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Abstract: Bayberry pomace, a nutrient-rich material abundant in dietary fiber (DF), has historically
been underutilized due to a lack of thorough research. This study aimed to investigate the physic-
ochemical and functional properties of the DF. Ultrasonic enzymatic treatment was performed to
extract the total DF, which was then optimized to produce modified soluble dietary fiber (MSDF)
and insoluble dietary fiber (MIDF). The optimized conditions yielded 15.14% of MSDF with a water-
holding capacity (WHC) of 54.13 g/g. The DFs were evaluated for their structural, physicochemical,
and functional properties. The MSDF showed a higher (p < 0.05) WHC, oil-holding capacity (OHC),
swelling capacity (SC), cation exchange capacity (CEC), and glucose adsorption capacity (GAC)
(about 14.15, 0.88, 1.23, 1.22, and 0.34 times) compared to the DF. Additionally, the MSDF showed
strong, superior radical scavenging and blood sugar-lowering capabilities, with a more porous surface
morphology. A Fourier-transform infrared (FT-IR) spectroscopy analysis indicated that enzymatic
modification degraded the cellulose and hemicellulose, reducing the DF crystallinity. Overall, the
results demonstrated that cellulase hydrolysis could effectively improve the physicochemical and
functional properties of DF, thereby paving the way for its development into functional food products.

Keywords: bayberry pomace; insoluble dietary fiber; soluble dietary fiber; physicochemical properties;
functional properties

1. Introduction

Bayberry (Myrica rubra Sieb. et Zucc.) is distributed in the middle and lower reaches
of the Yangtze River in China, where it has been cultivated for centuries. Zhejiang is one
of the primary regions for bayberry production, and its cultivation and yield rank the
highest in the country [1]. Bayberry fruit is abundant in proteins, vitamins, citric acid,
polysaccharides, polyphenols, and other essential nutrients [2–4]. Bayberry extracts have
been used in China as astringents and antidotes or for the treatment of diarrhea, digestive
problems, headache, burns, and skin diseases [2]. However, bayberry matures during the
hot and rainy season, from June to July, rendering it susceptible to spoilage and resulting
in a short shelf life. Processing is a crucial method for extending its shelf life, allowing
for prolonged consumption and meeting market demand. However, it also generates a
significant amount of fruit residue waste [5]. The pomace generated from the processing
of bayberry wine, juice, and other products is often used as animal feed or discarded
outright, resulting in a loss of valuable nutrients, including sugars, polyphenols, and
dietary fiber [6–9]. Therefore, it is necessary to enhance the research on the nutritional and
bioactive compounds present in bayberry pomace, aiming to mitigate the environmental
impact and facilitate its application in the food industry.
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Of these compounds, dietary fiber (DF) is a macromolecular polysaccharide contain-
ing numerous active groups such as amines, carboxyls, hydroxyls, and ketone, conferring
traits such as water-holding capacity (WHC), oil-holding capacity (OHC), adsorption,
and reversible exchange properties [10] and thus imparting it with significant nutritional
and medical value [11]. DF is generally classified as water-soluble dietary fiber (SDF)
or water-insoluble dietary fiber (IDF), with natural foods containing mostly IDF (about
70–80%) [12]. The application of high-pressure homogenization significantly augmented
the SDF content in DF, concurrently enhancing its physicochemical properties and bio-
logical functionalities [13]. Animal studies have revealed that DF demonstrates several
biological activities. For instance, IDF shows a beneficial capacity for adsorbing toxic and
harmful substances within the intestinal tract, thereby lowering the risk of colon cancer
and alleviating constipation [14]. SDF has a better WHC and higher viscosity, which can
better reduce the postprandial blood glucose level and cholesterol adsorption capacity.
These effects are determined by the source of dietary fiber, which may affect the chemical
structures and compositions [6]. Moreover, the poor smell and taste of plant-derived DF
have affected its direct application in food. Hence, it is crucial to find effective methods to
modify DF [15]. At present, physical, chemical, or biological methods, or multiple methods,
may be used to improve the physicochemical and functional properties of DF [16–18].
Ultrasonic enzyme treatment is widely applied in the modification of DF due to its safety,
minimal impact on the molecular structure of DF, and enhanced solubility and effectiveness
of SDF content [19].

However, there has been limited research on the preparation or properties of bayberry
pomace DF. In order to utilize bayberry pomace and explore the potential application of
bayberry DF in functional foods, DF was extracted using an ultrasound-assisted enzyme
and the modification conditions were optimized, using the orthogonal method to study
the effects of the fluid–material ratio, cellulase dosage, and hydrolysis time on the yield of
water-soluble dietary fiber (SDF), along with its water-holding capacity (WHC). Then, the
structural, physicochemical, and functional properties of the dietary fiber were evaluated and
compared, so as to provide research data and a theoretical basis for its application in foods.

