T.S. Plant extract induced biogenic preparation of silver nanoparticles and their potential as catalyst for degradation of toxic dyes. Coatings 2020, 10, 1235. [Google Scholar] [CrossRef]
- Reed, R.C.; Bradford, K.J.; Khanday, I. Seed germination and vigor: Ensuring crop sustainability in a changing climate. Heredity 2022, 128, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Colman, B.P.; McGill, B.M.; Wright, J.P.; Bernhardt, E.S. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE 2012, 7, e47674. [Google Scholar] [CrossRef] [PubMed]
- Hojjat, S.S.; Kamyab, M. The effect of silver nanoparticle on Fenugreek seed germination under salinity levels. Russ. Agric. Sci. 2017, 43, 61–65. [Google Scholar] [CrossRef]
- Wani, A.; Shah, M. A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J. Appl. Pharm. Sci. 2012, 2, 40–44. [Google Scholar]
- Kumari, M.; Mukherjee, A.; Chandrasekaran, N. Genotoxicity of silver nanoparticles in Allium cepa. Sci. Total Environ. 2009, 407, 5243–5246. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Hong, F.; Lu, S.; Liu, C. Effect of nano-TiO 2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res. 2005, 104, 83–91. [Google Scholar] [CrossRef] [PubMed]
- AshaRani, P.; Low Kah Mun, G.; Hande, M.P.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009, 3, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, M.; Bandyopadhyay, M.; Mukherjee, A. Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes. Chemosphere 2010, 81, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Xing, B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 2007, 150, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Bainbridge, W.S.; Roco, M.C. Societal Implications of Nanoscience and Nanotechnology; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic potential of materials at the nanolevel. Science 2006, 311, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Handy, R.D.; Owen, R.; Valsami-Jones, E. The ecotoxicology of nanoparticles and nanomaterials: Current status, knowledge gaps, challenges, and future needs. Ecotoxicology 2008, 17, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xie, X.; Zhao, J.; Liu, X.; Feng, W.; White, J.C.; Xing, B. Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ. Sci. Technol. 2012, 46, 4434–4441. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, L.; Lison, D.; Kirsch-Volders, M. Genotoxicity of engineered nanomaterials: A critical review. Nanotoxicology 2008, 2, 252–273. [Google Scholar] [CrossRef]
- Mirmoeini, T.; Pishkar, L.; Kahrizi, D.; Barzin, G.; Karimi, N. The effect of biosynthesized silver nanoparticles on FAE1 and FAD2 gene expression in Camelina sativa. Iran. J. Plant Physiol. 2021, 11, 3911–3918. [Google Scholar]
- Geisler, K.; Hughes, R.K.; Sainsbury, F.; Lomonossoff, G.P.; Rejzek, M.; Fairhurst, S.; Olsen, C.-E.; Motawia, M.S.; Melton, R.E.; Hemmings, A.M. Biochemical analysis of a multifunctional cytochrome P450 (CYP51) enzyme required for synthesis of antimicrobial triterpenes in plants. Proc. Natl. Acad. Sci. USA 2013, 110, E3360–E3367. [Google Scholar] [CrossRef] [PubMed]
- Kahila, M.M.H.; Najy, A.M.; Rahaie, M.; Mir-Derikvand, M. Effect of nanoparticle treatment on expression of a key gene involved in thymoquinone biosynthetic pathway in Nigella sativa L. Nat. Prod. Res. 2018, 32, 1858–1862. [Google Scholar] [CrossRef]
