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Abstract: Flexible macromolecules easily become entangled with neighboring macromolecules.
The resulting network determines many polymer properties, including rheological and mechanical
properties. Therefore, a number of experimental and modeling studies were performed to describe
the relationship between the degree of entanglement of macromolecules and polymer properties.
The introduction presents general information about the entanglements of macromolecule chains,
collected on the basis of studies of equilibrium entangled polymers. It is also shown how the density
of entanglements can be reduced. The second chapter presents experiments and models leading
to the description of the movement of a single macromolecule. The next part of the text discusses
how the rheological properties change after partial disentangling of the polymer. The results on the
influence of the degree of chain entanglement on mechanical properties are presented.
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1. Introduction

Macromolecules based on carbon–carbon bonds in the main chain are long and flexible,
allowing them to take on different configurations in space, from a straightened linear to
an entangled coil. In the polymer, each macromolecule is surrounded by a number of
other macromolecules. Because of this, macromolecules can interpenetrate and form
topological entanglements, usually in the form of a loop of one macromolecule around
another macromolecule [1]. The presence of entanglements, acting as physical knots in
the macromolecular network, limits the possibilities for movement of macromolecules, as
well as their relaxation. It is not surprising that the presence of entanglements affects many
polymer properties, among them rheological and mechanical [2]. In particular, because
they are present in the molten polymer, in the polymer solution, and in the amorphous
phase of the solid polymer. The exception is the crystalline phase of the polymer, where the
crystal structure does not allow entanglements to be accommodated and they are rejected
outside the crystal volume.

The presence of entanglements was discovered many years ago in rheological studies.
Berry and Fox [3] observed that the dependence of zero shear viscosity η0 on the molecular
weight of the polymer M changes from a certain molecular weight. It is proportional to
η0∼M, for low molecular weights and as η0∼M3.4 for higher molecular weights. The reason
for this change is the entanglement of longer macromolecules.

The entanglements were also identified in solid amorphous materials, which above
a glass transition can exhibit large deformation and elastic response. Such behavior is
explained by the stretching and relaxation of the network of entangled macromolecules.
Amorphous polymer or the amorphous component of semi-crystalline polymer at elevated
temperatures behaves similarly to rubber. However, in rubbers, the macromolecular
network is the result of chemical cross-linking. The entanglements act as physical cross-
links, equivalent to chemical cross-links in rubber [4]. The influence of entanglements in
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the melt and in the elastic solid polymer on the properties can be described by equations of
similar form. In the case of melt rheology, the relevant equation is of the form:

G0
N =

gρRT
Me

(1)

where GN
0 is the shear modulus in the rubbery plateau region, R is the gas constant, T is

the temperature, ρ is the density of the polymer, g is a coefficient equal to 1.0 [5] or 0.8 [6]
and Me is the molecular mass between the nodes of network, in this case between the
entanglements.

A similar equation, based on the classical theory of elasticity [7], describes the high
elastic properties of a solid polymer:

Ge = ρrRT/Mr (2)

where Ge is the shear modulus, ρr is the density of the rubber, and Mr is the molecular mass
between the network nodes [8–10]. There are other models that can be used to describe the
properties, such as the phantom network model, leading to the modified Equation (2):

Ge =

(
1 − 2

f

)
ρrRT
Mr

(3)

where f is the functionality, i.e., the number of polymer arms that are connected to a
cross-linking junction [11].

From Equation (1), it can be concluded that the best parameter characterizing an
entangled network of linear macromolecules is the molecular mass between the entan-
glements. The entanglement density, sometimes used instead of Me, is proportional to
1/Me. It is generally accepted that each type of polymer has its own Me value. This value
depends mainly on the architecture of the macromolecular chain. Calculations for monodis-
perse polybutadiene, polyisoprene, and polystyrene showed that Me is independent of the
weight average molecular weight Mw and is also independent of polydispersity (i.e., the
Mw/Mn ratio, where Mn is the number average molecular weight) [12]. These statements
should be treated with caution due to the limited amount of data available. Some studies
of mechanical properties show that in semi-crystalline polymers Me can depend on Mw
(see Section 4.1 for details). It was also found that Me depends on the tacticity of the
macromolecules [13,14]. Since entanglements may not be uniformly distributed along the
macromolecule chain, the reported Me values should be treated as averages.

There is a second parameter, important for characterizing entanglements, which is the
critical molecular mass Mc. When the molecular weight of the polymer exceeds this value,
the relationship between the zero shear viscosity η0 and the molecular weight changes from
η0~Mw to η0~Mw

3.4. Mc is greater than Me, and the ratio of their values is in the range of
1.0–3.5 [15].

Commercial polymers, typically processed, are in an equilibrium entangled state [13].
However, there are known methods to reduce entanglement. This allows for a deeper
examination of the relationship between entanglement and polymer properties. Three
groups of disentangling methods can be distinguished [16]: by dissolution and freezing
(often called freeze-drying) [17–22], by polymerization with crystallization [23], by shearing
of melt [24–28]. The dissolution is a method that can be used on a laboratory scale for any
polymer. It is known that in a dilute polymer solution, the number of contacts between
macromolecules, which then have the coil shape, decreases as the concentration of the
solution decreases [29]. In a very dilute solution, one can even expect complete disentan-
glement and separation of the macromolecule chains. However, for practical reasons, it is
usually better to have the polymer only partially disentangled, since chain entanglements
are necessary to maintain the continuity of the amorphous phase of the solidified polymer
under the action of force.
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To use a polymer as a material, it is necessary to maintain the disentanglement state
in the solid polymer. This can be performed by rapidly freezing the solution, for example
using liquid nitrogen, and then removing the solvent, for example by sublimation [30–34].
There are variants of the solvent method in which disentanglement stabilization is achieved
by crystallization from the hot solution or by adding a non-solvent to the frozen solu-
tion [35–40].

It is possible to disentangle the polymer during its polymerization [23,41–43]. There-
fore, special catalysts and conditions are needed to separate the polymerization sites
and enable immediate crystallization of the growing chains without entanglement. This
approach has been mainly used for the polymerization of ultra-high molecular weight
polyethylene (UHMWPE) [44–49].

Recently, a group of methods has been developed based on the observation that in
polymer subjected to shear flow, there is not only orientation but also some disentanglement
of macromolecules. In order to achieve disentanglement, the processing equipment has
been modified to obtain different shear states, including pulsation or the addition of an
elongation flow component [50–55]. This raises the prospect of commercial production of
the partially disentangled polymers.

The next chapter briefly presents observations of the shape and dynamics of a macro-
molecule in the presence of other macromolecules, studied using neutron scattering, and a
successful theoretical approach to describing the motion of macromolecule chains using a
tube model.

Sections 3 and 4 describe the rheological and mechanical properties of polymers from
the perspective of entanglement research. Each section provides background based on the
results of older experiments and results reported in the last few years. Most entanglement
research has been focused on homopolymers. Not very often, especially when talking
about entanglement reduction, polymer blends or polymer composites are analyzed.

2. Macromolecule in the Environment of Other Macromolecules

The plateau in the storage modulus GN
0 observed for the molten polymer is similar

to the plateau observed for cross-linked rubbers. This led to the conclusion that in the
molten polymer, there is a network of macromolecules connected by nodes, which are
entanglements. Therefore, research on the shape of macromolecules and the dynamics of
chain motion in the molten and solid polymers was initiated. Almost simultaneously, the
development of theoretical models, with the support of computer calculations, and the
search for new experimental methods were addressed.