2. Results and Discussion
2.1. The Modification of DF from Bayberry Pomace
2.1.1. Effect of Fluid–Material Ratio on the MSDF Yield and WHC

The quantity of the cellulase enzyme used was 100 U/g, and the hydrolysis time was
60 min. The effect of different fluid–material ratios on the MSDF yield is shown in Figure 1a.
The yield of the MSDF decreased with the increase in the fluid–material ratio, and the WHC
rose first and then decreased. When the fluid–material ratio was 20 mL/g, the highest
yield of the MSDF was 19.77%. When it was 100 mL/g, the MSDF had the highest WHC,
at about 55.19 g/g. It was reported that the fluid–material ratio determined the material
concentration in the enzymatic reaction [11]. With an increase in the ratio, the hydrolysis
degree of the MSDF molecules increased, resulting in a decrease in the yield. At the same
time, the enzyme treatment could reduce the particle size of the DF, increase the structural
loose pores, and thus expose more binding sites to improve the WHC. However, excessive
hydrolysis led to the hydrolysis of the MSDF to smaller molecular polysaccharides, and the
WHC decreased continuously [6].

2.1.2. Effect of Cellulase Dosage on the MSDF Yield and WHC

As shown in Figure 1b, the MSDF yield and WHC increased and then decreased
with an increase in the cellulase dosage. When the fluid–material ratio was 20 mL/g and
the hydrolysis time was 60 min, the best yield was 18.73% at 300 U/g, while the highest
WHC at 100 U/g was 52.36 g/g. Thus, it can be seen that a large amount of enzyme
would excessively hydrolyze IDF and MSDF to glucose, affecting the MSDF yield. At the
same time, MSDF would lose numerous hydrophilic groups when undergoing excessive
hydrolysis, resulting in the continuous decrease in the WHC [20].
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Figure 1. Effects of different fluid–material ratios (a), cellulase dosages (b), and hydrolysis times
(c) on MSDF yield and WHC.
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2.1.3. Effect of Hydrolysis Time on the MSDF Yield and WHC

To investigate the effect of the hydrolysis time on the MSDF yield and WHC, the
fluid–material ratio and cellulase dosage were set as 20 mL/g and 100 U/g, respectively.
The results are shown in Figure 1c. The WHC exhibited an inverse relationship with the
hydrolysis time. The highest WHC, at 44.31 g/g, was observed at 30 min and thereafter
decreased steadily with a prolonged reaction time. On the other hand, the MSDF yield
showed a slight increase followed by a slight decrease, peaking at approximately 16.34%
after 60 min. When the substrate, cellulase dosage, and reaction condition were constant,
some of the IDF in the DF hydrolyzed to MSDF. As the reaction progressed, the MSDF
accumulated steadily. Then, the cellulase bound to the MSDF increased until reaching
equilibrium and subsequently declined [20]. However, the WHC decreased continuously,
which was due to the hydrolysis of the MSDF to small-molecule polysaccharides, and a
large number of hydrophilic groups were lost due to enzymatic digestion.

2.2. Orthogonal Test to Optimize the Modification Process

The MSDF yield and WHC were used as the investigation indicators, and an L9(34)
orthogonal experimental design was conducted to optimize the extraction process based
on the results of single-factor experiments. The experimental factors and level design are
shown in Table 1, and the results are shown in Table 2.

Table 1. The combined test factors and horizontal design of the orthogonal test.

Level
Factors

A (Fluid–Material Ratio) B (Cellulase Dosage) C (Hydrolysis Time)

−1 20 mL/g 50 U/g 30 min
0 100 mL/g 100 U/g 60 min
1 200 mL/g 200 U/g 120 min

Table 2. Orthogonal test design and results.

Test Number A B C WHC (g/g) MSDF Yield (%)

1 −1 −1 −1 45.53 15.36
2 −1 0 0 50.44 14.10
3 −1 1 1 30.78 18.62
4 0 −1 0 50.23 15.18
5 0 0 1 41.77 14.44
6 0 1 −1 40.41 12.78
7 1 −1 1 25.09 17.52
8 1 0 −1 41.54 16.90
9 1 1 0 32.73 13.84

k1 42.25 40.28 42.49
k2 44.14 44.58 44.47
k3 33.12 34.64 32.54
R 11.02 9.94 11.92

