Suitable Stereoscopic Configuration of Electrolyte Additive Enabling Highly Reversible and High—Rate Zn Anodes
Abstract
:1. Introduction
2. Results and Discussions
2.1. Electrolytes’ Characterization
2.2. Theoretical Calculation
2.3. Cycling Performance
2.4. Zn Deposition Behavior
2.5. Inhibition of Side Reactions
2.6. Working Mechanism of Additive
2.7. Electrochemical Properties’ Characterization
3. Experimental Section
3.1. Materials
3.2. Preparation of Cathode
3.3. Preparation of the Electrolyte
3.4. Characterization
3.5. Electrochemical Measurements
3.6. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoshino, A. The birth of the lithium—ion battery. Angew. Chem. Int. Ed. 2012, 51, 5798–5800. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Liu, Z.; He, H.; Zhang, Z.; Chen, Y.; Peng, C.; Zeng, J. Suppressing the dissolution of vanadium by organic—inorganic hybrid for aqueous zinc—ion batteries. J. Mater. Sci. Technol. 2023, 145, 93–100. [Google Scholar] [CrossRef]
- Wang, F.; Borodin, O.; Gao, T.; Fan, X.; Sun, W.; Han, F.; Faraone, A.; Dura, J.A.; Xu, K.; Wang, C. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Li, Z.; Pan, Z.; Wang, S.; Chen, Y.; Zhuang, Q.; Ju, Z.; Zhang, X. Recent Progress and Prospects on Dendrite—free Engineerings for Aqueous Zinc Metal Anodes. Energy Environ. Sci. 2022, 6, e12410. [Google Scholar] [CrossRef]
- Zhong, Y.; Xu, X.; Veder, J.-P.; Shao, Z. Self—Recovery Chemistry and Cobalt—Catalyzed Electrochemical Deposition of Cathode for Boosting Performance of Aqueous Zinc—Ion Batteries. iScience 2020, 23, 100943. [Google Scholar] [CrossRef]
- Zhong, Y.; Xu, X.; Liu, P.; Ran, R.; Jiang, S.P.; Wu, H.; Shao, Z. A Function—Separated Design of Electrode for Realizing High—Performance Hybrid Zinc Battery. Adv. Energy Mater. 2020, 10, 2002992. [Google Scholar] [CrossRef]
- Zhong, Y.; Cao, C.; Zhao, L.; Tadé, M.O.; Shao, Z. Optimization of two—dimensional solid—state electrolyte–anode interface by integrating zinc into composite anode with dual—conductive phases. Green Carbon 2024, 2, 94–100. [Google Scholar] [CrossRef]
- Gao, Y.-M.; Liu, Y.; Feng, K.-J.; Ma, J.-Q.; Miao, Y.-J.; Xu, B.-R.; Pan, K.-M.; Akiyoshi, O.; Wang, G.-X.; Zhang, K.-K.; et al. Emerging WS2/WSe2@graphene nanocomposites: Synthesis and electrochemical energy storage applications. Rare Met. 2024, 43, 1–19. [Google Scholar] [CrossRef]
- Tang, B.; Shan, L.; Liang, S.; Zhou, J. Issues and opportunities facing aqueous zinc—ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304. [Google Scholar] [CrossRef]
- Wang, T.; Li, C.; Xie, X.; Lu, B.; He, Z.; Liang, S.; Zhou, J. Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. ACS Nano 2020, 14, 16321–16347. [Google Scholar] [CrossRef]
- Xu, B.-R.; Li, Q.-A.; Liu, Y.; Wang, G.-B.; Zhang, Z.-H.; Ren, F.-Z. Urea—induced interfacial engineering enabling highly reversible aqueous zinc—ion battery. Rare Met. 2024, 43, 1599–1609. [Google Scholar] [CrossRef]
