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Abstract: An efficient cross-coupling of aryl bromides with sodium sulfinates, using an organoboron
photocatalyst with nickel, is described herein. Under the irradiation of white light, this dually
catalytic system enables the synthesis of a series of sulfone compounds in moderate to good yields. A
broad range of functional groups and heteroaromatic compounds is tolerated under these reaction
conditions. The use of an organoboron photocatalyst highlights a sustainable alternative to iridium
or ruthenium complexes. These findings contribute to the field of photochemistry and provide a
greener approach to sulfone synthesis.

Keywords: sulfone compounds; sodium sulfinates; dually catalytic system; organoboron photocatalyst

1. Introduction

Sulfone compounds have diverse applications in various fields such as medicine [1],
bioactive molecules [2], and materials science [3,4]. The sulfone moiety is pivotal in
the synthesis of numerous pharmaceuticals, including eletriptan for migraines [5] and
bicalutamide for prostate cancer [6]. Furthermore, sulfone groups find application in
important agrochemicals such as triketones [7], pyroxasulfone [8], or cafenstrole [9].

Several methods for sulfone synthesis have been reported since the 19th century [10].
Traditionally, sulfone compounds have been synthesized through sulfide oxidation [11], the
sulfonylation of aromatic hydrocarbons [12,13], and the arylation of sulfonates catalyzed
by palladium or copper [14]. However, these reactions suffer from certain drawbacks,
including high-temperature environments and harsh acidic treatment methods. These
limitations can affect the functional group tolerance and substrate range of the reactions
(Scheme 1a).

In recent years, nickel catalysts have gained significant attention in the field of
transition-metal catalysis due to their exceptional catalytic performance [15–18]. The
use of photo–nickel dual catalysis for C–C bond coupling has shown remarkable progress
since 2014, as demonstrated by Molander [19] and MacMillan [20]. This photo–nickel dual
catalysis has also been successfully employed in the synthesis of various C–X bonds [21–23],
including aryl ethers, aryl esters, arylamines, triarylphosphine oxides, and sulfides. These
advancements highlight the tremendous potential of utilizing dually catalytic strategies,
not only to enhance existing reactions but also to discover novel synthetic approaches.
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In 2018, Rueping, Manolikakes and Molander’s groups employed photocatalysts 
such as [Ir{(tBu)ppy}2{dtbbpy}]PF6 [24] or [Ru(bpy)3]2+ [25-26] to facilitate the nickel-pro-
moted sulfonylation of aryl halides, respectively. More recently, Yang’s group reported 
the use of copper catalysts for the sulfonation of aryl halides with sulfinates under visible 
light. However, these reactions necessitate costly photocatalysts and/or ligands (Scheme 
1b). In this context, our team has recently developed a boron-based complex called tetra-
coordinated aminoquinoline diarylboron (AQDAB). This boron-based complex was char-
acterized by a noble-metal-free composition, easy modification of the chelating ligands, 
and quick convergent assembly of the coordinated structure, which made it more flexible 
than the traditional organic photocatalysts originated from linear synthesis. AQDAB has 
demonstrated successful application as a photocatalyst in a range of visible-light-induced 
transformations. These transformations include the photo–nickel dually catalytic con-
struction of C–O bonds [27], C–S bonds, and C–P bonds [28]. It should be noted that Li’s 
group has recently disclosed a nickel/organic photocatalyst (2-chloro-thioxanthen-9-one) 
dual catalytic approach to access sulfones [29]. Herein, we present a method for synthe-
sizing sulfones utilizing AQDAB as the photocatalyst in photo–nickel dual catalysis, em-
ploying aryl bromides and sodium sulfinate as the starting materials (Scheme 1c). 

 
Scheme 1. (a) Traditional synthesis method for the preparation of sulfone compounds. (b) Previous 
work: bimetallic catalysis of the coupling of aryl halides with sodium benzene sulfinate under blue 
light. (c) This work: nickel/organoboron catalysis of the coupling of aryl bromides with sodium sul-
finate under white light. 

2. Results  
For C–S bond formation, the reaction was initiated using 4-bromobenzonitrile (1a) 

and sodium benzenesulfinate (2a) as the starting materials, aiming to synthesize the de-
sired product 3a through a photocatalytic strategy. Through a series of experiments, the 
optimal reaction conditions were identified. The highest yield of 3a (85%) was achieved 
when the reaction was conducted under white light in DMSO under an argon atmosphere, 
using 1 mol% AQDAB as the photocatalyst, NiBr2∙3H2O as the metallic catalyst, dtbbpy 
(4,4’-di-tert-butyl-2,2’-bipyridine) as the ligand, and DIPEA as the base (Table 1, entry 1). 
Control experiments revealed the crucial roles played by light and the photocatalyst in the 
reaction. In the absence of light (entry 2), the reaction did not proceed. Since long-lasting 
irradiation could heat the reaction to ~40 °C, to test the possibility of a heating-induced 
reaction, the reaction was performed in a 40 °C oil bath for 24 or 48 h while shielding any 
light using aluminum foil: the product could not be observed under these conditions (en-
try 3). The presence of a photocatalyst was essential, as its absence led to a significant 

Scheme 1. (a) Traditional synthesis method for the preparation of sulfone compounds. (b) Previous
work: bimetallic catalysis of the coupling of aryl halides with sodium benzene sulfinate under blue
light. (c) This work: nickel/organoboron catalysis of the coupling of aryl bromides with sodium
sulfinate under white light.