Factor priority C > A > B
Optimal condition A2B2C2

According to the three-factor variance analysis, the fluid–material ratio, cellulase
dosage, and hydrolysis time all had a significant influence on the WHC of the MSDF in
the order of the hydrolysis time > fluid–material ratio > cellulase dosage. However, there
was no significant effect on the yield rate of the MSDF compared with the single-factor
test. Therefore, the optimal modification scheme was the A2B2C2: fluid ratio (100:1 mL/g),
cellulase dosage (100 U/g substrate), and hydrolysis time (60 min). With the best modified
conditions, the MSDF was prepared in triplicate, and the mean yield was 15.14% and the
WHC was 54.13 g/g, which was basically in line with the expected target.
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2.3. Physicochemical Properties

The results for the physicochemical properties, including the WHC, OHC, SC, GAC,
and CEC, are shown in Table 3. The physicochemical properties of the DF showed a signifi-
cant difference (p < 0.05). However, the properties of the MSDF and MIDF (WHC, OHC,
SC, CEC, and GAC) were 14.15 and 1.50 times, 0.88 and 1.13 times, 1.23 and 1.07 times, 1.22
and 1.30 times, and 0.34 and 0.66 times higher than those of the DF, respectively. Obviously,
except for the GAC, the physicochemical properties were all significantly improved after
the DF modification. Interestingly, compared with the previous research on DF, such as
Forsythia suspensa and Rubus chingii, our MSDF had a superior WHC [21]. As reported in
the literature [22], the WHC was generally related to the chemical properties and number
of hydrophilic points, as well as the surface area, density, and structure. The WHC of the
MSDF changed, which may be related to the effect of cellulase on both IDF and MSDF.
The digestion reaction transformed some IDF into MSDF, and some active groups, pore
structures, and cross-link structures in the MSDF were destroyed, leading to a decrease in
the water-holding performance. Meanwhile, excessive enzymatic digestion will also lead
to a small particle size for IDF and affect its functional properties. As a hydration ability,
the SC depends on different factors, such as the chemical structure, processing parameters,
porosity, intermolecular association, and so on [21]. After the modification, the WHC of the
MSDF and MIDF increased, with a loose structure, multilayer folds, and larger pores, and
the specific surface area increased, meaning that more hydrophilic groups such as hydroxyl
and carboxyl groups were exposed to increase the binding site of the water. However, the
OHCs of the DF and MIDF were higher than that of the MSDF, which may be related to
the lower lignin content of MSDF. The situation for the CEC was that the MSDF and MIDF
were stronger than the DF due to the moderate crushing and exposure of the partial uronic
acid group after modification. However, there were some discrepancies compared to the
research of Wang [21] and He [20].

Table 3. Physicochemical properties of DF, MSDF, and MIDF.

WHC (g/g) OHC (g/g) SC (mL/g) GAC (mmol/g) CEC (mmol/g) × 10−1

DF 3.68 ± 0.20 c 2.21 ± 0.03 b 6.13 ± 0.19 b 0.89 ± 0.02 a 2.35 ± 0.03 b

MIDF 5.77 ± 0.02 b 2.47 ± 0.07 a 6.67 ± 0.12 b 0.59 ± 0.25 ab 2.99 ± 0.13 a

MSDF 54.13 ± 0.77 a 1.94 ± 0.04 c 7.57 ± 0.4 a 0.31 ± 0.08 b 2.81 ± 0.09 a

Note: Different letters (a, b, and c) in the same row indicate significantly different means at p < 0.05 (Duncan’s test).

2.4. The Radical Scavenging Capacity

The effects of the radical scavenging capacity of DF before and after modification are
shown in Figure 2. From the data in Figure 2a, it can be observed that the DPPH· radical
scavenging activity was positively correlated with each dietary fiber sample concentration.
In particular, the bayberry pomace powder and MSDF showed a higher scavenging activity
on the DPPH· radicals. In addition, each concentration of the MSDF group showed a
significant difference in comparison to the DF and MIDF groups (p < 0.05), which was
consistent with the report on black mulberry [23,24]. Notably, the best scavenging activity
of the MSDF against DPPH· radicals was 87.95 ± 0.79% at a concentration of 0.6 mg/mL.
The scavenging capacity of the DPPH· radicals was shown to be DP > MSDF > DF > MIDF
after the modified treatment. However, the scavenging capacities were slightly lower than
those of the positive control group (Vitamin C).

The results of the evaluation of the ABTS+· radical scavenging activity are presented in
Figure 2b. All the types of dietary fiber samples exhibited ABTS+· radical scavenging activ-
ity with a positive dose-dependent manner. There were exceptions for the concentrations
of 0.2 and 0.4 mg/mL, but the MSDF under other concentrations showed a significant dif-
ference (p < 0.05) in comparison to the DF, MIDF, and DP. When the dose of MSDF reached
1.0 mg/mL, the scavenging activity of the ABTS+· radical was 94.05 ± 0.10%, which was
clearly comparable to Vitamin C. Likewise, the scavenging capacity of the ABTS+· radical
was MSDF > DP > DF > MIDF after the modification.
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Figure 2. The radical scavenging activity of DF, MIDF, MSDF, and DP. (a) The DPPH· radical
scavenging activity; (b) the ABTS+· radical scavenging activity. Different letters (a, b, c, d, and e) refer
to significantly different means at p < 0.05 (Duncan’s test).