The results of rheological research have stimulated attempts to describe the observed
behavior theoretically. One of the first widely known was the Rouse model of chain
motion, based on the approximation of a chain by a set of balls connected by springs. This
model successfully described the properties of low-molecular-weight polymers but was less
effective for high-molecular-weight polymers [56]. The approach proposed by DeGennes
was much more successful [57]. He proposed the description in which a macromolecule
moves inside a virtual tube, created by other macromolecules, and the movement is similar
to that of a snake (Figure 1). This is known as the reptation concept, and the descriptive
model proposed by Doi and Edwards [58] is known as the tube model. The dynamics of
the chain are characterized by the time of diffusion through the tube [59,60]. Using the
model, it was possible to predict changes in η0 with M, but in the first version, an exponent
of 3.0 was proposed instead of the experimentally found exponent of 3.4.
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Figure 1. Virtual tube around the polymer chain. The centerline of the tube is referred to as primitive 
path (PP). The movement of chain in the direction of primitive path is possible, but transverse mo-
tion is restricted by the surrounding chains. Reproduced with permission from ref. [61]. Copyright 
2020. Royal Society of Chemistry. 

The development of the tube model by many authors has reduced this and other 
weaknesses of the model [6,59,62–66]. Modifications regarding contour length fluctuation 
[67], accounting for the dynamical variation of the primitive chain length [68], tube dila-
tation [69], and constraint release [70], accounting for the dynamics of the tube itself [68], 
have compensated for discrepancies between experimental results and the theory describ-
ing them. The success of the theory for the linear entangled polymers resulted in proposals 
to use the model for other architectures, such as mixtures of star and linear polymers [71], 
or long-chain branches [72]. The tube model is applied not only for polymer melts but also 
for the description of the dynamics of rubber elasticity [73]. The analysis of the reptation 
time τd, i.e., time of diffusion along the tube length, shows that it is generally not short, 
since it depends on M3.4 through the zero shear viscosity η0 [74]: 

τd = 20 Me η0/(π2 R T ρ) (4)

When polyethylene has M = 4000 kg/mol, the reptation time is about 2 h [75], while 
reducing the molecular weight to M = 50 kg/mol shortens this time to 15 min. A more 
detailed description of tube model variants and their application can be found in the lit-
erature [76,77]. 

The search for experimental techniques suitable at the nanoscale focused on scatter-
ing methods. For dense polymers, light scattering, useful for studying dilute solutions, 
could not be used. Fortunately, small-angle neutron scattering (SANS) has just been de-
veloped to a level that made it possible to apply this method to the study of polymers. 
Neutron scattering results from the interactions of neutrons with the atomic nuclei. In the 
experiment, a collimated, monochromatic neutron beam hits the sample, and the scatter-
ing is monitored by a 2D detector [78]. The utility of SANS for polymer testing comes from 
both its coverage of large lengths and time scales and its ability to apply contrast to the 
polymer under study by introducing deuterated molecules [79]. 

The results of the first polymer studies using SANS were published in 1973. Early 
studies confirmed the random coil conformation of polymer chains in both molten and 
glassy polymers [80,81]. The SANS technique was used to determine the actual radius of 
gyration Rg of the chain in the bulk state. The dimension of macromolecules in a bulk 
polymer sample can be characterized by the value of the K coefficient, which depends on 
the molecular weight by K = (Rg2/Mw)0.5 [82]. Typical K values for polymers range from 
0.028 to 0.046 nm×mol0.5/g0.5 [83]. This means, for example, that molten polyethylene with 
Mw = 105 g/mol has Rg = 14 nm. Calculations show that a single macromolecular coil has a 
density of less than 1% of the volume density of the polymer, which indicates that the 
empty space inside it is filled with fragments of other macromolecules [84]. 

Quasi-elastic neutron scattering can be used to study the dynamics of polymers at 
different length scales [85]. At the large-scale dynamics, the observable processes are the 
chain diffusion, the reptation, and the Rouse dynamics. These processes control the rheo-
logical properties of the polymer [86]. The corresponding length scale where the topolog-
ical confinement caused by interpenetrating coils dominates is above 10 nm. Typical time 

Figure 1. Virtual tube around the polymer chain. The centerline of the tube is referred to as primitive
path (PP). The movement of chain in the direction of primitive path is possible, but transverse motion
is restricted by the surrounding chains. Reproduced with permission from ref. [61]. Copyright 2020.
Royal Society of Chemistry.

The development of the tube model by many authors has reduced this and other
weaknesses of the model [6,59,62–66]. Modifications regarding contour length fluctua-
tion [67], accounting for the dynamical variation of the primitive chain length [68], tube
dilatation [69], and constraint release [70], accounting for the dynamics of the tube itself [68],
have compensated for discrepancies between experimental results and the theory describ-
ing them. The success of the theory for the linear entangled polymers resulted in proposals
to use the model for other architectures, such as mixtures of star and linear polymers [71],
or long-chain branches [72]. The tube model is applied not only for polymer melts but also
for the description of the dynamics of rubber elasticity [73]. The analysis of the reptation
time τd, i.e., time of diffusion along the tube length, shows that it is generally not short,
since it depends on M3.4 through the zero shear viscosity η0 [74]:

τd = 20 Me η0/(π2 R T ρ) (4)

When polyethylene has M = 4000 kg/mol, the reptation time is about 2 h [75], while
reducing the molecular weight to M = 50 kg/mol shortens this time to 15 min. A more
detailed description of tube model variants and their application can be found in the
literature [76,77].

The search for experimental techniques suitable at the nanoscale focused on scattering
methods. For dense polymers, light scattering, useful for studying dilute solutions, could
not be used. Fortunately, small-angle neutron scattering (SANS) has just been developed
to a level that made it possible to apply this method to the study of polymers. Neutron
scattering results from the interactions of neutrons with the atomic nuclei. In the experiment,
a collimated, monochromatic neutron beam hits the sample, and the scattering is monitored
by a 2D detector [78]. The utility of SANS for polymer testing comes from both its coverage
of large lengths and time scales and its ability to apply contrast to the polymer under study
by introducing deuterated molecules [79].

The results of the first polymer studies using SANS were published in 1973. Early
studies confirmed the random coil conformation of polymer chains in both molten and
glassy polymers [80,81]. The SANS technique was used to determine the actual radius
of gyration Rg of the chain in the bulk state. The dimension of macromolecules in a bulk
polymer sample can be characterized by the value of the K coefficient, which depends on
the molecular weight by K = (Rg

2/Mw)0.5 [82]. Typical K values for polymers range from
0.028 to 0.046 nm·mol0.5/g0.5 [83]. This means, for example, that molten polyethylene with
Mw = 105 g/mol has Rg = 14 nm. Calculations show that a single macromolecular coil has
a density of less than 1% of the volume density of the polymer, which indicates that the
empty space inside it is filled with fragments of other macromolecules [84].

Quasi-elastic neutron scattering can be used to study the dynamics of polymers at
different length scales [85]. At the large-scale dynamics, the observable processes are
the chain diffusion, the reptation, and the Rouse dynamics. These processes control
the rheological properties of the polymer [86]. The corresponding length scale where the
topological confinement caused by interpenetrating coils dominates is above 10 nm. Typical
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time scales for processes involving the entire macromolecule are nanoseconds or more [79].
Studies of polyethylene using an ultra-high-resolution spectrometer have confirmed that
the observed changes in the dynamic structure factor are consistent with the reptation
model [87]. The subject of studies with the application of contrast is not only the dynamics
of individual chains in the melt but also their fragments, such as ends or branch points [88].

Nowadays, there is a tendency to increase the complexity of the investigated sys-
tem [86,89]. Computer simulations, such as molecular dynamic simulation, are very helpful
in the interpretation of scattering results [90]. The polymer dynamics in nanocomposites in
the presence of movement confinement is an example of modern research with the use of
the neutron spin echo technique [78,91–93]. Schneider et al. [94], studying poly(ethylene
propylene) with silica, found that the confinement length, i.e., the tube diameter, decreased
with silica contents, but the entanglement density was reduced at high nanofiller con-
tent. Nusser et al. [95] analyzed two relaxation processes associated with reptation, i.e.,
constraint release and contour length fluctuations.