In 2018, Rueping, Manolikakes and Molander’s groups employed photocatalysts such
as [Ir{(tBu)ppy}2{dtbbpy}]PF6 [24] or [Ru(bpy)3]2+ [25,26] to facilitate the nickel-promoted
sulfonylation of aryl halides, respectively. More recently, Yang’s group reported the use of
copper catalysts for the sulfonation of aryl halides with sulfinates under visible light. How-
ever, these reactions necessitate costly photocatalysts and/or ligands (Scheme 1b). In this
context, our team has recently developed a boron-based complex called tetracoordinated
aminoquinoline diarylboron (AQDAB). This boron-based complex was characterized by a
noble-metal-free composition, easy modification of the chelating ligands, and quick conver-
gent assembly of the coordinated structure, which made it more flexible than the traditional
organic photocatalysts originated from linear synthesis. AQDAB has demonstrated success-
ful application as a photocatalyst in a range of visible-light-induced transformations. These
transformations include the photo–nickel dually catalytic construction of C–O bonds [27],
C–S bonds, and C–P bonds [28]. It should be noted that Li’s group has recently disclosed a
nickel/organic photocatalyst (2-chloro-thioxanthen-9-one) dual catalytic approach to access
sulfones [29]. Herein, we present a method for synthesizing sulfones utilizing AQDAB
as the photocatalyst in photo–nickel dual catalysis, employing aryl bromides and sodium
sulfinate as the starting materials (Scheme 1c).

2. Results

For C–S bond formation, the reaction was initiated using 4-bromobenzonitrile (1a) and
sodium benzenesulfinate (2a) as the starting materials, aiming to synthesize the desired
product 3a through a photocatalytic strategy. Through a series of experiments, the optimal
reaction conditions were identified. The highest yield of 3a (85%) was achieved when
the reaction was conducted under white light in DMSO under an argon atmosphere,
using 1 mol% AQDAB as the photocatalyst, NiBr2·3H2O as the metallic catalyst, dtbbpy
(4,4′-di-tert-butyl-2,2′-bipyridine) as the ligand, and DIPEA as the base (Table 1, entry
1). Control experiments revealed the crucial roles played by light and the photocatalyst
in the reaction. In the absence of light (entry 2), the reaction did not proceed. Since
long-lasting irradiation could heat the reaction to ~40 ◦C, to test the possibility of a heating-
induced reaction, the reaction was performed in a 40 ◦C oil bath for 24 or 48 h while
shielding any light using aluminum foil: the product could not be observed under these
conditions (entry 3). The presence of a photocatalyst was essential, as its absence led to
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a significant decrease in the yield, with only trace amounts of 3a being detected (entry 4).
Similarly, the nickel catalyst proved to be a critical factor (entry 5). The absence of dtbbpy
resulted in a yield of 30%. This demonstrated that while the ligand was not necessary, its
participation did improve the overall efficiency of this reaction (entry 6). These results
collectively highlight the indispensability of the light, photocatalyst, nickel catalyst, and
ligand in the reaction, demonstrating the dually catalytic property of this transformation.
Subsequently, we investigated different nickel sources, attempting to replace NiBr2·3H2O
with alternative nickel compounds. However, such modifications led to a significant
decrease in reaction yield (entries 7–12). Among the ligands, 20 mol% dtbbpy proved to
be the optimal choice, as reducing its amount resulted in a noticeable decrease in yield
(entry 13). Ligand-screening experiments revealed that N,N-chelating ligands based on the
bipyridine structure exhibited superior catalytic effects compared to phenanthroline ligands
(entries 14–16). Furthermore, we explored various solvents for the reaction. Substituting
DMSO with alcohol-based solvents such as ethylene glycol and methanol inhibited the
reaction, preventing the formation of the target product (entries 17, 18). The use of THF and
MeCN as solvents did not yield the expected reaction (entries 19, 20). When highly polar
DMF was employed as the solvent, the isolated yield was significantly decreased, with
only 40% of the target product being obtained (entry 21). In the meanwhile, NMP exhibited
limited effectiveness in promoting the reaction, resulting in a yield of only 48% (entry 22).

Table 1. Optimization of reaction conditions a.
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Control experiments

None 85%
2 Without light or under sunlight n.d.
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shielding any light for 24 h or 48 h n.d.