The MSDF exhibited strong radical scavenging abilities against the DPPH· and ABTS+·
radicals, consistent with the findings of Afrazeh [25]. This radical scavenging potential of
the dietary fibers may be attributed to the free carboxyl groups and hydroxyl groups, as
well as to some polyphenols. In the study of SDF and IDF from quinoa and wheat, Chen
et al. found that the radical scavenging activity of SDF was significantly stronger than
that of IDF, which was probably due to its higher content of uronic acid and the presence
of hydroxyl groups in the main backbone [26]. In an early study, Hu et al. evaluated
the radical scavenging activities of highly purified monosaccharides, oligosaccharides,
and complex carbohydrates and revealed that the radical scavenging capacity of MSDF
may be related to its glycosidic bonding and molecular chain-binding substances, such
as phenolic and/or protein components [27]. In addition, it was reported that bayberry
pomace, as a processing by-product, is rich in phenols [1,28]. The hydroxyl groups of
phenolic compounds could donate electrons or hydrogen atoms to enhance the radical
scavenging activity [6,29].

2.5. Hypoglycemic Capacity In Vitro

Generally, dietary starch is processed by α-amylase into maltose and dextrin, which
might then be changed by α-glucosidase into glucose, increasing the blood glucose
level [30,31]; therefore, the inhibition rates of α-amylase and α-glucosidase can indirectly
aid in the judgment of the hypoglycemic capacity in vitro. In this study, the hypoglycemic
effects of DP, DF, MIDF, and MSDF were studied based on the inhibition of α-amylase and
α-glucosidase, and the results are shown in Figure 3. There were significant differences
between the MIDF and MSDF groups compared to the DF group, as was similar to the
previous findings [14]. The effect of each of the dietary fibers on α-amylase inhibition is
shown in Figure 3a; the inhibition rates of the MIDF and MSDF (1.0 mg/mL) were 8.3% and
5.2%, which was 11.26 and 7.03 times higher than that of the DF, respectively. The inhibition
rates of α-amylase were roughly in the order of MIDF > MSDF > DF > DP. These results
are probably related to the exposure of the internal structure and polar groups of MIDF
and the improvement in the physical barrier [14]. Contrarily, the inhibitory activity of the
MSDF was 62.65% of that of the MIDF, perhaps because of the looser structure and the
higher WHC, which decreased the contact rate between the α-amylase and starch [14,32].
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Figure 3. The hypoglycemic effects of DP, DF, MIDF, and MSDF. (a) The inhibition of α-amylase with
1.0 mg/mL of samples. (b) The inhibition of α-glucosidase with 10 mg/mL of samples. Different
letters (a, b, c, and d) refer to significantly different means at p < 0.05 (Duncan’s test).

The inhibition rate of α-glucosidase is shown in Figure 3b. It was found that each
dietary fiber of bayberry pomace had a limited ability to inhibit the catalytic behavior of α-
glucosidase before and after modification. In particular, there was no significant difference
between the DF and MIDF. The inhibitory effect of the MSDF was 3.99%, compared to the
standard drug, which was about 4.06% of the acarbose. Previous studies reported that SDFs
limited the α-glucosidase when binding with the substrate for the viscosity effect at a high
concentration [33,34]. However, another study determined that six SDFs did not signifi-
cantly hinder the α-glucosidase, indicating that the presence of SDFs did not interfere with
the contact of the enzyme with the substrate [35]. It was further confirmed that the binding
sites of an enzyme or the enzyme–substrate complex are affected comprehensively by the
SDFs [35,36]. In this study, we conducted experiments under the substrate concentration of
10 mg/mL (1%), which was higher than the 0.004% reported before [35]. It is still worth
noting that the structures of MIDF and MSDF should be explored in detail.