- Sanabria, N.M.; Gulumian, M. The presence of residual gold nanoparticles in samples interferes with the RT-qPCR assay used for gene expression profiling. J. Nanobiotechnol. 2017, 15, 72. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.H.; Al-Whaibi, M.H.; Mohammad, F. Nanotechnology and Plant Sciences; Springer International Publishing: Cham, Switzerland, 2015; Volume 10, pp. 973–983. [Google Scholar]
- Nair, R.; Varghese, S.H.; Nair, B.G.; Maekawa, T.; Yoshida, Y.; Kumar, D.S. Nanoparticulate material delivery to plants. Plant Sci. 2010, 179, 154–163. [Google Scholar] [CrossRef]
- Ghasemi, B.; Hosseini, R.; Nayeri, F.D. Effects of cobalt nanoparticles on artemisinin production and gene expression in Artemisia annua. Turk. J. Bot. 2015, 39, 769–777. [Google Scholar] [CrossRef]
- Lombard, J.; Moreira, D. Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol. Biol. Evol. 2011, 28, 87–99. [Google Scholar] [CrossRef]
- Pereira, I.; Severino, P.; Santos, A.C.; Silva, A.M.; Souto, E.B. Linalool bioactive properties and potential applicability in drug delivery systems. Colloids Surf. B Biointerfaces 2018, 171, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Wei, X.; Qi, Q.; Jia, W.; Zhao, M.; Wang, H.; Zhou, Y.; Duan, H. Study of terpenoid synthesis and prenyltransferase in roots of Rehmannia glutinosa based on iTRAQ quantitative proteomics. Front. Plant Sci. 2021, 12, 693758. [Google Scholar] [CrossRef] [PubMed]
- Henry, L.K.; Thomas, S.T.; Widhalm, J.R.; Lynch, J.H.; Davis, T.C.; Kessler, S.A.; Bohlmann, J.; Noel, J.P.; Dudareva, N. Contribution of isopentenyl phosphate to plant terpenoid metabolism. Nat. Plants 2018, 4, 721–729. [Google Scholar] [CrossRef]
- Dewick, P.M. The biosynthesis of C 5–C 25 terpenoid compounds. Nat. Prod. Rep. 2002, 19, 181–222. [Google Scholar] [CrossRef]
- Liu, R.; Lal, R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015, 514, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, N.; Ranjan, S.; Chakraborty, A.R.; Ramalingam, C.; Shanker, R.; Kumar, A. Nanoagriculture and water quality management. In Nanoscience in Food and Agriculture 1; Springer: Cham, Switzerland, 2016; pp. 1–42. [Google Scholar]
- Ghormade, V.; Deshpande, M.V.; Paknikar, K.M. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 2011, 29, 792–803. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, D.K.; Singh, S.; Singh, S.; Srivastava, P.K.; Singh, V.P.; Singh, S.; Prasad, S.M.; Singh, P.K.; Dubey, N.K.; Pandey, A.C. Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol. Biochem. 2017, 110, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces 2010, 75, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Y.; Westerhoff, P.; Hristovski, K.; Crittenden, J.C. Stability of commercial metal oxide nanoparticles in water. Water Res. 2008, 42, 2204–2212. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, J.N.; Tiwari, R.N.; Kim, K.S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012, 57, 724–803. [Google Scholar] [CrossRef]
- Servin, A.; Elmer, W.; Mukherjee, A.; De la Torre-Roche, R.; Hamdi, H.; White, J.C.; Bindraban, P.; Dimkpa, C. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J. Nanoparticle Res. 2015, 17, 92. [Google Scholar] [CrossRef]
- Karn, B.; Kuiken, T.; Otto, M. Nanotechnology and in situ remediation: A review of the benefits and potential risks. Environ. Health Perspect. 2009, 117, 1813–1831. [Google Scholar] [CrossRef]
- Rana, A.; Yadav, K.; Jagadevan, S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J. Clean. Prod. 2020, 272, 122880. [Google Scholar] [CrossRef]
