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Abstract: The oxidation of benzylic alcohols is an important transformation in modern organic
synthesis. A plethora of photoredox protocols have been developed to achieve the aerobic oxidation
of alcohols into carbonyls. Recently, several groups described that ultraviolet (UV) or purple light
can initiate the aerobic oxidation of benzylic alcohols in the absence of an external catalyst, and
depicted different mechanisms involving the photoinduction of •O2

− as a critical reactive oxygen
species (ROS). However, based on comprehensive mechanistic investigations, including control
experiments, radical quenching experiments, EPR studies, UV–vis spectroscopy, kinetics studies, and
density functional theory calculations (DFT), we elucidate here that HOO•, which is released via the
H2O2 elimination of α-hydroxyl peroxyl radicals [ArCR(OH)OO•], serves as the real chain carrier for
the autocatalytic photooxidation of benzylic alcohols. The mechanistic ambiguities depicted in the
precedent literature are clarified, in terms of the crucial ROS and its evolution, the rate-limiting step,
and the primary radical cascade. This work highlights the necessity of stricter mechanistic analyses
on UV-driven oxidative reactions that involve aldehydes’ (or ketones) generation.

Keywords: hydroperoxyl radical; autocatalysis; photooxidation; benzylic alcohols; aromatic acids;
aromatic ketones

1. Introduction

The oxidation of alcohols is a fundamental transformation in modern organic syn-
thesis [1,2]. In this field, catalytic oxygen oxidation that uses oxygen or air as the clean
oxidant, with the promise to enhance the reaction economics and minimize the poten-
tial environmental impact, has attracted growing interest. One of the underlying topics
in oxygen oxidation reactions is the utilization of effective catalysts to initiate the inert
triplet oxygen (3O2) into reactive oxygen species (ROS) for reaction triggering [3]. Over
the past few decades, a plethora of O2-excitation-based methods have been established
for benzylic alcohols’ oxidation, piloted by photo- and electro-chemical strategies [4–21].
Among them, the rapidly growing photoredox catalysis holds the greatest promise for
achieving new industrial breakthroughs. However, most photocatalytic processes still
rely on elaborately designed photocatalysts, including costly and toxic transition metal
complexes, structurally intricate and expensive organic dyes, as well as semiconductor
materials capable of inducing the photodegradation of organic compounds. Thus, these
inherent flaws of photocatalysts hamper their industrial application.

Recently, several external catalyst-free methods have been presented, using UV light
for the direct oxidation of alcohols [22–24]. For example, Vandana and coworkers de-
scribed that the exposure of a dimethyl sulfoxide (DMSO) solution of benzylic alcohols
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in presence of oxygen under UV light with a 254 nm wavelength led to the selective for-
mation of arylaldehydes. Liu and coworkers further discovered that long-wavelength
ultraviolet light (UVA, 365–395 nm) irradiation could more efficiently promote the aerobic
oxidation of benzylic alcohols in acetone solution. In Liu’s work, singlet oxygen (1O2) was
claimed as the initiating ROS evolved from 3O2 via energy transfer (ET) from UV light.
They also suggested that superoxide anion (•O2

−), which was derived via single-electron
transfer (SET) from the benzylic methylene group to 1O2, was another key ROS for the
overall transformation.

Considering our long-term interest in green oxidation [25,26], we describe here a more
effective aerobic oxidation of benzylic alcohols in the presence of 1,2-dichloroethane under
365 nm LED irradiation. Based on further comprehensive mechanistic studies, we also
clarify the unreasonable and ambiguous parts of the reaction mechanism described in
the precedent literature. As our investigations demonstrate, the UVA response of aryl
aldehydes and ketones induces the reaction to exhibit an entire autocatalytic feature and
only hydroxyl peroxide (HOO•), proven to be the essential chain carrier in the radical
cascade. This work underscores that the UVA sensitization of aromatic aldehydes and ke-
tones should be taken into account for strict mechanistic analyses on UVA-driven oxidative
reactions that involve their generation.