2.6. SEM Analysis

A common method was used to investigate the dietary fibers: the SEM micrographs
of the DF, MIDF, and MSDF before and after modification were magnified ×2000 and
×5000. As shown in Figure 4, the SEM images clearly indicated the significant variations in
the surface topography between the DF, MIDF, and MSDF. In Figure 4a, the DF shows a
compact and integrated texture with obvious wrinkles, which might be from the vascular
tissue of the bayberry, which supports plant growth [14]. A smooth and uniform surface
with a small amount of starch granules was also visible, indicating that the structure of the
DF was not destroyed during the extraction. The main structure of the MIDF was similar
to the DF, but the surface was rough, and more gap cracks appeared (Figure 4b) due to
the degradation of the enzyme. Previous studies found that alkaline hydrogen peroxide
treatment could decrease biomass recalcitrance and facilitate hemicellulose degradation and
delignification [37]. In this study, the IDF was treated with cellulase, which could degrade
the cellulose, hemicellulose, and lignin. After the modification, the gap cracks in the MIDF
that appeared were the result of cellulase degradation, and they caused an increase in the
specific surface area, meaning that more hydrophilic groups such as hydroxyl and carboxyl
groups became exposed, resulting in an increased WHC (Table 3). However, the structure
of the MSDF (Figure 4c) was completely different to the DF and MIDF. There were multiple
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layer fragments, and the structure was loose and featured particles or lumps on the surface
of the MSDF. The cellulase modification boosted the rupture of the MSDF, and the inner
structure was largely exposed, resulting in decreased polymerization. In their studies on
wheat dietary fiber, Chen et al. [26] found that wheat-soluble dietary fiber had a relatively
flat and loose structure with gaps between fibers, while wheat-insoluble fiber had lots of
small cracks and clumps on its surface. However, the biomass recalcitrance of SDF toward
enzymatic attack was obviously weaker than that of IDF, which promoted enzyme binding
to the substrate. The results obtained were similar to the results of dietary fiber in litchi
found by Li et al. [6]. In conclusion, the physiochemical properties of dietary fiber are
determined by its microstructure. Hence, a porous and folded structure can increase the
specific surface area and expose more polar groups, thereby promoting the adsorption and
binding of water and further affecting its applications in food [6,38].
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2.7. FTIR Analysis

FTIR spectroscopy is a crucial method for detecting the structural features of polysac-
charide compounds, which are capable of identifying various chemical bonds and func-
tional groups within substances [39]. The FTIR spectroscopy results of the DF, MIDF, and
MSDF from 500 cm−1 to 4000 cm−1 are shown in Figure 5. The overall peak intensity of
the MSDF was higher than that of the DF and MIDF, indicating that the MSDF had more
typical polysaccharide complex structures [6]. There were wide absorption peaks near
3300 cm−1 for all of the samples, due to the stretching vibration of O–H, which mainly
came from cellulose or hemicellulose [26,40]. Here, the peak intensity of the MSDF was
stronger than those of the DF and MIDF, indicating more hydrogen bonds. The weak
absorption band at 2920 cm−1 originated from the stretching of the C–H and CH2 groups in
the substrates [41]. The absorption peaks at around 1700 cm−1 were due to the stretching
vibration of the C=O group, while the deep peak at 1620 cm−1 was from the O–H group
between the cellulose and water molecules [39]. The absorption peaks in the range of
1200–1420 cm−1 were caused by the angular vibrations of C–H, indicating the typical
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structure of the carbohydrate skeleton. Notably, the absorption peaks in the MSDF were
significantly stronger than those in the DF and MIDF, probably due to the site exposure
after the modification. The absorption peaks in the range of 1200–1000 cm−1 corresponded
to the tensile vibrations of C–C, C–O, or C–O–C, reported as the presence of sugar aldehyde
groups [42]. The absorption peaks of the β-glucoside bond and α- and β-pyranose could
be seen near 800 cm−1. The above results indicate that the modified dietary fiber showed
carbohydrate characteristics consistent with the typical polysaccharide absorption peak.
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Figure 5. The FTIR spectra of the different dietary fibers before and after the enzymatic modification,
where the blue curve corresponds to MSDF, the red one refers to MIDF, and the black one means DF.

2.8. XRD Analysis

X-ray diffraction was extensively utilized to assess the alterations in crystallinity,
thereby ascertaining the aggregation state of the DF molecules [43]. Based on a recent
report, it was found that IDFs display crystal structures resembling cellulose type I, whereas
SDFs exhibit an amorphous structure [44]. The XRD analysis depicted in Figure 6 indicates
that the predominant structural characteristics of the bayberry-derived DF samples were
marginally distinct, featuring broad peaks within the range of 10–30◦. Specifically, the DF
samples exhibited high-intensity peaks at 2θ values of approximately 11.29◦ and 21.45◦. In
contrast, the MIDF displayed a notable diffraction peak at 2θ around 22.5◦, accompanied
by minor diffraction peaks at 2θ values of 15.41◦ and 26.68◦, suggesting the potential
presence of crystal structures resembling cellulose type I. The diffraction patterns of the
MSDF exhibited low intensity and a lack of sharp, strong peaks, suggesting difficulties in
achieving complete crystallization. Specific peaks at 12.25◦, 21.52◦, 22.59◦, and 30.29◦ were
identified. The overall crystallinity values for the DF, MSDF, and MIDF were measured at
18.32%, 14.16%, and 7.25%, respectively. These findings indicate the potential destruction
of the crystal regions in bayberry DF following enzyme modification [45]. The crystallinity
value of the MIDF was marginally lower compared to the other samples and possibly
attributable to the disturbance of the intermolecular connections between the cellulose
microfibers, hemicelluloses, and lignin. Furthermore, the XRD pattern and crystallinity
value of the MSDF closely resembled those reported in various studies, including ones
examining the dietary fiber of grapefruit peel [15], sorghum [46], and Rubus chingii Hu.
Fruits [21].
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3. Materials and Methods
3.1. Materials