- Xu, B.; Wang, G.; Liu, Y.; Li, Q.; Ren, F.; Ma, J. Co—regulation effect of solvation and interface of pyridine derivative enabling highly reversible zinc anode. J. Mater. Sci. Technol. 2025, 204, 1–9. [Google Scholar] [CrossRef]
- Yang, W.; Yang, Y.; Yang, H.; Zhou, H. Regulating Water Activity for Rechargeable Zinc—Ion Batteries: Progress and Perspective. ACS Energy Lett. 2022, 7, 2515–2530. [Google Scholar] [CrossRef]
- Cheng, H.; Sun, Q.; Li, L.; Zou, Y.; Wang, Y.; Cai, T.; Zhao, F.; Liu, G.; Ma, Z.; Wahyudi, W.; et al. Emerging Era of Electrolyte Solvation Structure and Interfacial Model in Batteries. ACS Energy Lett. 2022, 7, 490–513. [Google Scholar] [CrossRef]
- Nian, Q.; Zhang, X.; Feng, Y.; Liu, S.; Sun, T.; Zheng, S.; Ren, X.; Tao, Z.; Zhang, D.; Chen, J. Designing Electrolyte Structure to Suppress Hydrogen Evolution Reaction in Aqueous Batteries. ACS Energy Lett. 2021, 6, 2174–2180. [Google Scholar] [CrossRef]
- Huang, Q.-X.; Wang, F.; Liu, Y.; Zhang, B.-Y.; Guo, F.-Y.; Jia, Z.-Q.; Wang, H.; Yang, T.-X.; Wu, H.-T.; Ren, F.-Z.; et al. Recent progress of two—dimensional metal—base catalysts in urea oxidation reaction. Rare Met. 2024, 43, 3607–3633. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, Z.; Ming, F.; Zeng, Y.; Wei, B.; Jiang, Q.; Qi, Z.; Wang, Z.; Liang, H. Surface and Interface Engineering of Zn Anodes in Aqueous Rechargeable Zn—Ion Batteries. Small 2022, 18, 2200006. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, S.; Wang, Z.; Lei, H.; Chen, Z.; Mai, W. Novel 3D Nanoporous Zn–Cu Alloy as Long—Life Anode toward High—Voltage Double Electrolyte Aqueous Zinc—Ion Batteries. Small 2020, 16, 2001323. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Huo, W.; Dong, X.; Sun, Z.; Lu, Y.; Wu, X.; Dai, L.; Wang, L.; Lin, H.; Liu, H.; et al. A Review on 3D Zinc Anodes for Zinc Ion Batteries. Small Methods 2022, 6, 2200597. [Google Scholar] [CrossRef]
- Zhai, P.; Zhai, X.; Jia, Z.; Zhang, W.; Pan, K.; Liu, Y. Inhibiting corrosion and side reactions of zinc metal anode by nano—CaSiO3 coating towards high—performance aqueous zinc—ion batteries. Nanotechnology 2023, 34, 085402. [Google Scholar] [CrossRef]
- Shi, G.; Peng, X.; Zeng, J.; Zhong, L.; Sun, Y.; Yang, W.; Zhong, Y.L.; Zhu, Y.; Zou, R.; Admassie, S.; et al. A Liquid Metal Microdroplets Initialized Hemicellulose Composite for 3D Printing Anode Host in Zn—Ion Battery. Adv. Mater. 2023, 35, 2300109. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Q.; Hong, H.; Yang, S.; Zhang, R.; Wang, X.; Jin, X.; Xiong, B.; Bai, S.; Zhi, C. Lean—water hydrogel electrolyte for zinc ion batteries. Nat. Commun. 2023, 14, 3890. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Sun, X.; Pietsch, T.; Plietker, B.; Brunner, E.; Ruck, M. Electrolyte for High—Energy—and Power—Density Zinc Batteries and Ion Capacitors. Adv. Mater. 2023, 35, 2207131. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; He, W.; Kong, Z.; Liang, Z.; Zhao, H.; Lei, Y.; Wu, Y.; Hao, X. Multifunctional water—organic hybrid electrolyte for rechargeable zinc ions batteries. Chem. Eng. J. 2022, 450, 138265. [Google Scholar] [CrossRef]