4 Without AQDAB trace
5 Without NiBr2·3H2O n.d.
6 Without dtbbpy 30%
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The screening of Ni
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NiBr2·dme 35%
8 NiBr2 71%
9 NiCl2 58%

10 NiCl2·dme 40%
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Table 1. Cont.

Entry Variation from Standard Conditions Yield b

17

The screening of
solvents

(CH2OH)2 n.d.
18 CH3OH n.d.
19 THF n.d.
20 CH3CN n.d.
21 DMF 40%
22 NMP 48%

a Standard reaction conditions: (1a) (0.2 mmol, 1.0 equiv.), (2a) (0.4 mmol, 2.0 equiv.), AQDAB (0.002 mmol,
1 mol%), NiBr2·3H2O (0.02 mmol, 10 mol%), dtbbpy (0.04 mmol, 20 mol%), and DMSO (3.0 mL); Kessil A160WE
bulb (40 W, white light); Ar; 24 h. A fan was used during the irradiation to cool down the reaction tube (the
temperature could reach and stay at ~40 ◦C). b Isolated yield. n.d.: not detected, dtbbpy: 4,4-di-tert-butyl
bipyridine, dpy: 2,2′-bipyridine; dmedpy: 4,4′-dimethyl-2,2′-bipyridine; 1,10-phen: 1,10-phenanthroline.

After obtaining the optimized reaction conditions, we investigated the scope of the
reaction using different derivatives of aryl bromides and sodium aryl sulfinate.

As shown in Scheme 2, when aryl bromides with para-electron-withdrawing groups
on the benzene ring were coupled with sodium benzenesulfinate, moderate to good yields
of various substituents were obtained. These substituents included cyano (3a, 85%), ketone
(3b, 80%; 3d, 78%; 3g, 51%), ester (3c, 40%; 3e, 42%), nitro (3f, 73%), and sulfonyl (3h,
45%). In the case of an ester group at the ortho-position of the halogenated benzene (3i),
a yield of 64% was obtained, demonstrating that this method is not sensitive towards
steric effects. The reaction also demonstrated good efficiency when two substituents were
present, resulting in 3j and 3k yields of 82% and 56%, respectively. Moreover, the bromides
on phthalide (3l, 50%), quinoline (3m, 42%), thiophene (3n, 56%), and pyridine (3o, 81%;
3p, 42%) showed good compatibility towards the reaction conditions as well. This should
be useful to synthesize heteroaryl sulfones. Next, we explored the suitability of different
sodium aryl sulfinates. It was found that both electron-withdrawing and electron-donating
groups could be coupled with 1a, affording the corresponding sulfones in moderate yields
(3q, 3r).

However, it should be noted that electron-rich aryl halides and alkyl sodium sul-
fonates could not be tolerated under the reaction conditions. When they were treated, no
corresponding C–S coupling products were obtained.

To investigate the scalability of the reaction, a gram-scale reaction (Scheme 3) was
performed and the reaction scale was increased by 15 times using 3.0 mmol of 1-(4-
bromophenyl)ethan-1-one 1b and 6.0 mmol of 2a, while keeping the catalyst ratio un-
changed. The gram-scale reaction was performed in a condensed solution and a prolonged
reaction time was necessary to make the interplay between the photocatalyst, light, and reac-
tion substrates efficient. After 48 h of irradiation and stirring, 1-(4-(phenylsulfonyl)phenyl)
ethan-1-one 3b was obtained with a yield of 56% (0.443 g).
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(Scheme 4). The reaction exhibited high sensitivity to oxygen and was inhibited under an 
air atmosphere. It was imagined that the presence of O2 might interrupt the Ni-catalyzed 
cycle by oxidizing the low-valent nickel intermediates to unreactive resting species. Ad-
ditionally, we examined the impacts of several radical scavengers on the reaction. When 
TEMPO was present, the isolated yield of 3a was 8%. Similarly, in the presence of 1,1-
diphenylethylene, the desired product could not be obtained. When BHT was employed 
as the radical scavenger, the reaction yield decreased significantly. These experiments 

Scheme 2. Substrate scope of sulfone compounds a. a Under standard reaction conditions: 1 (0.2 mmol,
1.0 equiv.), 2 (0.4 mmol, 2.0 equiv.), AQDAB (0.002 mmol, 1 mol%), NiBr2·3H2O (0.02 mmol, 10 mol%),
dtbbpy (0.04 mmol, 20 mol%), and DMSO (3.0 mL); Kessil A160WE bulb (40 W, white light); Ar; 24 h.
b Using aryl iodide as the substrate.
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Scheme 3. Gram-scale reaction.