The bayberry fruits were harvested in May 2022 from Lanxi Fengyuan Food Technol-
ogy Co., Ltd. (Lanxi, China). The raw bayberry pomace produced after juicing was stored
at −20 ◦C for frozen preservation. The alkaline protease, α-glucosidase, α-amylase (high
temperature), and cellulase were purchased from Solarbio Science & Technology Co., Ltd.
(Beijing, China). The acarbose and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)
diammonium salt (ABTS) reagent were purchased from Aladdin Biochemical Technology
Co., Ltd. (Shanghai, China). The phosphate-buffer saline (PBS) and 3, 5-dinitrosalicylic acid
(DNS) were prepared and used immediately. The 1,1-Diphenyl-2-picrylhydrazylradical
(DPPH) and other reagents were purchased from Sinopharm Group Chemical reagent Co.,
Ltd. (Shanghai, China).

3.2. Extraction of Bayberry Pomace DF

The preparation of the functional DF from bayberry pomace was divided into two
main stages: extraction and modification (Figure 7). Initially, the frozen bayberry pomace
was washed with deionized water twice, vacuum-dried at 60 ◦C for 24 h, and crushed
and passed through 80 mesh to produce dry powder (DP). Then, the DP was mixed with
petroleum ether (1:5, w:v) and soaked overnight at room temperature. After Buchner funnel
suction filtration in a circulating water vacuum pump, the filter residue was washed with
deionized water and dried at 70 ◦C to achieve constant weight. The fat in the DP was
removed by separating the filtrate. The defatted powder was then rinsed successively with
85% ethanol solution (10 mL/g sample) three times and dried to constant weight, and some
sugars in the sample were also removed with ethanol. The defatted and desugared sample
was mixed with citric acid buffer solution (1:40, w:v, pH 6.0) in a conical flask, which was
successively sealed with ultrasonic for 15 min (250 W, 40 kHz, and 50 ◦C). Then, the sample
was hydrolyzed with thermostable α-amylase (10,000 U/g, expressed as enzyme activity
per gram of substrate) at 95 ◦C for 35 min. Thereafter, alkali protease (5000 U/g) was added
and incubated at pH 8.0 at 60 ◦C for 60 min. After hyperthermia inactivation in a boiling
water bath for 10 min, glucoamylase (5000 U/g) was added and shaken at pH 4.5 at 60 ◦C
for 30 min. Ethanol (1:4, v:v) was added to the resulting mixture, and it was incubated at
60 ◦C for 60 min. The DF precipitate was then obtained via suction filtration, as before,
vacuum-dried at 70 ◦C to constant weight, and stored at −4 ◦C until further use. After
analysis, the DF contained 8.40% SDF and 91.09% IDF.
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3.3. Modification and Optimization of Bayberry Pomace DF

DF powder was mixed with pH 5.0 deionized water (1:50, w:v) and hydrolyzed with
cellulase (w:w, 50 U/g) at 50 ◦C for 60 min. The mixture then underwent hyperthermia
inactivation in a boiling water bath for 10 min and was centrifuged at 5000× g for 20 min,
and then the filter residue and the filtrate were separated. (a) The residue was washed with
20 mL hot water (70 ◦C) and suction-filtrated, as before. The filter slag was vacuum-dried
at 50 ◦C for 12 h to yield MIDF. (b) The filtrate was added to a 4-times quantity of ethanol,
and after 60 min of sedimentation, it was centrifuged at 5000× g for 20 min. The MSDF
was weighed before (wet weight) and after drying (dry weight). The yield of MSDF was
calculated according to the following Equation (1):

Yield of MSDF(%) =
Dried weight of MSDF

total weight of DF
× 100% (1)

To boost the MSDF yield, the modification conditions were optimized, considering the
crucial physiological functions of SDF’s hydration properties [47]; therefore, MSDF yield
and WHC were selected as the investigation objectives, and the modification process was
optimized by single-factor and orthogonal tests. During this process, the fluid–material
ratio (20:1, 50:1, 100:1, 200:1, and 300:1), the cellulase dosage (50, 100, 200, 400, and 800 U/g),
and the hydrolysis time (0.5, 1, 1.5, 2, and 3 h) were examined.