- Wang, M.; Wu, X.; Yang, D.; Zhao, H.; He, L.; Su, J.; Zhang, X.; Yin, X.; Zhao, K.; Wang, Y.; et al. A colloidal aqueous electrolyte modulated by oleic acid for durable zinc metal anode. Chem. Eng. J. 2023, 451, 138589. [Google Scholar] [CrossRef]
- Tay, I.R.; Xue, J.; Lee, W.S.V. Methods for Characterizing Intercalation in Aqueous Zinc Ion Battery Cathodes: A Review. Adv. Sci. 2023, 10, 2303211. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Li, Y.; Xu, B.B.; Liu, T.X.; Liu, X.; Ma, F.; Gu, X.; Lai, C. Electrolyte Salts and Additives Regulation Enables High Performance Aqueous Zinc Ion Batteries: A Mini Review. Small 2022, 18, e2104640. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhang, Z.; Li, J.; Luo, N.; Chai, G.-L.; Miller, T.S.; Lai, F.; Shearing, P.; Brett, D.J.L.; Han, D.; et al. Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives. ACS Energy Lett. 2021, 6, 395–403. [Google Scholar] [CrossRef]
- An, Y.; Tian, Y.; Zhang, K.; Liu, Y.; Liu, C.; Xiong, S.; Feng, J.; Qian, Y. Stable Aqueous Anode—Free Zinc Batteries Enabled by Interfacial Engineering. Adv. Funct. Mater. 2021, 31, 2101886. [Google Scholar] [CrossRef]
- Yin, J.; Liu, H.; Li, P.; Feng, X.; Wang, M.; Huang, C.; Li, M.; Su, Y.; Xiao, B.; Cheng, Y.; et al. Integrated electrolyte regulation strategy: Trace trifunctional tranexamic acid additive for highly reversible Zn metal anode and stable aqueous zinc ion battery. Energy Storage Mater. 2023, 59, 102800. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, R.; Li, S.; Liu, C.; Li, H.; Zou, G.; Hu, J.; Hou, H.; Ji, X. Graphene quantum dots enable dendrite—free zinc ion battery. Nano Energy 2022, 92, 106752. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, R.; Ma, Q.; Wan, J.; Zhang, S.; Zhang, L.; Li, H.; Luo, Q.; Wu, J.; Zhou, T.; et al. A Dual—Functional Organic Electrolyte Additive with Regulating Suitable Overpotential for Building Highly Reversible Aqueous Zinc Ion Batteries. Adv. Funct. Mater. 2024, 34, 2214538. [Google Scholar] [CrossRef]
- Feng, D.; Cao, F.; Hou, L.; Li, T.; Jiao, Y.; Wu, P. Immunizing Aqueous Zn Batteries against Dendrite Formation and Side Reactions at Various Temperatures via Electrolyte Additives. Small 2021, 17, 2103195. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Xie, K.; Liu, S.; Zhang, S.; Hao, J.; Liu, J.; Pang, W.K.; Liu, J.; Rao, P.; Wang, Q.; et al. Bio—inspired design of an in situ multifunctional polymeric solid–electrolyte interphase for Zn metal anode cycling at 30 mA cm−2 and 30 mA h cm−2. Energy Environ. Sci. 2021, 14, 5947–5957. [Google Scholar] [CrossRef]
- Wang, H.; Ye, W.; Yin, B.; Wang, K.; Riaz, M.S.; Xie, B.-B.; Zhong, Y.; Hu, Y. Modulating Cation Migration and Deposition with Xylitol Additive and Oriented Reconstruction of Hydrogen Bonds for Stable Zinc Anodes. Angew. Chem. Int. Ed. 2023, 62, e202218872. [Google Scholar] [CrossRef] [PubMed]