- Pandian, M.; Marimuthu, R.; Natesan, G.; Rajagopal, R.E.; Justin, J.; Mohideen, A. Development of biogenic silver nano particle from Pelargonium graveolens leaf extract and their antibacterial activity. Am. J. Nanosci. Nanotechnol. 2013, 1, 57. [Google Scholar] [CrossRef]
- Varghese Alex, K.; Tamil Pavai, P.; Rugmini, R.; Shiva Prasad, M.; Kamakshi, K.; Sekhar, K.C. Green synthesized Ag nanoparticles for bio-sensing and photocatalytic applications. ACS Omega 2020, 5, 13123–13129. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.E.D.; Al-Qahtani, K.M.; Alflaij, S.O.; Al-Qahtani, S.F.; Alsamhan, F.A. Green copper oxide nanoparticles for lead, nickel, and cadmium removal from contaminated water. Sci. Rep. 2021, 11, 12547. [Google Scholar] [CrossRef] [PubMed]
- Uddin, A.R.; Siddique, M.A.B.; Rahman, F.; Ullah, A.A.; Khan, R. Cocos nucifera leaf extract mediated green synthesis of silver nanoparticles for enhanced antibacterial activity. J. Inorg. Organomet. Polym. Mater. 2020, 30, 3305–3316. [Google Scholar] [CrossRef]
- Rahman, F.; Majed Patwary, M.A.; Bakar Siddique, M.A.; Bashar, M.S.; Haque, M.A.; Akter, B.; Rashid, R.; Haque, M.A.; Royhan Uddin, A. Green synthesis of zinc oxide nanoparticles using Cocos nucifera leaf extract: Characterization, antimicrobial, antioxidant and photocatalytic activity. R. Soc. Open Sci. 2022, 9, 220858. [Google Scholar] [CrossRef] [PubMed]
- Amin, R.M.; Mahmoud, R.K.; Gadelhak, Y.; El-Ela, F.I.A. Gamma irradiated green synthesized zero valent iron nanoparticles as promising antibacterial agents and heavy metal nano-adsorbents. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100461. [Google Scholar] [CrossRef]
- Khan, Z.; Al-Thabaiti, S.A. Green synthesis of zero-valent Fe-nanoparticles: Catalytic degradation of rhodamine B, interactions with bovine serum albumin and their enhanced antimicrobial activities. J. Photochem. Photobiol. B Biol. 2018, 180, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Moaty, S.A.; Farghali, A.; Moussa, M.; Khaled, R. Remediation of waste water by Co–Fe layered double hydroxide and its catalytic activity. J. Taiwan Inst. Chem. Eng. 2017, 71, 441–453. [Google Scholar] [CrossRef]
- Filippov, S.K.; Khusnutdinov, R.; Murmiliuk, A.; Inam, W.; Zakharova, L.Y.; Zhang, H.; Khutoryanskiy, V.V. Dynamic light scattering and transmission electron microscopy in drug delivery: A roadmap for correct characterization of nanoparticles and interpretation of results. Mater. Horiz. 2023, 10, 5354–5370. [Google Scholar] [CrossRef]
- Zand, A.D.; Tabrizi, A.M.; Heir, A.V. Incorporation of biochar and nanomaterials to assist remediation of heavy metals in soil using plant species. Environ. Technol. Innov. 2020, 20, 101134. [Google Scholar] [CrossRef]
- Ge, Y.; Priester, J.H.; Van De Werfhorst, L.C.; Walker, S.L.; Nisbet, R.M.; An, Y.-J.; Schimel, J.P.; Gardea-Torresdey, J.L.; Holden, P.A. Soybean plants modify metal oxide nanoparticle effects on soil bacterial communities. Environ. Sci. Technol. 2014, 48, 13489–13496. [Google Scholar] [CrossRef] [PubMed]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Milivojević, M.; Ripka, Z.; Petrović, T. ISTA rules changes in seed germination testing at the beginning of the 21st century. J. Process. Energy Agric. 2018, 22, 40–45. [Google Scholar] [CrossRef]
- Alvarado, A.D.; Bradford, K.J.; Hewitt, J.D. Osmotic priming of tomato seeds: Effects on germination, field emergence, seedling growth, and fruit yield. J. Am. Soc. Hortic. Sci. 1987, 112, 427–432. [Google Scholar] [CrossRef]