From the above brief review of the literature, it appears that the SANS data support
the tube model of entangled macromolecule motion.

3. Rheological Properties of Molten Polymers
3.1. Methods for Characterizing Entanglements

To describe the entanglement state using Equation (1), it is necessary to know the
rheological moduli, obtained by measuring linear viscoelastic properties in an oscillatory
shear experiment, performed over a wide range of frequencies and temperatures. In this
experiment, the storage modulus G′ and the loss modulus G′′ are usually determined. The
GN

0 modulus in Equation (1), necessary to calculate Me, is the value of the storage modulus
at the frequency at which the loss modulus reaches its minimum [12]. This is shown in
Figure 2a. Unfortunately, this classic approach often cannot be applied due to a lack of data
for some high frequencies or simply the absence of a visible G′′ minimum. For this reason, a
number of other methods have been developed to characterize entanglements [12,13,96,97].
For example, if the minimum of the G′′ modulus is poorly visible, as in the case of polydis-
perse polymers, the minimum of the tan δ = G′′/G′ value can be taken as the position in
the frequency to read GN

0, but this criterion is more arbitrary [12,97].
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Figure 2. (a) Master curves for polylactide (PLA) sample showing nearly 14 decades in frequency
obtained via time–temperature superposition. η* is the complex viscosity, which is the sum of
terminal (η*terminal) and glassy (η*glassy) components. Reproduced with permission from ref. [98].
Copyright 2005. The Society of Rheology. (b) Example of using the integral method to calculate
the GN

0 modulus from the area under the G′′ peak, when some data are unavailable. The curves
represent three polypropylenes. ω × aT is a reduced angular frequency. Reproduced with permission
from ref. [13]. Copyright 1998. American Chemical Society.

An approach for determining Me that is increasingly used is to calculate GN
0 using

the numerical integration of the area over the terminal relaxation peak of G′′(ω). This
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method, sometimes called the integral method, can be used for monodisperse polymers.
The equation useful in GN

0 calculation has the form [99]:

G 0
N = 2π

∫ ∞

−∞
G′′ (ω)dlnω (5)

In many cases, however, data about G′′ are missing at high frequencies. For this
reason, it was proposed to use a linear approximation for the missing data and then
perform calculations in accordance with Equation (5) [13]. The application of the numerical
integration to various polypropylenes is shown in Figure 2b.

A similar approach has been proposed for highly polydisperse materials, in which the
terminal relaxation spectrum is broad, and the loss modulus peak is usually not recorded
in its entirety. Therefore, assuming the symmetric shape of the G′′ peak, calculations can be
performed by taking a doubled peak area from the origin to the frequency corresponding
to the maximum [12,97,100].

The method, now called the maximum method, was by Raju et al. [101]. If the chain
dispersion is narrow and chains are long, the plateau modulus GN

0 can be calculated
from equation:

GN
0 = 3.56 G′′

max (6)

where G′′
max is the maximum of G′′ modulus.

For many polymers, the presence of a cross-over point where G′ and G′′ are equal
is observed [18] (Figure 3). Some researchers prefer to characterize entanglements by
specifying this cross-over point, especially in the case of high polydispersity or when
the polymer is semicrystalline [12]. It should be mentioned that the inverse values of
the dynamic moduli at their intersection G′ = G′′ characterize the polydispersity of the
samples [102] and that the cross-over frequency shifts to lower values with molecular
weight [103]. To determine the level of entanglements, attempts are being made to use both
the cross-over modulus Gx and the cross-over frequency ωx.
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Figure 3. (a) Storage and loss modulus as a function of frequency at 150 ◦C of the bulk polystyrene
(PS) sample. τd is the linear viscoelastic relaxation time. Reproduced with permission from ref. [18].
Copyright 2012. American Chemical Society. (b) Results of a dynamic frequency sweep experiment
of a disentangled ultra-high molecular weight polyethylene (UHMWPE) sample, performed at
temperature of 160 ◦C. There is no cross-over point. Reproduced with permission from ref. [104].
Copyright 2015. Springer Nature (Berlin, Germany).

Wu [97] and Nobile and Cochini [105] stated that the relationship between the cross-
over modulus Gx and the plateau modulus GN

0 should have the general form of:

log (GN
0/Gx) = f(Mw, Mn, Mz) (7)
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where Mw, Mn, Mz are weight-averaged, number-averaged, and z-averaged molecular
weights, respectively. When the polydispersity of polymer is lower than 3, the Equation (7)
has the form [97]:

log (GN
0/Gx) = 0.38 + 2.63 log(Mw/Mn)/(1 + 2.45 log(Mw/Mn)) (8)

According to Equation (8), the cross-over modulus is a measure of entanglement.
Higher values of Gx mean a higher density of entanglements.

Krajenta et al. [106] analyzed changes in the cross-over frequency as a function of the
annealing time for differently entangled polypropylenes (PP) (Figure 4). It was observed
that at the beginning of annealing, a higher frequency corresponded to a lower density
of entanglements. This was consistent with the equation proposed by Martins et al. [107]
linking ωx with the number of entanglements per macromolecule Z = M/Me:

1/ωx ≈ τR Z (9)

where τR is the Rouse relaxation time, which depends on the chain length to the second
power [108]. 1/ωx is equal to the reptation time [12,109]. As the annealing time increased,
the cross-over point shifted toward higher frequencies, reaching a plateau. This would be
interpreted as re-entanglement if, surprisingly, this was not also observed for equilibrium-
entangled PP. The reason for the behavior observed with annealing time is not clear, because
from other experiments for the same materials, the time of re-entanglement for the most
disentangled PP was about 2 h, not 45 min, after which the plateau visible in Figure 3 was
reached [106].
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It seems that the cross-over modulus, rather than the cross-over frequency, can be used
to compare changes in the entangled state of a single polymer when other methods are
not available. Sometimes the cross-over point does not exist (see Figure 3b), as in the case
of a certain type of disentangled UHMWPE studied by Li et al. [104]. The absence of the
cross-over point was interpreted as the absence of entanglement.

The molecular masses between entanglements, determined for equilibrium entangled
polymers by the methods described above, are summarized in Table 1. For comparison,
information on the critical molecular masses is also included. Two conclusions about Me
can be drawn from the data in Table 1. First, there is a scattering of results obtained in
different laboratories. Second, the attempt to find a universal relationship between tacticity
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and Me has not been successful. It is also worth noting that many polymers have been
characterized so far.

Table 1. Molecular masses between entanglements and critical molecular masses.

Polymer Me [g/mol] Mc [g/mol] Literature Sources

Polyethylene 830–2600 2800–3480 [13,15,97,110–114]
Poly(ethylene oxide) 1600–2200 5870 [15,97,112]
Polyisobutylene 6900–10,500 13,100–17,000 [15,97]
Polylactide 4000–10,500 9000–10,000 [98,115–117]
Syndiotactic polylactide 11,800 [118]
Isotactic polylactide 4100 [118]
Ultra-high molecular weight
polypropylene 6300 [99]

Atactic polypropylene 4390–7050 [13,15,112,119,120]
Syndiotactic polypropylene 1700–3400 [13,112]
Isotactic polypropylene 5500–9900 [13,99,106,111,112]
Atactic poly(methyl
methacrylate) 10,000–13,600 29,500 [15,112]

Syndiotactic poly(methyl
methacrylate) 5800–9200 [97,112]

Isotactic poly(methyl
methacrylate) 14,600 [97]

Syndiotactic polystyrene 14,500 [121]
Isotactic polystyrene 17,500–28,880 [15,97,112,121]
Polycarbonate 1330–1660 [112,119]
Poly(ethylene terephtalate) 1170–1450 [15,97,119]
Poly(methylene oxide) 2110–2640 [15,97,119]
Poly(ethylene-2,5-furanoate) 3500 [122]
1,4- polybutadiene 1850 [123]
Poly(phenylene oxide) 3150–3620 [97,119]
Poly(tetrafluoroethylene) 5580 [97]
Poly(vinylidene fluoride) 2400 [97]
Poly(methyl acrylate) 9070 [97]
Poly(vinyl acetate) 9100–11,400 24,500 [15,97]
Poly(caprolactam) 2490 [97]
Poly(dimethylsiloxane) 8160–12,000 24,500 [15,97]
Atactic poly(1-hexene) 12,100 [124]
Syndiotactic poly(1-hexene) 14,100 [124]
Isotactic poly(1-hexene) 15,200 [124]
Atactic polystyrene 13,400–18,700 38,000 [15,97,112,113,121,125]

Methods for determining Me using Equation (1) or Equation (5) are also applied to
characterize partially disentangled polymers in the melt state. The correctness of such
application may be a matter of debate, but so far there are no arguments against it.