3. Discussion

To probe the reaction mechanism, a series of control experiments was performed
(Scheme 4). The reaction exhibited high sensitivity to oxygen and was inhibited under an
air atmosphere. It was imagined that the presence of O2 might interrupt the Ni-catalyzed
cycle by oxidizing the low-valent nickel intermediates to unreactive resting species. Ad-
ditionally, we examined the impacts of several radical scavengers on the reaction. When
TEMPO was present, the isolated yield of 3a was 8%. Similarly, in the presence of 1,1-
diphenylethylene, the desired product could not be obtained. When BHT was employed
as the radical scavenger, the reaction yield decreased significantly. These experiments
indicated the potential involvement of radical processes in the reaction. Then, on/off
irradiation experiments were performed based on the model reaction in Table 1.
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Figure 1. The effect of on/off irradiation on the reaction yield. 
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tion, the photocatalyst (PC) is excited to form PC*, which undergoes single-electron 

Scheme 4. Control experiments.

As shown in Figure 1, a series of reactions with the same substrates and catalysts
was performed parallelly. The effect of on/off irradiation was explored by quenching one
reaction and isolating the corresponding product at designated times. When the irradiation
was turned off, the formation of the desired product stopped correspondingly. Further
stirring in the absence of irradiation did not afford any more product. The reaction would
proceed to accumulate product only if the light irradiation was turned on again. For
example, after 1 h of stirring under irradiation, the light was turned off and 3a was isolated
at a 5% yield from one reaction. A further 1 h of stirring without light irradiation (2 h’
stirring in total) led to a 5% yield of the reaction, still. Then, the light was turned on to
repeat the above-described process.
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Based on our experimental findings and relevant works in the literature [24–30], we
propose a plausible mechanism for this reaction, as shown in Scheme 5. Upon illumination,
the photocatalyst (PC) is excited to form PC*, which undergoes single-electron transfer
with the sodium aryl sulfinates, leading to the generation of ArSO2

• and PC•−. Subse-
quently, oxidative addition occurs between the Ni (0) compound A and aryl bromides,
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resulting in the formation of the Ni (II) intermediate B. Further single-electron oxidative
addition between B and ArSO2

• yields complex C (NiIII). Finally, complex C undergoes a
reduction elimination process, leading to the formation of the desired product and D (NiI).
Compound D, along with PC•−, undergoes single-electron transfer to regenerate Ni0 and
PC, thus completing both the photocatalytic and Ni-catalyzed reaction cycles.
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Scheme 5. A proposed reaction mechanism for the sulfonylation of aryl bromides.

4. Materials, Methods, Reaction Procedure, and Analytical Data
4.1. Methods and Materials

General Information: Unless otherwise noted, all reactions were carried out under
an Ar atmosphere. Analytical thin-layer chromatography (TLC) was performed on glass
plates coated with 0.25 mm 230–400-mesh silica gel containing a fluorescent indicator.
Visualization was accomplished through exposure to a UV lamp. All of the products
mentioned in this article are compatible with standard silica gel chromatography. Column
chromatography was performed on the silica gel (200–300 mesh) using standard methods.

Structural Analysis: NMR spectra were measured on a Bruker Ascend 400 spectrome-
ter and chemical shifts (δ) are reported in parts per million (ppm). 1H NMR spectra were
recorded at 400 MHz in NMR solvents and referenced internally to the corresponding
solvent resonance, and 13C NMR spectra were recorded at 101 MHz and referenced to the
corresponding solvent resonance. Coupling constants are reported in Hz with multiplicities
denoted as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad).
Infrared spectra were collected on a Thermo Fisher Nicolet 6700 FT-IR spectrometer using
the ATR (Attenuated Total Reflectance) method. Absorption maxima (ν max) are reported
in wavenumbers (cm−1). High-resolution mass spectra (HRMS) were acquired on a Thermo
Scientific LTQ Orbitrap XL with an ESI source.

Materials: Commercial reagents and solvents were purchased from Adamas, J&K,
Energy, Sigma-Aldrich, Alfa Aesar, Acros Organics, and TCI and were used as received
unless otherwise stated.

4.2. The Preparation of Sulfone Compounds
4.2.1. General Procedure

A flame-dried 25 mL quartz column reaction tube was placed with a magnetic stir
bar. Then, 4-bromobenzonitrile (36.4 mg, 0.2 mmol, 1.0 equiv.), sodium benzene sulfinate
(65.6 mg, 0.4 mmol, 2.0 equiv.), AQDAB (0.8 mg, 0.002 mmol, 1 mol%), NiBr2·3H2O (5.4 mg,
0.02 mmol, 10 mol%), dtbbpy (10.7 mg, 0.04 mmol, 20 mol%), and DMSO (3.0 mL) were
added under Ar. The reaction tube was placed on a photocatalytic parallel reactor with a
Kessil LED light source on the side. A fan was used during the irradiation to cool down
the reaction tube (the temperature could reach and stay at ~40 ◦C). After stirring for 24 h,
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the crude product was concentrated and purified with column chromatography (silica
gel) to obtain the target product, using PE/EtOAc as the eluent. The detail experimental
information can be found in Supplementary Materials.