- Qin, R.; Wang, Y.; Zhang, M.; Wang, Y.; Ding, S.; Song, A.; Yi, H.; Yang, L.; Song, Y.; Cui, Y.; et al. Tuning Zn2+ coordination environment to suppress dendrite formation for high—performance Zn—ion batteries. Nano Energy 2021, 80, 105478. [Google Scholar] [CrossRef]
- Zha, Z.; Sun, T.; Li, D.; Ma, T.; Zhang, W.; Tao, Z. Zwitterion as electrical double layer regulator to in—situ formation of fluorinated interphase towards stable zinc anode. Energy Storage Mater. 2024, 64, 103059. [Google Scholar] [CrossRef]
- Li, L.; Jia, S.-F.; Cao, M.-H.; Ji, Y.-Q.; Qiu, H.-W.; Zhang, D. Progress in research on metal—based materials in stabilized Zn anodes. Rare Metals 2024, 43, 20–40. [Google Scholar] [CrossRef]
- Ni, G.; Pan, Z.; Zou, G.; Cao, F.; Qin, L.; Cui, P.; Zhou, C. A multifunctional phenylalanine additive stabilizing zinc anodes in aqueous zinc ion batteries. J. Mater. Chem. A 2024, 12, 6610–6622. [Google Scholar] [CrossRef]
- Gou, Q.; Luo, H.; Zhang, Q.; Deng, J.; Zhao, R.; Odunmbaku, O.; Wang, L.; Li, L.; Zheng, Y.; Li, J.; et al. Electrolyte Regulation of Bio—Inspired Zincophilic Additive toward High—Performance Dendrite—Free Aqueous Zinc—Ion Batteries. Small 2023, 19, 2207502. [Google Scholar] [CrossRef]
- Wu, Z.; Li, M.; Tian, Y.; Chen, H.; Zhang, S.-J.; Sun, C.; Li, C.; Kiefel, M.; Lai, C.; Lin, Z.; et al. Cyclohexanedodecol—Assisted Interfacial Engineering for Robust and High—Performance Zinc Metal Anode. Nanomicro Lett. 2022, 14, 110. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Hu, Z.; Liu, Z.; Wu, F.; Zhao, Y.; Chen, R.; Li, L. Synergistic interaction between amphiphilic ion additive groups for stable long—life zinc ion batteries. Energy Storage Mater. 2024, 67, 103299. [Google Scholar] [CrossRef]
- Li, T.C.; Lim, Y.; Li, X.L.; Luo, S.; Lin, C.; Fang, D.; Xia, S.; Wang, Y.; Yang, H.Y. A Universal Additive Strategy to Reshape Electrolyte Solvation Structure toward Reversible Zn Storage. Adv. Energy Mater. 2022, 12, 2103231. [Google Scholar] [CrossRef]
- Zhi, L.; Li, T.; Liu, X.; Yuan, Z.; Li, X. Functional complexed zincate ions enable dendrite—free long cycle alkaline zinc—based flow batteries. Nano Energy 2022, 102, 107697. [Google Scholar] [CrossRef]
- Cai, S.; Chu, X.; Liu, C.; Lai, H.; Chen, H.; Jiang, Y.; Guo, F.; Xu, Z.; Wang, C.; Gao, C. Water–Salt Oligomers Enable Supersoluble Electrolytes for High—Performance Aqueous Batteries. Adv. Mater. 2021, 33, 2007470. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Feng, K.; Han, J.; Wang, F.; Xing, Y.; Tao, F.; Li, H.; Xu, B.; Ji, J.; Li, H. Regulation of Zn2+ solvation shell by a novel N—methylacetamide based eutectic electrolyte toward high—performance zinc—ion batteries. J. Mater. Sci. Technol. 2025, 211, 53–61. [Google Scholar] [CrossRef]
- Ivanova, B.; Spiteller, M. Electrospray ionization stochastic dynamic mass spectrometric 3D structural analysis of ZnII–ion containing complexes in solution. Inorg. Nano—Met. Chem. 2022, 52, 1407–1429. [Google Scholar] [CrossRef]