3.2. Entanglements in Polymer Blends

Table 1 shows data characterizing the entanglements of homopolymers. However,
entanglements also occur in blends of two or more polymers. The entanglement in the
blend can be determined using rheological methods. In immiscible blends, it is assumed
that the degree of entanglement is the same as in the polymers used. In the miscible blend,
entanglement depends on the composition and the entanglement density of each blend
component [126–128]. It has been observed that chemically dissimilar chains entangle
more than similar chains, so their contribution to the total number of entanglements
is large [126,129]. The contribution of different types of entanglements to the average
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entanglement density in a blend νe, or to the average molecular mass between entanglement
in a blend Me has the form:

νe =
ρ

Me
=

φ1
2ρ1

Me1
+

φ2
2ρ2

Me2
+

2φ1φ2ρ1ρ2
Me12

(10)

where ρ is the density of the blend, ρ1 and ρ2 are the densities of the blend components, φ1
and φ2 are the volume fractions of the components, Me1 and Me2 are the molecular masses
between the entanglements of the same polymer, and Me12 is the molecular mass between
the entanglements of macromolecules of two polymers [129].

The rheology of compatible blends of poly(methyl methacrylate)(PMMA) and poly
(styrene-acrylonitrile)(SAN) was investigated by Wu [130]. The GN

0 modulus for the blend
with 60–90% SAN was lower than the moduli of both components, which means that
Me12 > Me1 and Me12 > Me2 (Figure 5a). An explanation has been proposed that the specific
interchain interaction of dissimilar polymers tends to locally align the chain segments,
stiffening the chains, and reducing the convolution, resulting in reduced entanglement
between dissimilar chains. Other blends studied by Wu [131] were PMMA/poly (ethy-
lene oxide), PMMA/poly(vinylidene fluoride), and polystyrene/poly(phenylene oxide).
For these blends, the GN

0 modulus was always between the values for the pure blend
components, although a negative deviation from the straight line was visible.
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Reproduced with permission from ref. [130]. Copyright 1987. Elsevier. (b) Entanglement density, νe,
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An example of the multicomponent blends studied was that described by Song
et al. [126]. They analyzed miscible blends of poly(vinyl chloride) (PVC)/poly
(α-methylstyrene-acrylonitrile) (α-MSAN) toughened with polybutadiene-g-poly(styrene-
co-acrylonitrile)(PB-g-SAN). The entanglement density as a function of PVC content was
calculated according to Equation (1), based on the results of rheological measurements of
G′. An approximately linear relationship was found (Figure 5b).

Song et al. [132] also examined miscible blends of polyphenylene oxide/polystyrene
(PPO/PS) toughened by high-impact polystyrene (HIPS) and polybutadiene-graft-polystyrene
(PB-g-PS) copolymer. The authors assumed that the blends had an equilibrium density
of entanglements, proportional to the composition. It was observed that mechanical
properties, i.e., impact strength and elongation at break, gradually increased with the
assumed entanglement density of the matrix.

The properties of UHMWPE were modified by blending with PP [133]. A significant
reduction in the apparent melt viscosity was observed, and for the blend with 20% of PP,
the entanglement density, νe, determined from the storage modulus on the rubbery plateau,



Molecules 2024, 29, 3410 10 of 30

was 181 mol/m3, i.e., lower than that of UHMWPE, which was 433 mol/m3. Adding 1 wt.%
poly(ethylene glycol) to the UHMWPE/PP blend further reduced νe to 147 mol/m3.

3.3. Partially Disentangled Melts

The development of methods for disentangling macromolecules has opened the pos-
sibility of deeper exploration of the role of entanglements. Studies usually involve the
comparison of entangled and partially disentangled polymers. The frequency sweep test
is often performed using a rotational rheometer to demonstrate the change in G′ and G′′

moduli and the change in complex viscosity. Figure 6a illustrates the change in complex
viscosity as a function of frequency, measured for the same polypropylene, but disentan-
gled to different extents [106]. PPNi is a fully entangled polymer with Me = 9900 g/mol,
and PPN0.5 is the most disentangled polymer with Me = 19,100 g/mol. The decrease in
viscosity values with disentanglement is visible, as is the reduction in G′ at high frequencies
(Figure 6b) in measurements of differently entangled polylactide (PLA) [117].

Molecules 2024, 29, 3410 10 of 31 
 

 

comparison of entangled and partially disentangled polymers. The frequency sweep test 
is often performed using a rotational rheometer to demonstrate the change in G′ and G″ 
moduli and the change in complex viscosity. Figure 6a illustrates the change in complex 
viscosity as a function of frequency, measured for the same polypropylene, but disentan-
gled to different extents [106]. PPNi is a fully entangled polymer with Me = 9900 g/mol, 
and PPN0.5 is the most disentangled polymer with Me = 19,100 g/mol. The decrease in 
viscosity values with disentanglement is visible, as is the reduction in G′ at high frequen-
cies (Figure 6b) in measurements of differently entangled polylactide (PLA) [117].  

 
Figure 6. (a) Complex viscosity of polypropylene as a function of frequency and disentangling. PPNi 
–fully entangled polypropylene with Me = 9900 g/mol, PPNi10—polypropylene with Me = 12,600 
g/mol, PPN2—polypropylene with Me = 18,000 g/mol, PPN0.5—polypropylene with Me = 19,100 
g/mol. Reproduced with permission from ref. [106]. Copyright 2019. Elsevier.; (b) Storage modulus 
G′ as a function of frequency, measured at 180 °C. PLAi –fully entangled polymer with Me = 10,500 
g/mol, PLA10—partially disentangled PLA with Me = 16,300 g/mol, PLA0.5—PLA with Me = 32,800 
g/mol, PLA0.1—PLA with Me = 65,300 g/mol. Reproduced with permission from ref. [117]. Copy-
right 2020 by Lukasiewicz Research Network—Industrial Chemistry Institute. 

A decrease in the plateau modulus was found when metallocene-catalyzed high-den-
sity polyethylenes (HDPEs) were compared with commercially available HDPE [114]. 
This was due to a reduction of entanglements during metallocene-catalyzed polymeriza-
tion. The effect of polymerization conditions on the entanglement of ultra-high molecular 
weight polyethylene (UHMWPE) was studied using rheological amplitude sweep and 
time sweep tests by Pandey et al. [23] and Chen et al. [134]. The conclusion was that slower 
polymerization led to fewer entanglements per unit chain length. When UHMWPE 
polymerization was carried out in the presence of polyhedral silsesquioxane (POSS), more 
entanglements in the polymer were obtained because POSS limited crystallization and 
created conditions for entanglement of growing chains instead of their participation in 
crystallization [135].  

Drakopoulos et al. [136] studied the relaxation dynamics of UHMWPE using tor-
sional rheology and observed different γ-relaxation behavior of disentangled and entan-
gled polymer, suggesting that the entanglement density affects the free volume and thus 
affects the γ-relaxation. The analysis of the dynamic viscosity of cereal starches was con-
ducted by Guo et al. [137,138]. The samples were prepared from aqueous solutions with 
concentrations above or below the critical concentration, which was determined based on 
measurements of the change in the slope of specific viscosity as a function of concentra-
tion. This critical concentration varied significantly (3.3–16.9%, g/l), depending on the type 
of starch. The cross-over frequency was used to characterize the starch rheology, except 
for the samples prepared from 1 wt.% solutions, for which no cross-over point was ob-
served, which was explained by the very low density of interchain entanglement in these 
samples.  