4.2.2. Analytical Data of Products 3a–3r

(3a) 4-(phenylsulfonyl)benzonitrile (CAS: 28525-13-5) [29]

Following the General Procedure with 4-bromobenzonitrile (36.4 mg, 0.2 mmol,
1.0 equiv.) and sodium benzenesulfinate (65.6 mg, 0.4 mmol, 2.0 equiv.), 3a was obtained as
a white solid (41.3 mg, 85%). This product was purified with silica gel flash chromatography
(PE:EA = 5:1).

1H NMR (400 MHz, CDCl3) δ 8.05 (d, J = 8.4 Hz, 2H), 7.94 (d, J = 7.6 Hz, 2H), 7.79 (d,
J = 8.0 Hz, 2H), 7.61 (d, J = 7.2 Hz, 1H), 7.54 (t, J = 7.6 Hz, 2H).

13C NMR (101 MHz, CDCl3) δ 145.9, 140.2, 134.1, 133.1, 129.7, 128.3, 128.0, 117.2, 116.9.

(3b) 1-(4-(phenylsulfonyl)phenyl)ethan-1-one (CAS: 65085-83-8) [29]

Following the General Procedure with 1-(4-bromophenyl)ethan-1-one (39.8 mg, 0.2 mmol,
1.0 equiv.) and sodium benzenesulfinate (65.6 mg, 0.4 mmol, 2.0 equiv.), 3b was obtained as
a white solid (41.6 mg, 80%). This product was purified using silica gel flash chromatogra-
phy (PE:EA = 5:1).

1H NMR (400 MHz, CDCl3) δ 8.05 (s, 4H), 7.96 (d, J = 8.0 Hz, 2H), 7.59 (d, J = 6.0 Hz,
1H), 7.54 (d, J = 6.8 Hz, 2H), 2.62 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 196.7, 145.4, 140.8, 140.4, 133.7, 129.5, 129.1, 128.0, 127.9,
26.9.

(3c) Methyl 4-(phenylsulfonyl)benzoate (CAS: 38337-00-7) [29]

Following the General Procedure with methyl 4-bromobenzoate (42.8 mg, 0.2 mmol,
1.0 equiv.) and sodium benzenesulfinate (65.6 mg, 0.4 mmol, 2.0 equiv.), 3c was obtained as a
white solid (22.1 mg, 40%). This product was purified using silica gel flash chromatography
(PE:EA = 5:1).

1H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 8.4 Hz, 2H), 8.00 (d, J = 8.5 Hz, 2H), 7.95 (d,
J = 7.3 Hz, 2H), 7.58 (d, J = 7.2 Hz, 1H), 7.52 (t, J = 6.8 Hz, 2H), 3.92 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 165.5, 145.5, 140.8, 134.3, 133.6, 130.5, 129.5, 127.8, 127.7,
52.7.

(3d) 1-(4-(phenylsulfonyl)phenyl)propan-1-one (CAS: 69567-00-6)

Following the General Procedure with methyl 1-(4-bromophenyl)propan-1-one (45.6 mg,
0.2 mmol, 1.0 equiv.) and sodium benzenesulfinate (65.6 mg, 0.4 mmol, 2.0 equiv.), 3d was
obtained as a white solid (42.7 mg, 78%). This product was purified with silica gel flash
chromatography (PE:EA = 5:1).

1H NMR (400 MHz, CDCl3) δ 8.02 (d, J = 5.2 Hz, 4H), 7.94 (d, J = 8.4 Hz, 2H), 7.56 (d,
J = 7.2 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 2.97 (d, J = 7.2 Hz, 2H), 1.18 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 199.5, 145.2, 140.8, 140.3, 133.7, 129.5, 128.8, 128.0, 127.8,
32.3, 8.0.

HRMS (ESI) m/z calcd. for C15H15O3S+ M+H+: 275.3415; found: 275.3415.
IR: 3070, 2978, 2935, 1697, 1582, 1448, 1155, 730, 600.
Melting point (◦C): 57.9–59.1

(3e) Ethyl 4-(phenylsulfonyl)benzoate (CAS: 101094-06-8) [29]

Following the General Procedure with ethyl 4-bromobenzoate (45.8 mg, 0.2 mmol,
1.0 equiv.) and sodium benzenesulfinate (65.6 mg, 0.4 mmol, 2.0 equiv.), 3e was obtained as
a white solid (24.4 mg, 42%). This product was purified with silica gel flash chromatography
(PE:EA = 5:1).

1H NMR (400 MHz, CDCl3) δ 8.15 (d, J = 8.0 Hz, 2H), 8.00 (d, J = 8.0 Hz, 2H), 7.95 (d,
J = 8.0 Hz, 2H), 7.58 (d, J = 7.2 Hz, 1H), 7.52 (d, J = 7.6 Hz, 2H), 4.38 (d, J = 7.2 Hz, 2H), 1.38
(s, 3H).
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13C NMR (101 MHz, CDCl3) δ 165.0, 145.4, 140.9, 134.7, 133.6, 130.4, 129.5, 129.3, 127.8,
127.7, 61.7, 14.2.