- Smirnova, E.; Leroux, A.; Cao, Q.; Tabacu, L.; Zipunnikov, V.; Crainiceanu, C.; Urbanek, J.K. The predictive performance of objective measures of physical activity derived from accelerometry data for 5-year all-cause mortality in older adults: National Health and Nutritional Examination Survey 2003–2006. J. Gerontol. Ser. A 2020, 75, 1779–1785. [Google Scholar] [CrossRef] [PubMed]
- ALKahtani, M.D.; Fouda, A.; Attia, K.A.; Al-Otaibi, F.; Eid, A.M.; Ewais, E.E.-D.; Hijri, M.; St-Arnaud, M.; Hassan, S.E.-D.; Khan, N. Isolation and characterization of plant growth promoting endophytic bacteria from desert plants and their application as bioinoculants for sustainable agriculture. Agronomy 2020, 10, 1325. [Google Scholar] [CrossRef]
- Sadat-Hosseini, M.; Naeimi, A.; Boroomand, N.; Aalifar, M.; Farajpour, M. Alleviating the adverse effects of salinity on Roselle plants by green synthesized nanoparticles. Sci. Rep. 2022, 12, 18165. [Google Scholar] [CrossRef] [PubMed]
- Kikui, S.; Sasaki, T.; Maekawa, M.; Miyao, A.; Hirochika, H.; Matsumoto, H.; Yamamoto, Y. Physiological and genetic analyses of aluminium tolerance in rice, focusing on root growth during germination. J. Inorg. Biochem. 2005, 99, 1837–1844. [Google Scholar] [CrossRef] [PubMed]
- Cмирнoва, A.A.; Hикифoрoва, T.E.; Aфoнина, И.A.; Пeтрoва, M.B. Bлияниe нанoчастиц сeрeбра на прoрастаниe сeмян oгурца. Meндeлeeв 2020, 3, 4–8. [Google Scholar]
- Raskar, S.; Laware, S. Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 467–473. [Google Scholar]
- Togawa, T.; Dunn, W.A.; Emmons, A.C.; Nagao, J.; Willis, J.H. Developmental expression patterns of cuticular protein genes with the R&R Consensus from Anopheles gambiae. Insect Biochem. Mol. Biol. 2008, 38, 508–519. [Google Scholar] [PubMed]
Sample | BET Surface Area (m2/g) | Total Volume in Pores ≤ (cm3/g) | Total Area in Pores ≥ (m2/g) | BJH Desorption Average Pore Width (Å) |
---|---|---|---|---|
GW powder | 2.7 | 0.00502 | 1.741 | 44.4 |
Mg NPs | 42.2 | 0.165 | 69.250 | 5.1 |
Mg NP/GW powder | 3.0 | 0.00537 | 1.885 | 44.2 |
NP Concentration (g/L) | Control | Mg NP/GW | GW | ||||
---|---|---|---|---|---|---|---|
GP% | 0.5 | 1.0 | 5.0 | 0.5 | 1.0 | 5.0 | |
100.00 ± 0.0 | 100 ± 0.0 | 93.33 ± 0.58 | 46.67 ± 1.53 | 96.67 ± 0.58 | 96.67 ± 0.58 | 83.30 ± 0.5 |
Treatment (g/L) | Shoot | Root | Leaves | Branches | Fresh Weigh | Dry Weigh | ||
---|---|---|---|---|---|---|---|---|
Length (cm) | Length (cm) | Number NO. | Number NO. | Shoot (g) | Root (g) | Shoot (g) | Root (g) | |
Control | 18.00 ± 1.26 (a) | 16.67 ± 1.65 (a) | 28.08 ± 6.30 (a) | 3.33 ± 0.33 (a) | 19.63 ± 1.35 (a) | 1.42 ± 0.19 (a) | 5.27 ± 0.43 (a) | 0.53 ± 0.10 (ab) |
Mg NP/GW 0.5 | 23.67 ± 0.80 (c) | 26.33 ± 0.49 (b) | 52.50 ± 5.76 (c) | 4.17 ± 0.31 (ab) | 19.12 ± 4.35 (a) | 1.28 ± 0.18 (a) | 4.86 ± 1.15 (a) | 0.45 ± 0.06 (a) |
Mg NP/GW 1 | 20.67 ± 0.42 (abc) | 24.50 ± 1.28 (b) | 44.83 ± 2.34 (bc) | 3.00 ± 0.26 (a) | 21.79 ± 2.96 (a) | 2.09 ± 0.35 (a) | 5.93 ± 0.39 (a) | 0.77 ± 0.07 (ab) |
Mg NP/GW 5 | 19.50 ± 0.72 (ab) | 20.33 ± 1.82 (a) | 31.50 ± 2.94 (ab) | 3.00 ± 0.45 (a) | 25.21 ± 0.77 (a) | 1.99 ± 0.21 (a) | 6.07 ± 0.56 (a) | 0.70 ± 0.08 (b) |
GW 0.5 | 30.83 ± 1.30 (d) | 25.00 ± 1.06 (b) | 53.83 ± 4.27 (c) | 4.67 ± 0.33 (b) | 23.34 ± 1.66 (a) | 1.55 ± 0.05 (a) | 6.49 ± 0.31 (a) | 0.71 ± 0.05 (ab) |
GW 1 | 22.67 ± 2.08 (bc) | 20.33 ± 1.15 (a) | 36.17 ± 5.59 (ab) | 3.33 ± 0.33 (a) | 22.61 ± 0.47 (a) | 1.87 ± 0.42 (a) | 5.47 ± 0.34 (a) | 0.65 ± 0.12 (ab) |