- Ivanova, B.; Spiteller, M. Crystallographic and theoretical study of the atypical distorted octahedral geometry of the metal chromophore of zinc(II) bis((1R,2R)-1,2-diaminocyclohexane) dinitrate. J. Mol. Struct. 2022, 1248, 131488. [Google Scholar] [CrossRef]
- Bayaguud, A.; Luo, X.; Fu, Y.; Zhu, C. Cationic Surfactant-Type Electrolyte Additive Enables Three-Dimensional Dendrite-Free Zinc Anode for Stable Zinc-Ion Batteries. ACS Energy Lett. 2020, 5, 3012–3020. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, X.; Luo, M.; Cao, K.; Lu, Y.; Xu, B.; Pan, H.; Tao, K.; Jiang, Y. Amino Acid-Induced Interface Charge Engineering Enables Highly Reversible Zn Anode. Adv. Funct. Mater. 2021, 31, 2103514. [Google Scholar] [CrossRef]
- Wang, F.; Lu, H.; Zhu, H.; Wang, L.; Chen, Z.; Yang, C.; Yang, Q.-H. Mitigating the interfacial concentration gradient by negatively charged quantum dots toward dendrite—free Zn anodes. Energy Storage Mater. 2023, 58, 215–221. [Google Scholar] [CrossRef]
- Xiao, J.; Li, Q.; Bi, Y.; Cai, M.; Dunn, B.; Glossmann, T.; Liu, J.; Osaka, T.; Sugiura, R.; Wu, B.; et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 2020, 5, 561–568. [Google Scholar] [CrossRef]
- Ma, Q.; Gao, R.; Liu, Y.; Dou, H.; Zheng, Y.; Or, T.; Yang, L.; Li, Q.; Cu, Q.; Feng, R.; et al. Regulation of Outer Solvation Shell Toward Superior Low—Temperature Aqueous Zinc—Ion Batteries. Adv. Mater. 2022, 34, 2207344. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Song, W.; Wang, Y.; Wang, S.; Zhang, T.; Cao, Y.; Zhang, S.; Xu, C.; Shi, Y.; Niu, J.; et al. A polyamino acid with zincophilic chains enabling high—performance Zn anodes. J. Mater. Chem. A 2022, 10, 20779–20786. [Google Scholar] [CrossRef]
- Zhong, Y.; Cheng, Z.; Zhang, H.; Li, J.; Liu, D.; Liao, Y.; Meng, J.; Shen, Y.; Huang, Y. Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery. Nano Energy 2022, 98, 107220. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, P.; Wang, W.; Liu, J. Tuning the Electrode/Electrolyte Interface Enabled by a Trifunctional Inorganic Oligomer Electrolyte Additive for Highly Stable and High—Rate Zn Anodes. Small Methods 2023, 7, e2300546. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Wang, Z.; Lu, H.; Li, H.; Cui, C.; Zhang, Z.; Sun, R.; Geng, C.; Liang, Q.; Guo, X.; et al. A Self—Regulated Interface toward Highly Reversible Aqueous Zinc Batteries. Adv. Energy. Mater. 2022, 12, 2102982. [Google Scholar] [CrossRef]
- Zhang, Q.; Luan, J.; Huang, X.; Wang, Q.; Sun, D.; Tang, Y.; Ji, X.; Wang, H. Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 2020, 11, 3961. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-J.; Hao, J.; Luo, D.; Zhang, P.-F.; Zhang, B.; Davey, K.; Lin, Z.; Qiao, S.-Z. Dual—Function Electrolyte Additive for Highly Reversible Zn Anode. Adv. Energy Mater. 2021, 11, 2102010. [Google Scholar] [CrossRef]
- Jin, Y.; Han, K.S.; Shao, Y.; Sushko, M.; Xiao, J.; Pan, H.; Liu, W. Stabilizing Zinc Anode Reactions by Polyethylene Oxide Polymer in Mild Aqueous Electrolytes. Adv. Funct. Mater 2020, 30, 2003932. [Google Scholar] [CrossRef]