The subject of studies in the last decade has also been the rheology of nanocomposites 
[139–143]. Several authors observed that when nanoparticles were well dispersed in the 
polymer matrix, the melt viscosity of the system was reduced, unlike composites with 

Figure 6. (a) Complex viscosity of polypropylene as a function of frequency and disentan-
gling. PPNi –fully entangled polypropylene with Me = 9900 g/mol, PPNi10—polypropylene with
Me = 12,600 g/mol, PPN2—polypropylene with Me = 18,000 g/mol, PPN0.5—polypropylene with
Me = 19,100 g/mol. Reproduced with permission from ref. [106]. Copyright 2019. Elsevier; (b) Storage
modulus G′ as a function of frequency, measured at 180 ◦C. PLAi –fully entangled polymer with Me

= 10,500 g/mol, PLA10—partially disentangled PLA with Me = 16,300 g/mol, PLA0.5—PLA with Me

= 32,800 g/mol, PLA0.1—PLA with Me = 65,300 g/mol. Reproduced with permission from ref. [117].
Copyright 2020 by Lukasiewicz Research Network—Industrial Chemistry Institute.

A decrease in the plateau modulus was found when metallocene-catalyzed high-
density polyethylenes (HDPEs) were compared with commercially available HDPE [114].
This was due to a reduction of entanglements during metallocene-catalyzed polymerization.
The effect of polymerization conditions on the entanglement of ultra-high molecular weight
polyethylene (UHMWPE) was studied using rheological amplitude sweep and time sweep
tests by Pandey et al. [23] and Chen et al. [134]. The conclusion was that slower polymer-
ization led to fewer entanglements per unit chain length. When UHMWPE polymerization
was carried out in the presence of polyhedral silsesquioxane (POSS), more entanglements
in the polymer were obtained because POSS limited crystallization and created conditions
for entanglement of growing chains instead of their participation in crystallization [135].

Drakopoulos et al. [136] studied the relaxation dynamics of UHMWPE using torsional
rheology and observed different γ-relaxation behavior of disentangled and entangled poly-
mer, suggesting that the entanglement density affects the free volume and thus affects the
γ-relaxation. The analysis of the dynamic viscosity of cereal starches was conducted by Guo
et al. [137,138]. The samples were prepared from aqueous solutions with concentrations
above or below the critical concentration, which was determined based on measurements
of the change in the slope of specific viscosity as a function of concentration. This critical
concentration varied significantly (3.3–16.9%, g/L), depending on the type of starch. The
cross-over frequency was used to characterize the starch rheology, except for the samples
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prepared from 1 wt.% solutions, for which no cross-over point was observed, which was
explained by the very low density of interchain entanglement in these samples.

The subject of studies in the last decade has also been the rheology of nanocompos-
ites [139–143]. Several authors observed that when nanoparticles were well dispersed in
the polymer matrix, the melt viscosity of the system was reduced, unlike composites with
micro-sized fillers or nanofiller agglomerates, in which the viscosity increased [142,144].
The effect of viscosity reduction depends on the size of the nanoparticle, which should
be smaller than the mesh size of the matrix [140]. Sufficiently small particles can in-
crease the free volume of the melt, thereby reducing chain entanglement and accelerating
the relaxation of the molten matrix. Examples of nanocomposites whose rheology was
studied were poly(methyl methacrylate)-silicon [142], polystyrene–polyoxymetalate [140],
UHMWPE-POSS [144], UHMWPE-TiO2 [145].

3.4. Re-Entangling of Polymers

Many of the disentangled polymers were studied using a rheological time sweep test.
The goal was to show how moduli and viscosity change over time [43,106,135,146–151].
This experimental interest resulted from the expectation that after a sufficiently long time
at high temperature, the macromolecules would re-entangle, i.e., the polymer would
be in equilibrium again and the rheological parameters would reach their initial values
(Figure 7a). Research has shown that this does not often occur within a reasonable exper-
imental time. Many authors treated achieving a constant value of the G′ modulus as a
criterion for reaching the equilibrium entangled state, even if the value of this modulus
was lower than initially. The results were then presented in normalized form, i.e., as the
ratio of the actual G′ value to the constant G′ value at the end of the test (Figure 7b).

Regardless of the definition used, the time after which the disentangled polymer
reached constant values of rheological parameters was long and depended on the molecular
weight of the polymer. For example, for linear polyethylene, it increased from 100 s to 11 h
when the molecular weight increased from 9.0 × 104 to 3.6 × 106 g/mol [152]. Even longer
times, e.g., 55–118 h, were measured for UHMWPE with Mw = 5 × 106 g/mol [23,153]
(Figure 7c). The proposed explanation for the long times observed is that as the molecular
weight increases, the number of entanglements per chain also increases, so it takes longer
to reach a thermodynamically stable state. Talebi [60] found that the relationship between
the time of re-entangling of UHMWPE, t, and its molecular weight Mw is:

ln t = a × 2.8(ln Mw) (11)

where a is a constant.
The influence of polymerization conditions, and therefore disentanglement, on rhe-

ological properties were observed by Rastogi et al. [154], Chen et al. [134], and Ronca
et al. [43]. The reduction of entanglement time resulting from melt annealing of UHMWPE
was found by Li et al. [104]. The reason was the increased chain mobility at high tempera-
tures. The dependence of the entanglement time on the density of entanglements was not
confirmed in the study of two UHMWPEs by Chammingkwan et al. [48]. However, careful
analysis showed that the most likely cause was the presence of voids in the entangled
polymer, which reduced contact of the polymer with the rheometer plates.

Sometimes, during time sweep experiments, it is observed that the increase in modulus is
not smooth, but undulations, i.e., periodic fluctuations, are visible (see Figure 7a) [37,147,149].
The reasons for this phenomenon have not yet been explained and it cannot be ruled out
that there are technical, instrumental causes of measurement disturbances.
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dPE_10C_5’ curve in Figure 7c), which is much longer than usual crystal melting time. 
Rather, it appears that the melting of the crystals introduces a less entangled phase of the 
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phase. The equalization of the entanglement density, faster in the less entangled phase 
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served changes in moduli. Two stages of re-entanglement were also observed by Fu et al. 
[147]. In their opinion, these two stages differ in the type of entanglements that arise. In 
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of normalized storage modulus for HDPE/UHMWPE blends at 200 ◦C. The H/U5-18 designation
means HDPE with 5% added UHMWPE sheared at rate of 18 s−1. Reproduced with permission from
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Based on the shape of the G′ curves (Figure 7c), Pandey et al. [23] suggested that
the re-entanglement process consists of two stages, with a rapid increase in G′ modulus
and entanglements in the first phase and much slower entanglement in the second phase.
For a semicrystalline polymer, Li et al. [135] associated the first phase with the process
of explosive disintegration of crystals, analogous to the observations of the melting of
single-crystal polyethylene mats carried out by Barham and Sadler [75]. The second phase
of re-entanglement should be controlled by the reptation movement of the macromolecule
chains. Similar explanations were also proposed by Pandey et al. [23] and Talebi [60]. A
serious objection to this interpretation is the fact that the time of the first phase in the case
of polyethylene is, according to the publication by Li et al. [135], as long as 6 h (see the
dPE_10C_5′ curve in Figure 7c), which is much longer than usual crystal melting time.
Rather, it appears that the melting of the crystals introduces a less entangled phase of the
melt into the interior of the also partially disentangled melt derived from the amorphous
phase. The equalization of the entanglement density, faster in the less entangled phase and
slower in the more entangled phase, may be the cause of the macroscopically observed
changes in moduli. Two stages of re-entanglement were also observed by Fu et al. [147].
In their opinion, these two stages differ in the type of entanglements that arise. In the
initial phase (approximately 100 s for HDPE), simple entanglements (twists, knots, links)
are formed, while in the second phase, loops are formed.