3.4. Physicochemical Properties
3.4.1. WHC Analysis

Next, 1 g of DF/MIDF sample was accurately weighed and added to deionized water
(10 mL) and shaken at room temperature for 60 min. Then, the precipitate was obtained
after centrifugation at 5000× g for 20 min. The WHC was calculated after weighing, as
follows [43,48].

Additionally, as soluble dietary fiber, MSDF can be completely dissolved in water.
However, slight modifications were made to the WHC analysis of MSDF [43,48]: 1 g of
MSDF sample was accurately weighed, added to deionized water (100 mL), and stirred for
10 min until completely dissolved in water. Before centrifugation at 5000× g for 40 min, the



Molecules 2024, 29, 3415 12 of 16

solution was added to a 4-times volume of ethanol and underwent 60 min of sedimentation.
To avoid water loss, the centrifugal precipitate was instantly weighed as the weight of wet
MSDF. The WHC was finally calculated as follows:

WHC (g/g) =
M1 − M0 − m

m
, (2)

where M1 is the total weight of wet DF and the centrifuge tube; M0 is the weight of the
tube; and m is the weight of dry DF.

3.4.2. OHC Analysis

Next, 1 g of the DF/MSDF/MIDF sample was accurately weighed in a 50 mL cen-
trifuge tube, and 10 mL of soybean oil was added; it was shaken thoroughly and maintained
at 37 ◦C for 12 h. Then, the upper oil was discarded after centrifugation at 5000× g for
20 min. The OHC was calculated after weighing, as follows [43,48]:

OHC(g/g) =
M1 − M0 − m

m
, (3)

where M1 is the total weight of wet DF and the centrifuge tube; M0 is the weight of the
tube; and m is the weight of dry DF.

3.4.3. SC Analysis

The swelling capacity (SC) was determined using the method described by Li et al. [6].
Briefly, 1 g of the DF/MSDF/MIDF sample was accurately weighed, and the volume was
measured. The sample–deionized water mixture was maintained at 37 ◦C for 12 h. Then,
the expanded sample volume was read, and the SC was calculated as follows:

SC(mL/g) =
V1 − V0

m
, (4)

where V1 is the sample volume after the expansion; V0 is the sample volume before
expansion; and m is the sample weight.

3.4.4. GAC Analysis

As described in the literature [49], 1.0 g of dried DF powder (m) was added to a 100 mL
glucose solution (100 mmol/L) in a 37 ◦C water bath, which was shaken for 6 h. Then, the
treated sample was centrifuged at 5000× g for 15 min, and the supernatant was measured
at 540 nm using the DNS method. The glucose adsorption capacity (GAC) was calculated
as follows:

GAC(mmoL/g) =
n1 − n0

m
, (5)

where n1 is the moles of glucose after adsorption; n0 is the moles of glucose before adsorp-
tion; and m is the sample weight.

3.4.5. CEC Analysis

The DF/MSDF/MIDF samples were acid-treated with HCl solution (0.10 mol/L) for
24 h and washed with deionized water until neutral with no chloride ions. Then, they were
dried to a constant weight. Next, 0.1 g of the dried sample was added to 100 mL NaCl
solution (50 g/L). Then, it was slowly titrated with the NaOH solution (0.01 mol/L) with
phenolphthalein as an indicator, and the deionized water was used as a blank control. The
cation exchange capacity (CEC) was calculated according to Formula (6).

CEC(mmol/g) =
(V1 − V0)× 0.01

m
, (6)
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where 0.01 is the concentration of NaOH (mmol/g); V1 is the volume of NaOH (mL); V0 is
the volume of NaOH as the blank control (mL); and m is the sample weight.

3.5. Radical Scavenging Activities In Vitro

The radical scavenging effect of DF was analyzed in vitro according to the litera-
ture [50,51]. To determine the DPPH radical scavenging capacities, 2 mL of sample and
2 mL of DPPH solution (dissolved in methanol, 0.1 mmol) were mixed and then allowed
to stand, avoiding light reaction for 30 min. Taking a blank as a negative control, the
absorbance values at 517 nm were measured. The clearance rate was calculated as follows,
where A0 and As are the absorbance values of the blank and samples:

DPPH · clearance rate(%) =
A0 − As

A0
× 100 (7)

Here, 7.4 mmol of ABTS diammonium and 2.6 mmol of potassium perbisulfite
(K2S2O8) were mixed and left to stand for 15 h at room temperature in darkness. The
mixture was again diluted with phosphate buffer (pH 7.4) to an absorbance value at 734 nm
of 0.700 ± 0.002, preparing the ABTS working solution, and then 0.3 mL of sample and
3 mL of ABTS solution were mixed and the absorbance was measured at 734 nm after
reaction for 6 min, where A0 and As are the absorbance values of the blank and samples.