GW 5 | 23.00 ± 0.63 (bc) | 25.67 ± 1.33 (b) | 34.83 ± 4.63 (ab) | 3.83 ± 0.48 (ab) | 22.93 ± 0.37 (a) | 1.30 ± 0.42 (a) | 5.13 ± 0.54 (a) | 0.63 ± 0.10 (ab) |
Replicates | Concentration of Mg NP/GW (g/L) | Number of Counted Cells | Normal Metaphase | Normal Anaphase | Sticky Chromosome | Laggard Chromosome | Chromosomal Bridge | Disturbed Metaphase |
---|---|---|---|---|---|---|---|---|
Control | 0.0 | 1000 | + | + | − | − | − | − |
Nanoparticle (0.5 g/L) | 0.5 | 1000 | + | + | + | + | − | − |
Nanoparticle (1.0 g/L) | 1.0 | 1000 | + | + | + | − | + | + |
Nanoparticle (5.0 g/L) | 5.0 | 1000 | + | − | + | + | + | + |
Condition | Concentration of Mg NP/GW (g/L) | Mean ± SE (%) * | Mitotic Index (%) ** | Telophase | Anaphase | Metaphase | Prophase | Dividing Cell (Total) |
Control | 0.0 | 44.6 ± 2.16 | 45.8–50.1 | 0–2 | 1–5 | 2–4 | 380–493 | 386–501 |
Nanoparticle (0.5 g/L) | 0.5 | 61.24 ± 1.79 | 54.6–64.5 | 0–3 | 1–8 | 4–16 | 530–640 | 546–645 |
Nanoparticle (1.0 g/L) | 1.0 | 36.96 ± 0.86 | 34.6–39.2 | 0–1 | 1–3 | 1–2 | 340–390 | 346–392 |
Nanoparticle (5.0 g/L) | 5.0 | 27.36 ± 1.34 | 24.1–31.7 | 0 | 0–1 | 0–2 | 240–315 | 241–317 |
Treatment | Plant | Relative Expression (Fold Changes) |
---|---|---|
Control | S. alba | 1.0 ± 0.03 d |
P. graveolens | 1.0 ± 0.03 d | |
GW NPs (0.5 g/L) | S. alba | 25.244 ± 0.004 a |
P. graveolens | 21.58 ± 0.03 b | |
Mg NPs (0.5 g/L) | S. alba | 13.4539 ± 0.002 c |
P. graveolens | 12.15676 ± 0.0025 c |
Treatment | Plant | Relative Expression (Fold Changes) |
---|---|---|
Control | S. alba | 1.0 ± 0.03 e |
P. graveolens | 1.0 ± 0.03 e | |
GW NPs (0.5 g/L) | S. alba | 18.1340 ± 0.002 a |
P. graveolens | 14.574 ± 0.003 b | |
Mg NPs (0.5 g/L) | S. alba | 11.273 ± 0.04 c |
P. graveolens | 6.477 ± 0.004 d |
Gene Name | Primer Sequence | Accession No. | Tm (°C) | |
---|---|---|---|---|
FPPS1 | F | 5′-CCGATGATTCTCGCCAATGGG-3′ | At5g47770 | 58 °C |
R | 5′-CCATTCAATGCACCAACCAAGTG-3′ | |||
GPPS1 | F | 5′-CCAAATGCCTCGTCATCT-3′ | At5g49530 | |
R | 5′-ATTAGAGTCAAGCTCAAAAGG-3′ | |||
β-Actin | F | 5′-GTGCCCATTTACGAAGGATA-3′ | AB181991 | |
R | 5′-GAAGACTCCATGCCGATCAT-3′ | |||
GAPDH | F | 5′-TTGGTTTCCACTGACTTCGTT-3′ | CA254672 | |
R | 5′-CTGTAGCCCCACTCGTTGT-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamel, M.M.; Badr, A.; Alkhalifah, D.H.M.; Mahmoud, R.; GadelHak, Y.; Hozzein, W.N. Unveiling the Impact of Eco-Friendly Synthesized Nanoparticles on Vegetative Growth and Gene Expression in Pelargonium graveolens and Sinapis alba L. Molecules 2024, 29, 3394. https://doi.org/10.3390/molecules29143394
Kamel MM, Badr A, Alkhalifah DHM, Mahmoud R, GadelHak Y, Hozzein WN. Unveiling the Impact of Eco-Friendly Synthesized Nanoparticles on Vegetative Growth and Gene Expression in Pelargonium graveolens and Sinapis alba L. Molecules. 2024; 29(14):3394. https://doi.org/10.3390/molecules29143394
Chicago/Turabian StyleKamel, Maha M., Abdelfattah Badr, Dalal Hussien M. Alkhalifah, Rehab Mahmoud, Yasser GadelHak, and Wael N. Hozzein. 2024. "Unveiling the Impact of Eco-Friendly Synthesized Nanoparticles on Vegetative Growth and Gene Expression in Pelargonium graveolens and Sinapis alba L." Molecules 29, no. 14: 3394. https://doi.org/10.3390/molecules29143394
APA StyleKamel, M. M., Badr, A., Alkhalifah, D. H. M., Mahmoud, R., GadelHak, Y., & Hozzein, W. N. (2024). Unveiling the Impact of Eco-Friendly Synthesized Nanoparticles on Vegetative Growth and Gene Expression in Pelargonium graveolens and Sinapis alba L. Molecules, 29(14), 3394. https://doi.org/10.3390/molecules29143394