The time sweep test was used to investigate poly(L-lactide) re-entanglement. The poly-
mer was disentangled by freeze-extraction from solutions of various concentrations [19].
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The G′ modulus was lower for polylactide obtained from a less concentrated solution,
which was consistent with expectations regarding the level of disentanglement. The time
to reach equilibrium value G′ was longer for the less entangled polymer.

Another polymer for which entanglement restoration was studied was polystyrene [18].
Depending on the solution from which the polystyrene was obtained, starting from low
concentrations, the re-entanglement time first decreased, while for higher concentrations
the trend was opposite, i.e., the re-entanglement time increased (Figure 8). The behavior
observed below a concentration of 3.0 in Figure 8 was as expected because more separated
chains needed more time to entangle. For the high-concentration region, the explanation
has been proposed that a more concentrated solution results in a smaller chain coil size and
more compact globules after freeze-drying. Therefore, it takes more time for the coils to
envelop the neighbors.
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The re-entanglement has also been examined for PP [106]. It was found that after 2 h
of melt annealing, the viscosity of PP still remained below the initial level, although during
this time the mechanical properties typical for entangled PP were restored. It was observed
that the re-entanglement time depended on the initial degree of entanglement, i.e., it was
longer for the less entangled polymer, as well as on the molecular weight of PP. At larger
Mw, re-entanglement required a longer time.

The rare case is the study of composites in which the polymer has reduced entan-
glement. An example is UHMWPE containing POSS nanoparticles introduced in various
concentrations during polymerization [135]. The change in G′ over time is shown in
Figure 9a, and the same data after normalization in Figure 9b. The highest initial storage
modulus was found for a POSS content of 0.74%, and it decreased at higher POSS content.
This was explained as a result of the highest molecular weight of this UHMWPE, which
was polymerized with low filler content. Similarly to UHMWPE, the re-entanglement
process in the UHMWPE/POSS nanocomposite required an extremely long time, exceeding
1000 min.

The partially disentangled PP composites with graphene nanoplatelets (0.1–4 wt.%)
were prepared by the melt shear, and changes in the rheological properties of the melt were
observed with time [155]. It was measured that partially disentangled neat PP tested at
200 ◦C needed 2000 s to reach the viscosity of fully entangled PP. Much shorter times of only
100 s were measured for the composites, however their final viscosities were at a lower level
than for the entangled PP. The authors presented the opinion that the disentangled state
remained at the observed level because the nanoplatelets, due to their strong interaction,



Molecules 2024, 29, 3410 14 of 30

limited the movement of the chains. Doubts regarding the given explanation are raised by
the fact that a similar effect was observed for some homopolymers.
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Luo et al. [156] studied the re-entanglement of chains in a PP micro-composite with
a high content (35 wt.%) of boron nitride. The disentanglement of the composite was
achieved by steady-state shear. As expected, before shear was applied, the composite had a
higher viscosity than PP. After shearing, the viscosity of the composite decreased below the
PP level, but increased rapidly within the first 30 s after shear cessation and then remained
stable at a level below the PP viscosity.

The build-up of entanglement as a function of time can also be characterized by
measuring the normal force in the time sweep test performed with the rotational rheome-
ter [19,60]. In the case of completely entangled UHMWPE, no changes in normal force were
recorded, while in the case of disentangled polymer, a gradual decrease in normal force
was observed over time. This was caused by a reduction in the free volume of the melt
during the formation of entanglements.

The time sweep rheological test is most often used to characterize changes in entan-
glements with polymer residence time in the melt, but they can also be investigated using
other rheological tests. For example, a strain sweep test and a frequency sweep test with
multiple repeated cycles were used to characterize UHMWPE [104].

4. Mechanical Properties Dependent on the Entanglement of Macromolecules
4.1. Properties of Equilibrium Entangled Polymers

The presence of entanglements in an amorphous polymer or in the amorphous phase of
a semi-crystalline polymer determines the mechanical properties of the entire polymer [157].
In both amorphous and semicrystalline polymers, the main deformation features, mainly
examined in the tensile test, are the same. Under the action of force, the deformation is
initially elastic, followed by yielding when segmental rearrangements are possible. With a
larger deformation, strain softening may occur, resulting from localized plastic deformation
leading to necking. The strain softening is usually not visible when results are presented
as a true stress–true strain curve. As the strain increases, plastic flow is observed at an
approximately constant stress level, followed by an increase in stress, which is known as
strain hardening [158]. Based on the behavior of deformed polystyrene and polycarbonate,
it can be shown that the strain hardening is more pronounced when the polymer is more
entangled [159]. At large deformations, orientation and stretching of macromolecules with
their partial disentanglement are observed [160].

The deformation phases described above are observed when the polymer is ductile,
and only some of them when the polymer is brittle. The same polymer can become brittle
or ductile depending on the temperature and the strain rate. The irreversible plastic
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deformation of amorphous polymers occurs through the formation of shear bands or crazes.
Essentially the same deformation phases are visible when the polymer is compressed [158]
(Figure 10).
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Figure 10. Compressive behavior of isothermally crystallized poly(ethylene terephthalate) samples
with different degrees of crystallinity. λ is the extension ratio. Reproduced with permission from
ref. [158]. Copyright 2004. American Chemical Society.

The deformation of a semicrystalline polymer analyzed at the micro-scale is more com-
plicated because its structure contains crystalline lamellae connected by macromolecules [4].
The two main types of connections are tie macromolecules, that is, macromolecules having
fragments in neighboring crystals, and macromolecular entanglements [160]. Therefore, in
semicrystalline polymers, the physical cross-links of the macromolecular network are both
the entanglements in the amorphous phase and the crystals themselves [4]. The main stages
of the evolution of the semicrystalline polymer structure in relation to the strain–stress
dependence were described by Strobl [4,161–163]. At small strains (point A in Figure 11)
single acts of deformation occur in the form of lamellar separation, rotation of lamellae,
and interlamellar slips. At the yield point (B), massive chain slips are initiated. The amor-
phous chains gradually orient with increasing deformation. During the strain softening
(C), lamellar fragmentation occurs, and fibrillation begins, i.e., the formation of fibrils by
fragmented, oriented crystallites. Once a plateau is reached (point D), the chains begin to
disentangle, allowing further deformation, with the neck propagation through the sample.
At larger strains, the strain-hardening begins due to the stretching of the macromolecular
network (E).

Men et al. [166] studied the deformation at point C. They changed the density of
entanglements of selected polymers by blending them with other miscible polymers and
analyzed the free shrinkage of these materials. It was found that stretching a semicrys-
talline polymer always results in the deformation of the interpenetrating networks of
interlocked crystallites and the entangled amorphous phase. The deformation from point B
is dominated by the stretching of the amorphous phase, controlled by entanglements.

Although entanglements are involved in all phases of deformation, attention is focused
on the strain-hardening phase, when changes in the entropy of the entangled network
occur, resulting from its stretching, orientation, and possible partial disentangling.
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The plastic phase of deformation during polymer stretching can be described by an
equation of the form [167]:

σ = σy + λ(NkTn0.5)/3 [λ(3 − λ2/n)/(1 − λ2/n) − 1/λ2(3 − 1/λn)(1 − 1/λn)] (12)

where σ is the true stress, σy is the yield stress, N is the number of entanglements per unit
volume, n is the number of flexible units between entanglements, and λ is the extension
ratio. When n is large or λ is small, the Equation (11) can be simplified and takes the
form [168,169]:

σ(λ) = σy + GR(λ2 − 1/λ) (13)

where GR is the strain-hardening modulus. GR depends on the temperature T and the
entanglement density νe [128,170]:

GR~νe/T (14)

According to this equation, the slope of the strain-hardening phase, as proportional to the
physical cross-links, should increase with the entanglement density [158]. Equations (12)–(14)
do not contain M, therefore it is assumed that the strain-hardening and the entanglement
density should be independent of the molecular weight. However, in the case of semi-
crystalline polymers, due to the presence of a crystalline phase, tensile and compression
properties suggest that there is an influence of molecular weight [158]. The reasons for this
are discussed later in the text.