ABTS+ · clearance rate(%) =
A0 − As

A0
× 100 (8)

3.6. Hypoglycemic Capacities In Vitro
3.6.1. α-Amylase Inhibitory Activity Analysis (AIA)

Here, 100 µL of DF/MSDF/MIDF sample solution and 100 µL of α-amylase solution
(1 U/mL) were pre-mixed at room temperature for 15 min, and then 200 µL of starch
solution (0.5%, w:v) was added and mixed well in a 37 ◦C water bath for 10 min. The
reaction was terminated by adding 1000 µL DNS reagent. The reaction solution was heated
and boiled for 5 min. After it had cooled down, 3 mL of deionized water was added to
dilute, and the absorbance was measured at 540 nm with a TU-1901 spectrophotometer
(PERSEE®, Beijing, China). The inhibition rate was calculated as follows [20]:

Inhibitionrate(%) =

(
1 − As − A1

A0

)
× 100% (9)

where A0, As, and A1 are the absorbance values of the blank, samples, and negative control.

3.6.2. α-Glucosidase Inhibitory Activity Analysis

Briefly, 1 mL of DF/MSDF/MIDF/acarbose sample solution (10 mg/mL) and 1 mL of
PNPG substrate (10 mmol/L) were mixed with 1 mL of PBS solution (pH 6.8, 0.1mol/L).
After preservation at 37 ◦C for 5 min, 2.5 mL of α-glucosidase solution (4 U/mL) was added
and mixed well. Then, it was reacted in a 37 ◦C water bath for 60 min, and the reaction was
terminated by the addition of 2 mL of Na2CO3 solution (0.2 mol/L). The absorbance at
410 nm was measured using a TU-1901 spectrophotometer. The α-glucosidase inhibition
rate was calculated as in Equation (9).

3.7. SEM Analysis

The DF, MSDF, and MIDF were dried, crushed to 80 mesh (0.20 mm), and sprinkled on
a conductive adhesive, which was ion-sputtered with gold for 30 s. An electron microscope
(S-4800, Hitachi Ltd., Tokyo, Japan) captured the scanning images at an accelerating voltage
of 12.0 kV. The micrographs were taken at ×2000 and ×5000 magnification.
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3.8. Fourier-Transform Infrared (FT-IR) Spectroscopy Analysis

The organic functional groups of the samples were analyzed using an FT-IR spec-
trophotometer (Nexus 670, Thermo Fisher Scientific Inc., Waltham, MA, USA). The samples
were finely ground and crushed well. Then, they were scanned with an infrared spec-
trometer and a diamond ATR in a spectral range of 4000–400 cm−1 with a resolution of
4 cm−1.

3.9. X-ray Diffraction (XRD) Analysis

The crystalline structures of the DF samples were analyzed by utilizing an X-ray
diffractometer (Bruker D8 Advance, Berlin, Germany) equipped with a CuKα radiation
source (wavelength: 0.154060 nm; voltage: 40.0 kV; and current: 40.0 mA) across a 2θ angle
range of 5–80◦ at a scanning rate of 2◦/min.

3.10. Statistical Analysis

All the measurements were performed at least in triplicate, and the results are ex-
pressed as the mean values with their standard deviations. The statistical analysis was
carried out via SPSS ver. 21.0 (SPSS Inc., IBM Corporation, Chicago, IL, USA), and the data
were analyzed with one-way ANOVA and Duncan’s test. p < 0.05 was considered to be
statistically significant. The experimental data were processed and drawn using Origin
2018 software (OriginLab, Northampton, MA, USA).

4. Conclusions

In the present study, we prepared and modified the functional dietary fiber samples
of bayberry pomace through ultrasonic enzymatic treatment. Then, the structural and
functional properties were reported, which was helpful in understanding the nutritional
and utilization value. The physicochemical properties were all significantly improved after
DF modification, except for the GAC. The MSDF had a superior WHC and SC, while the
MIDF exhibited a better OHC and CEC. In the comparison of the functional characteristics,
the MSDF performed well, with the highest clearance rate of DPPH and ABTS free radicals,
while the hypoglycemic capacity was lower. All the dietary fiber samples had typical
polysaccharide functional groups and different morphology, and the crystallinity of the DF
was decreased after the modification, indicating the potential destruction of crystal regions
in bayberry DF following enzyme modification. It is worth noting that the MSDF exhibited
strongly hydrophilic and radical scavenging properties, which might be well suited for use
in formulated foods to reduce calories, avoid syneresis, prolong stability, and modify the
texture. It is of great significance to improve the reuse potential of bayberry fruit pomace.
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