(3f) 1-nitro-4-(phenylsulfonyl)benzene (CAS: 1146-39-0) [29]

Following the General Procedure with methyl 1-bromo-4-nitrobenzene (40.0 mg,
0.2 mmol, 1.0 equiv.) and sodium benzenesulfinate (65.6 mg, 0.4 mmol, 2.0 equiv.), 3f
was obtained as a white solid (38.3 mg, 73%). This product was purified using silica gel
flash chromatography (PE:EA = 5:1).

1H NMR (400 MHz, CDCl3) δ 8.33 (d, J = 8.8 Hz, 2H), 8.13 (d, J = 6.7 Hz, 2H), 7.97 (d,
J = 7.9 Hz, 2H), 7.62 (d, J = 6.4 Hz, 1H), 7.56 (d, J = 6.9 Hz, 2H).

13C NMR (101 MHz, CDCl3) δ 150.4, 147.4, 140.0, 134.2, 129.7, 129.0, 128.1, 124.6.

(3g) Phenyl(4-(phenylsulfonyl)phenyl)methanone (CAS: 54687-39-7) [29]

Following the General Procedure with (4-bromophenyl)(phenyl)methanone (52.0 mg,
0.2 mmol, 1.0 equiv.) and sodium benzenesulfinate (65.6 mg, 0.4 mmol, 2.0 equiv.), 3g was
obtained as a white solid (32.8 mg, 51%). This product was purified with silica gel flash
chromatography (PE:EA = 5:1).

1H NMR (400 MHz, CDCl3) δ 8.06 (d, J = 6.4 Hz, 2H), 7.99 (d, J = 7.6 Hz, 2H), 7.88 (d,
J = 6.8 Hz, 2H), 7.77 (d, J = 7.6 Hz, 2H), 7.66–7.59 (m, 2H), 7.56 (d, J = 6.8 Hz, 2H), 7.49 (s,
2H).

13C NMR (101 MHz, CDCl3) δ 195.2, 144.7, 141.7, 140.9, 136.4, 133.7, 133.3, 130.5, 130.1,
129.5, 128.6, 127.9, 127.7.

(3h) 1-(methylsulfonyl)-4-(phenylsulfonyl)benzene (CAS: 3112-84-3) [26]

Following the General Procedure with 1-bromo-4-(methylsulfonyl)benzene (46.4 mg,
0.2 mmol, 1.0 equiv.) and sodium benzenesulfinate (65.6 mg, 0.4 mmol, 2.0 equiv.), 3h was
obtained as a white solid (26.6 mg, 45%). This product was purified with silica gel flash
chromatography (PE:EA = 5:1).

1H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 8.4 Hz, 2H), 8.08 (d, J = 8.4 Hz, 2H), 7.97 (d,
J = 7.2 Hz, 2H), 7.63 (d, J = 6.8 Hz, 1H), 7.57 (d, J = 8.0 Hz, 2H), 3.07 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 146.8, 144.8, 140.2, 134.1, 129.7, 128.7, 128.5, 128.0, 44.3.

(3i) Methyl 2-(phenylsulfonyl)benzoate (CAS: 67373-14-2) [29]

Following the General Procedure with methyl 2-iodobenzoate (52.4 mg, 0.2 mmol,
1.0 equiv.) and sodium benzenesulfinate (65.6 mg, 0.4 mmol, 2.0 equiv.), 3i was obtained as a
white solid (35.3 mg, 64%). This product was purified with silica gel flash chromatography
(PE:EA = 5:1).

1H NMR (400 MHz, CDCl3) δ 8.15 (m, 1H), 7.97 (d, J = 7.2 Hz, 2H), 7.62 (m, 2H), 7.57
(m, 2H), 7.51 (t, J = 7.4 Hz, 2H), 3.92 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 167.7, 141.5, 139.0, 133.3, 130.9, 130.2, 129.2, 129.0, 127.8,
53.0.

(3j) 4-(phenylsulfonyl)-2-(trifluoromethyl)benzonitrile (CAS: 2383030-86-0) [29]

Following the General Procedure with 4-bromo-2-(trifluoromethyl)benzonitrile
(49.8 mg, 0.2 mmol, 1.0 equiv.) and sodium benzenesulfinate (65.6 mg, 0.4 mmol, 2.0 equiv.),
3j was obtained as a white solid (51.0 mg, 82%). This product was purified with silica gel
flash chromatography (PE:EA = 5:1).

1H NMR (400 MHz, CDCl3) δ 8.34 (s, 1H), 8.25 (d, J = 8.0 Hz, 1H), 8.04–7.95 (m, 3H),
7.68 (t, J = 7.4 Hz, 1H), 7.59 (t, J = 7.6 Hz, 2H).