- Wang, B.; Zheng, R.; Yang, W.; Han, X.; Hou, C.; Zhang, Q.; Li, Y.; Li, K.; Wang, H. Synergistic Solvation and Interface Regulations of Eco—Friendly Silk Peptide Additive Enabling Stable Aqueous Zinc—Ion Batteries. Adv. Funct. Mater. 2022, 32, 2112693. [Google Scholar] [CrossRef]
- Deng, C.; Xie, X.; Han, J.; Lu, B.; Liang, S.; Zhou, J. Stabilization of Zn Metal Anode through Surface Reconstruction of a Cerium—Based Conversion Film. Adv. Funct. Mater. 2021, 31, 2103227. [Google Scholar] [CrossRef]
- Zhou, X.; Li, X.; Li, Z.; Fu, J.; Xu, S.; Zhou, W.; Gui, S.; Wei, L.; Yang, H.; Wu, J.-F.; et al. Ten micrometer thick polyethylene separator modified by α—LiAlO2@γ—Al2O3 nanosheets for simultaneous suppression of Li dendrite growth and polysulfide shuttling in Li—S batteries. Mater. Today Energy 2022, 26, 100990. [Google Scholar] [CrossRef]
- Ren, K.; Li, M.; Wang, Q.; Liu, B.; Sun, C.; Yuan, B.; Lai, C.; Jiao, L.; Wang, C. Thioacetamide Additive Homogenizing Zn Deposition Revealed by In Situ Digital Holography for Advanced Zn Ion Batteries. Nanomicro Lett. 2024, 16, 117. [Google Scholar] [CrossRef] [PubMed]
- Duan, A.; Luo, S.; Sun, W. Insight into the development of electrolytes for aqueous zinc metal batteries from alkaline to neutral. Chin. Chem. Lett. 2024, 35, 108337. [Google Scholar] [CrossRef]
- Sun, M.; Wang, Z.; Jiang, J.; Wang, X.; Yu, C. Gelation mechanisms of gel polymer electrolytes for zinc—based batteries. Chin. Chem. Lett. 2024, 35, 109393. [Google Scholar] [CrossRef]
- Delley, B. Hardness conserving semilocal pseudopotentials. Phys. Rev. B 2002, 66, 155125. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA—type density functional constructed with a long—range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J. Mol. Graphics Modell. 2012, 38, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graphics Modell. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Liu, Y.; Zhao, B.; Li, H.; Liu, M.; Mai, H.; Li, Q. Suitable Stereoscopic Configuration of Electrolyte Additive Enabling Highly Reversible and High—Rate Zn Anodes. Molecules 2024, 29, 3416. https://doi.org/10.3390/molecules29143416
Xu B, Liu Y, Zhao B, Li H, Liu M, Mai H, Li Q. Suitable Stereoscopic Configuration of Electrolyte Additive Enabling Highly Reversible and High—Rate Zn Anodes. Molecules. 2024; 29(14):3416. https://doi.org/10.3390/molecules29143416
Chicago/Turabian StyleXu, Binrui, Yong Liu, Bo Zhao, Haoming Li, Min Liu, Huanxiao Mai, and Quanan Li. 2024. "Suitable Stereoscopic Configuration of Electrolyte Additive Enabling Highly Reversible and High—Rate Zn Anodes" Molecules 29, no. 14: 3416. https://doi.org/10.3390/molecules29143416
APA StyleXu, B., Liu, Y., Zhao, B., Li, H., Liu, M., Mai, H., & Li, Q. (2024). Suitable Stereoscopic Configuration of Electrolyte Additive Enabling Highly Reversible and High—Rate Zn Anodes. Molecules, 29(14), 3416. https://doi.org/10.3390/molecules29143416