There is one more parameter characterizing the polymer network that depends on
entanglements. This is the maximum draw ratio, related to the square root of Me [171,172].
The entanglement network affects not only the shape of the stress–strain relationship but
also the micro-mechanisms of deformation, such as crazing and/or shear yielding [173–175].
This issue is especially important for amorphous polymers.

The relationships presented above (Equations (12)–(14)) result from both theoretical
and experimental research [158,176,177]. The experiments confirmed that the strain hard-
ening occurs earlier and is stronger when the density of entanglements is higher. Figure 12
shows the strain–stress relationship for a series of polyethylenes with different molecular
weights [176]. The authors explained changes in the strain-hardening slope with a change
in Mw as the result of an increase in the entanglement density with an increase in molecular
weight. For the same reasons, a decreased deformation ratio was observed.
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Schrauwen et al. [158] examined the properties of polyethylene, polypropylene, and
poly(ethylene terephthalate) during uniaxial compression. One of their conclusions was
that the strain-hardening depended on the sample preparation, i.e., slowly crystallized
samples exhibited lower strain-hardening. According to the authors, this was due to the
lower density of chains in the amorphous phase, resulting from the pulling out of the
macromolecular chains during slow crystallization. The similarity of results for different
polymers supported the opinion that the crystalline phase does not contribute to strain-
hardening, which is controlled by the chain entanglement density. Schrauwen et al. [158]
agreed with Kenendy’s [176] opinion on the influence of Mw on the chain entanglement
density, explaining that the more difficult pulling out of chains during the crystallization of
polymer with higher Mw.

Polyethylenes with Mw in the range of 5 × 104 to 5 × 106 g/mol were examined by
Bartczak and Kozanecki [177]. The experimental stress–strain curves were fitted using
the Arruda and Boyce model [178]. The authors obtained a decrease in Me from 1020 to
414 g/mol as Mw increased. The reason for the change in Me was differences in the structure
of the amorphous phase, resulting from a different course of crystallization. According to
the authors, during the plastic deformation, partial disentangling of polymer chains occurs.

4.2. Properties of Disentangled Polymers

In the above-described experiments, the differences in entanglements resulted from
the crystallization conditions, but in the 1970s it was already possible to study polymers
disentangled in solutions. The influence of entanglement reduction on mechanical prop-
erties was found when Lemstra and Smith [179] performed experiments involving the
spinning of polymer solutions after gelation. They observed that polyethylene gel could be
spun to very high ratios (about 30 times) and create strong fibers with an elastic modulus
of 108 GPa [179,180]. The reason for the excellent drawability of polyethylene was the
reduction of entanglements in the gel [29].

Smith and Lemstra also made a film by drying a UHMWPE gel and found that very
high strains could be achieved, while the same polymer processed by melting showed
much earlier breaking [179] (see Figure 13). The ultradrawing behavior of gel films was
also studied by Yeh et al. [181]. A high deformation ratio of 60 was obtained for a film
made of ultra-high molecular weight polypropylene (UHMWPP) prepared from a gel
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solution [38]. Similarly prepared UHMWPP sheets were subject to a two-step drawing by
Ikeda et al. [182]. The samples for the second stage were cut from the sheets pre-drawn in
the first stage. The tensile drawing of samples to break was performed at high temperatures
of 130 ◦C or 150 ◦C. Based on the determined draw ratio of the neck and the maximum
draw ratio of the sample, the authors concluded that both depend on the inverse root of
the concentration of the solution from which the sheet was cast.
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molecular network formed by entanglements (Figure 14a). It is known that semi-crystal-
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in the case of polymers, it was observed that the reduction of entanglements intensifies 
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Figure 13. Load–extension curves measured at 120 ◦C for UHMWPE. A—melt crystallized film,
B—film cast from 2 wt.% solution in decalin, with reduced entanglements. Reproduced with permis-
sion from ref. [179]. Copyright 1980. Springer Nature.

One of the earlier works using the freeze-drying disentangling method was the one
published by Huang et al. [183], in which poly(ethylene terephthalate) obtained from the
solutions with a concentration of 2–40 wt.% was drawn by solid-state co-extrusion at the
temperature of 70 ◦C. The maximum extrusion draw ratio achieved depended on the
concentration of the solution from which the polymer was obtained. At very low concen-
trations the density of entanglement was too low to ensure the continuity of the material,
while at too high concentrations the entangled network prevented high drawability.

Studies of the tensile deformation of entangled and partially disentangled polypropy-
lenes obtained by crystallization from solutions at temperatures 20–100 ◦C were carried
out by Pawlak et al. [184]. The measured masses between entanglements were 9.9, 14.5,
and 18.0 kg/mol. Mechanical properties before and at the yield did not change due to
the reduction of entanglements, but the strain-hardening increased with the density of the
molecular network formed by entanglements (Figure 14a). It is known that semi-crystalline
polypropylene cavitates during tensile deformation [185]. However, for the first time in the
case of polymers, it was observed that the reduction of entanglements intensifies cavitation
(Figure 14b). The cavitation in disentangled polypropylene was possible not only at low
temperatures, as is usually the case, but even when the tensile test was performed at the
temperature of 100 ◦C.

The process of void generation during uniaxial stretching was modeled using the
molecular dynamics method by Logunov and Orekhov [186]. They modeled the properties
of amorphous polyethylene and concluded that the molecular entanglements slow down
the growth of voids and their aggregation in the bulk of polyethylene.
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polymer with Me = 9.9 kg/mol, and PP-M and PP-L are partially disentangled polypropylenes
with Me = 14.5 kg/mol and Me = 18.0 kg/mol, respectively. The strain-hardening, dependent on
entanglement, is visible from the true strain of 1.9. The dashed lines show the shapes of curves after
correction of the cross-section area and the strain for the presence of voids fraction in bulk samples;
(b) The evolution of volume strain during deformation. The volume strain is a measure of the increase
in sample volume due to the cavitation. Reproduced with permission from ref. [184]. Copyright
2018. Elsevier.

The tensile properties of polycarbonate disentangled to varying degrees by using
modified shear procedures during extrusion (by rotation, vibration, or together), were
examined by Wang et al. [55]. Although the decrease in viscosity was confirmed rheologi-
cally, the most disentangled sample had tensile properties similar to those made from raw
pellets. The reason for this was not discussed. The authors presented some conclusions
regarding processability using the injection molding method. The lower processing tem-
perature and pressure when the polymer was disentangled were beneficial for molding
the products, obtaining lower residual stresses and therefore better (slightly) mechanical
properties. The disentangled sample, having a reduced melt density, can be expected to
show superiority over the original material when it becomes difficult to fill the mold during
injection molding.

If the mechanical behavior in the strain-hardening phase depends on Me, a change in
slope should be visible when the initially disentangled polymer is re-entangled by melt
annealing. The solution-disentangled PP samples were annealed at different times and
examined in a compression test by Krajenta et al. [106]. The choice of compression rather
than extension was intended to avoid the potential impact of cavitation. Figure 15 shows
that the stress–strain curves of the entangled sample and the annealed sample overlap after
2 h when the PP has Mw = 250 kg/mol, but 2 h of annealing was not sufficient for fully
re-entangle the polymer with higher Mw = 400 kg/mol.