13C NMR (101 MHz, CDCl3) δ 146.6, 139.3, 135.9, 134.6, 134.2 (d, J = 34.0 Hz), 131.3,
130.0, 128.2, 125.8 (q, J = 4.7 Hz), 121.5(d, J = 275.8 Hz), 114.5, 114.0.

19F NMR (376 MHz, CDCl3) δ −62.10 (s).

(3k) 3-(phenylsulfonyl)-5-(trifluoromethyl)benzonitrile [29]

Following the General Procedure with 3-bromo-5-(trifluoromethyl)benzonitrile
(40.0 mg, 0.2 mmol, 1.0 equiv.) and sodium benzenesulfinate (65.6 mg, 0.4 mmol, 2.0 equiv.),
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3k was obtained as a white solid (34.8 mg, 56%). This product was purified using silica gel
flash chromatography (PE:EA = 5:1).

1H NMR (400 MHz, CDCl3) δ 8.40 (d, J = 10.4 Hz, 2H), 8.08 (s, 1H), 7.99 (d, J = 8.4 Hz,
2H), 7.68 (m, 1H), 7.60 (m, 2H).

13C NMR (101 MHz, CDCl3) δ 145.1, 139.3, 134.6, 134.3, 133.5 (d, J = 35.0 Hz), 133.0 (d,
J = 3.6 Hz), 130.2, 128.3 (q, J = 3.6), 128.2, 127.7, 122.0 (d, J = 274.8 Hz), 115.7, 115.2.

19F NMR (376 MHz, CDCl3) δ −63.06 (s).

(3l) 5-(phenylsulfonyl)isobenzofuran-1(3H)-one (CAS: 2232133-50-3) [26]

Following the General Procedure with 5-bromoisobenzofuran-1(3H)-one (42.4 mg,
0.2 mmol, 1.0 equiv.) and sodium benzenesulfinate (65.6 mg, 0.4 mmol, 2.0 equiv.), 3l was
obtained as a white solid (27.4 mg, 50%). This product was purified using silica gel flash
chromatography (PE:EA = 5:1).

1H NMR (400 MHz, CDCl3) δ 8.14 (s, 1H), 8.09 (d, J = 8.0 Hz, 1H), 8.03 (d, J = 8.0 Hz,
1H), 7.99–7.96 (m, 2H), 7.64 (m, 1H), 7.55 (t, J = 7.8 Hz, 2H), 5.39 (s, 2H).

13C NMR (101 MHz, CDCl3) δ 169.1, 147.3, 147.2, 140.3, 134.0, 129.8, 129.7, 128.6, 128.0,
126.9, 122.0, 69.6.

(3m) 3-(phenylsulfonyl)quinoline (CAS: 117620-35-6) [29]

Following the General Procedure with methyl 1-bromo-4-nitrobenzene (40.0 mg,
0.2 mmol, 1.0 equiv.) and sodium benzenesulfinate (65.6 mg, 0.4 mmol, 2.0 equiv.), 3m was
obtained as a white solid (22.6 mg, 42%). This product was purified with silica gel flash
chromatography (PE:EA = 5:1).

1H NMR (400 MHz, CDCl3) δ 9.28 (d, J = 2.0 Hz, 1H), 8.83 (d, J = 2.0 Hz, 1H), 8.16
(d, J = 8.4 Hz, 1H), 8.07–8.01 (m, 2H), 7.97 (d, J = 8.4 Hz, 1H), 7.87 (m, 1H), 7.68 (m, 1H),
7.63–7.57 (m, 1H), 7.54 (m, 2H).

13C NMR (101 MHz, CDCl3) δ 149.4, 147.1, 141.0, 137.0, 134.7, 133.8, 132.8, 129.6, 129.2,
128.4, 127.8, 126.4.

(3n) 3-(phenylsulfonyl)thiophene (CAS: 89770-30-9) [31]

Following the General Procedure with 3-iodothiophene (40.0 mg, 0.2 mmol, 1.0 equiv.)
and sodium benzenesulfinate (44.6 mg, 0.4 mmol, 2.0 equiv.), 3n was obtained as a white
solid (25.0 mg, 56%). This product was purified using silica gel flash chromatography
(PE:EA = 5:1).

1H NMR (400 MHz, CDCl3) δ 8.13–8.08 (m, 1H), 7.97 (d, J = 7.2 Hz, 2H), 7.59 (t, J = 6.8
Hz, 1H), 7.52 (t, J = 7.4 Hz, 2H), 7.41–7.36 (m, 1H), 7.36–7.32 (m, 1H).

13C NMR (101 MHz, CDCl3) δ 142.0, 141.6, 133.3, 131.6, 129.3, 128.4, 127.5, 125.9.