Although tensile testing is most commonly used to characterize mechanical properties,
studies on impact behavior have also been performed. The Izod impact test was used
to measure the strength of two sintered UHMWPEs, fully entangled and partially disen-
tangled [187]. This less entangled polyethylene showed an impact strength of 80 kJ/m2,
while the entangled PE showed an impact strength of only 70 kJ/m2. The unexpected
result was probably due to better sintering of the grains in the sample with more mobile
macromolecules.

In the UHWWPE research, Zhang et al. [188] used the Charpy version of the impact test.
The commercial polymers used (SLL 5 and GUR 4150) had the same Mw, so the molecular
weight should not affect the impact strength. Tensile testing, a prelude to the main tests,
showed stronger strain-hardening for SLL 5, which indicated more entanglements. This was
also confirmed by rheology. In the impact measurements, the less entangled polyethylene
had three times higher Charpy impact strength than the entangled polyethylene (144 kJ/m2

vs. 43 kJ/m2). The GUR 4110 sample showed a ductile fracture, while the SLL 5 samples
fractured brittle. The authors interpreted the observed differences as related to the different
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structures of polymers, i.e., smaller nascent particles and a lower degree of entanglement,
which led to a better connection of the polymer grains during film formation.
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Other impact properties were tested on micro-sized spherical polystyrene projec-
tiles [125]. The projectiles had different Mw in the range of 9.3–270.0 kg/mol, so one of
them had a value below Me = 13.4 kg/mol. The spheres were launched against a rigid
substrate, which led to deformation at an ultra-high strain rate. During impact, the bottom
of the projectile heated up and deformed in plastic flow. In the upper part, a localized
shear banding with brittle fracture was observed for spheres from disentangled PS and
extensive shear banding followed by crazing in the entangled projectiles. The absence of
entanglements resulted in a rapid transition to fracture.

One way to improve the processability of UHMWPE, which is unsatisfactory due to
Mw > 106 g/mol, is to blend it with lower molecular weight polyethylene, which is the
main component of the formed blend. Compatible high-density polyethylene (HDPE) or
linear low-density polyethylene (LLDPE) macromolecules penetrate UHMWPE during
blending, reducing its entanglements [189,190]. Chen et al. [191] prepared blends of HDPE
with disentangled or entangled UHMWPE obtained directly in the reactor. With the same
composition, the tensile properties, such as elastic modulus, elongation to break, and tensile
strength, of the blends with the entangled and disentangled components were similar
(Figure 16). The big difference was in the impact strength, where the partially disentangled
samples showed 2–3 times more energy absorbed at the break. The reason was a change in
the internal structure. Disentangling the chains promoted more efficient growth of oriented
shish-kebab structures, which were also longer in partially disentangled material.

Similar observations regarding the promotion by disentanglement of the growth of
more oriented shish structures, with more densely attached kebab-like lamellae, were
made by Tao et al. [192]. In their three-component polyethylene blend, weakly entan-
gled UHMWPE macromolecules acted as tie molecules and significantly improved the
impact resistance.

Although most studies of mechanical properties on reduced entanglements of macro-
molecules have been conducted using homopolymers, some studies have also been per-
formed on polymer composites. The processability and tensile mechanical properties
of UHMWPE were improved by adding 0.1–0.5 wt.% TiO2 nanoparticles into the dilute
UHMWPE solution [145]. The dispersion of nanoparticles changed with their concentra-
tion, from homogeneous through clusters to aggregates. The viscosity of composites with
dispersed TiO2 was lower than that of pure partially disentangled UHMWPE, reaching a
minimum for content of 0.3 wt.% which meant a 50% decrease in entanglement. The pres-
ence of nanofiller increased the crystallinity by 7%, which together with the reduction in
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entanglement, influenced the mechanical properties. Figure 17 shows the drastic difference
in the tensile properties of the partially disentangled UHMWPE and its composite.
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The properties of disentangled PLA and its composites containing 0.1–1 wt.% of multi-
walled carbon nanotubes were investigated in comparison to entangled materials in the
tensile test [193]. The test samples were prepared by extrusion. Better dispersion of the
filler was obtained inside the less entangled polypropylene. During the deformation of the
less entangled homopolymer, the initiation of plastic deformation occurred at a lower yield
stress, and the stress increased more slowly during the strain-hardening. In the composite,
the strain-hardening was stronger for the less entangled polylactide due to better dispersion
of the filler.

Smith and Lemstra’s [179] approach to forming fibers from a dilute solution, described
above, was successful because the entanglement density in the polymer used was reduced.
On this basis, Galeski developed the concept of producing all-polymer composites using
the disentangled polymer to prepare fibers while mixing with a second polymer [194]. The
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mixing takes place in the extruder at a temperature higher than the melting point of the
polymer for matrix, but lower than the melting temperature of the disentangled polymer.
When shear stresses are applied during mixing, the grains of the disentangled polymer
are oriented and form fibers. At the end of mixing, when the temperature decreases, an
all-polymer composite is obtained.

An example of the application of this concept was the preparation of a composite of
ethylene–octene copolymer (EOC) and polypropylene with a composition of 96:4 wt.% [195].
Previously disentangled PP powders were used to prepare composites by extrusion. Mi-
croscopic observation confirmed that a network of PP fibers was formed inside the EOC
during extrusion (Figure 18a). This resulted in increased stresses during tensile deformation
compared to pure EOC (Figure 18b). The increase in stress was greater in the case of PP
obtained from a more dilute solution, from which thinner fibers were formed, giving at the
same content a larger contact area between components, and thus better reinforcing the
composite matrix.
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Figure 18. (a) Morphology of polypropylene fibers exposed after dissolving the EOC/PP composite in
heptane. The fibers were formed from partially disentangled polypropylene, obtained from 0.2 wt.%
solutions in xylene. (b) Tensile properties of EOC and composites with 4 wt.% of PP. The numbers
in the description indicate the concentration of solution from which the partially disentangled PP
was obtained. A lower number corresponds to a lower density of entanglements. Reproduced with
permission from ref. [195]. Copyright 2024. John Wiley and Sons (Hoboken, NJ, USA).

5. Concluding Remarks

Until a few years ago, the disentangling of macromolecules was performed almost
exclusively in the laboratory, and the goal was to better understand the impact of entangle-
ments on the properties of polymers. Now that the entanglement-limited polymerization
process has been mastered and it is possible to disentangle polymers during extrusion, we
can think about the production of commercial polymers with limited entanglements, most
likely useful in special applications.

From the point of view of processing and subsequent applications of the polymer,
rheological and mechanical properties are particularly important. Rheological studies
show that the disentangling of macromolecules leads to a decrease in the viscosity of
polymer melt and a decrease in modulus values. The behavior of polymers at the micro
level has already been quite well described by the tube model. One conclusion is that the
time for the macromolecule to disentangle itself from the tube is quite long. This can be
seen when performing experiments on the re-entanglement of macromolecules. However,
polymer re-entanglement requires additional research, because existing descriptions of the
phenomena raise doubts. It should be explained why there are two phases of the process
and why the final modulus values are in many cases lower than expected. There is a
lack of a more complete description of the rheological behavior of polymer blends and
composites containing partially disentangled polymer. It has been reported that during
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composite preparation, melt mixing of the disentangled polymer has a beneficial effect on
the dispersion of the nanofiller.

The mechanical properties are as important as the rheological properties. There is a
consensus that during the tensile test, usually performed, but also during the compression
test, the presence of entangled macromolecules has the greatest impact on the strain-
hardening phase of deformation. The stress buildup and strength of the tested polymer
depend on the entanglement network. Few research results indicated a positive change
in impact properties due to partial disentanglement of macromolecules. This seems to be
due to the improved consistency of the tested material, obtained during the processing of
a polymer characterized by increased macromolecular mobility. Research on mechanical
properties has so far focused on homopolymers. Experiments are necessary to show how
the properties of composites change, for example as a result of better dispersion of the
reinforcement.
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