(3o) 4-(phenylsulfonyl)-2-(trifluoromethyl)pyridine (CAS: 2412989-04-7) [32]

Following the General Procedure with 4-bromo-2-(trifluoromethyl)pyridine (44.9 mg,
0.2 mmol, 1.0 equiv.) and sodium benzenesulfinate (65.6 mg, 0.4 mmol, 2.0 equiv.), 3o was
obtained as a white solid (46.5 mg, 81%). This product was purified with silica gel flash
chromatography (PE:EA = 5:1).

1H NMR (400 MHz, CDCl3) δ 8.93 (d, J = 4.8 Hz, 1H), 8.13 (s, 1H), 7.99 (d, J = 8.0 Hz,
3H), 7.74–7.63 (m, 1H), 7.63–7.53 (m, 2H).

13C NMR (101 MHz, CDCl3) δ 152.2, 151.7, 150.0 (d, J = 36.1 Hz), 138.8, 134.7, 130.0,
128.3, 123.7, 120.7 (d, J = 275.8 Hz), 117.79 (d, J = 2.7 Hz).

19F NMR (376 MHz, CDCl3) δ −68.06 (s).

(3p) 6-(phenylsulfonyl)nicotinonitrile (205514-29-0)

Following the General Procedure with 2-Bromo-4-cyanopyridine (36.6 mg, 0.2 mmol,
1.0 equiv.) and sodium benzenesulfinate (65.6 mg, 0.4 mmol, 2.0 equiv.), 3p was obtained as
a white solid (20.5 mg, 42%). This product was purified with silica gel flash chromatography
(PE:EA = 5:1).

1H NMR (400 MHz, CDCl3) δ 8.89 (d, J = 1.1 Hz, 1H), 8.34 (d, J = 8.0 Hz, 1H), 8.23 (dd,
J = 8.4, 2.0 Hz, 1H), 8.06 (d, J = 7.2 Hz, 2H), 7.68 (t, J = 6.8 Hz, 1H), 7.58 (t, J = 7.6 Hz, 2H).
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13C NMR (101 MHz, CDCl3) δ 161.7, 152.7, 141.9, 137.5, 134.6, 129.4, 129.4, 121.9, 115.1,
113.0.

HRMS (ESI) m/z calcd. for C12H9N2O2S+ M+H+: 245.0371; found: 245.0371.
IR: 3065, 2243, 1452, 325, 1161, 628.
Melting point (◦C): 119.1–120.1

(3q) 4-((4-fluorophenyl)sulfonyl)benzonitrile (CAS: 1268049-80-4) [29]

Following the General Procedure with 4-Bromobenzonitrile (36.4 mg, 0.2 mmol,
1.0 equiv.) and 4-flurobenzenesulfinic acid sodium salt (91.0 mg, 0.4 mmol, 2.0 equiv.), 3q
was obtained as a white solid (20.8 mg, 40%). This product was purified with silica gel
flash chromatography (PE:EA = 5:1).

1H NMR (400 MHz, CDCl3) δ 8.05 (d, J = 8.4 Hz, 2H), 8.02–7.95 (m, 2H), 7.81 (d, J = 8.0
Hz, 2H), 7.24 (dd, J = 16.0, 8.0 Hz, 2H).

13C NMR (101 MHz, CDCl3) δ 166.0 (d, J = 258.7 Hz), 145.7, 136.2, 133.2, 130.9 (d, J =
9.8 Hz), 128.2, 117.2, 117.1 (d, J = 3.7 Hz), 117.0.

19F NMR (376 MHz, CDCl3) δ −102.34 (s).

(3r) 4-tosylbenzonitrile (CAS: 38111-56-7) [29]

Following the General Procedure with 4-Bromobenzonitrile (36.4 mg, 0.2 mmol,
1.0 equiv.) and 4-methyl-benzenesulfinic acid sodium salt (71.2 mg, 0.4 mmol, 2.0 equiv.),
3r was obtained as a white solid (27.8 mg, 54%). This product was purified using silica gel
flash chromatography (PE:EA = 5:1).

1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 6.8 Hz, 2H), 7.83 (d, J = 6.8 Hz, 2H), 7.81–7.76
(m, 2H), 7.34 (d, J = 7.6 Hz, 2H), 2.42 (s, 3H).

13C NMR (101 MHz, CDCl3) δ 146.3, 145.3, 137.1, 133.1, 130.3, 128.1, 128.0, 117.2, 116.7,
21.7.

5. Conclusions

In conclusion, by employing the organoboron compound AQDAB as a photocatalyst in
conjunction with nickel, we have realized a cross-coupling reaction between aryl bromides
and sodium aryl sulfinates under relatively mild conditions and afforded various sulfone
compounds in moderate to good yields. This procedure tolerates a series of functional
groups, including cyanide, nitro, carbonyl, and ester groups. We anticipate that the pro-
tocol described herein can serve as an important supplement to the existing strategies for
preparing sulfone compounds, and thus find wide application in organic synthesis and
related fields.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29143418/s1, Experimental procedures and spectral
data are available free of charge via the Internet.
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