2. Results and Discussions

We initiated our studies using benzyl alcohol (1a, 1 mmol) as the template substrate
for catalyst exploration and condition optimization (Table 1). When various solvents were
examined in the presence of O2 (1 atm) under 365 nm light (25 w) irradiation, we found
that both DMSO and acetone were inferior solvents compared to acetonitrile (MeCN) and
1,2-dichloroethane (DCE) (entries 1–7). In particular, DCE emerged as the most efficacious,
leading to almost a stoichiometric yield of 1c (98% assay yield) within 8 h (entry 4). Upon tun-
ing the wavelength to 400 and 455 nm, the reactions failed to take place in DCE, demonstrat-
ing a conspicuous reaction initiation dependence on the light wavelength (entries 8 and 9).
p-Toluenesulfonic acid (p-TsOH, 10 mol%) and methanesulfonic acid (MsOH 10 mol%),
which have been identified as initiating photocatalysts for 1O2 generation [25,27], were also
examined. However, they both resulted in an obvious lowered conversion under 365 or
400 nm light (entries 9–12). Hereto, the optimum conditions for this catalyst-free oxidation
were accomplished by using DCE solvent and 365 nm light irradiation.

By utilizing the optimized reaction conditions, we expanded the substrate scope of the
photo protocol (Figure 1). A wide range of benzylic alcohols containing electron-donating
groups were all smoothly oxidized into the corresponding acids with good yields (1–9c,
76–94%). When substrates bearing electron-withdrawing groups, such as halogen (F, Cl,
and Br), –CN, –COCH3, –CF3, and –OCF3, were examined, excellent yields of the cor-
responding acids were obtained (10–19c, 82–96%). In the case of 4-nitrobenzyl alcohol
oxidation, the light exposure was prolonged for 48 h to obtain a 37% yield of 4-nitrobenzoic
acid (20c). Bifunctional benzene-1,4-dimethanol was also conveniently converted to
p-phthalic acid (21c) with a 91% yield. As a class of five membered hetero substrates
were examined under the standard conditions, high yields of (hetero)aromatic acids were
obtained (22–24c, 77–93%). Commendably, common dysoxidizable pyridinemethanols and
quinolinemethanols were also susceptible to this protocol, leading to the desired acids
in good yields (25–28c, 67–79%), yet requiring a longer reaction time (28 h). Next, we
turned to the application of this method for the oxidation of secondary benzylic alcohols.
Under similar conditions, a range of secondary benzylic alcohols bearing substituents with
different electron effects were all compatible, outputting the corresponding aryl ketones in
excellent yields (29–36c, 74–95%). Two secondary heteroaryl alcohols containing thiophene
scaffold proceeded this oxidation efficiently to give the corresponding heteroaryl ketones
37c (85%) and 38c (86%), respectively. To preliminarily evaluate the scalability of this
external-catalyst-free photooxidation, an experiment was conducted with 1a at a 10 mmol
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scale based on the standard conditions. 1c was conveniently obtained with a commendable
yield (94%) (Supplementary Materials, Section S4).

Table 1. Conditions optimization for oxidation of benzyl alcohol into benzoic acid a.
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Entry Cat. Solvent Wavelength (nm) Time (h) 1a/1b/1c (%) b

1 - MeCN 365 12 1/9/90
2 - Benzene 365 12 34/37/29

3 c - DCM 365 8 1/2/82
4 - DCE 365 8 0/2/98
5 - H2O 365 12 99/1/0
6 - DMSO 365 8 8/52/40
7 - Acetone 365 8 13/0/87
8 - DCE 400 12 98/2/0
9 - DCE 455 12 100/0/0

8 d TsOH DCE 365 8 12/79/9
9 d MsOH DCE 365 8 36/60/4

10 d TsOH DCE 400 8 96/4/0
11 d MsOH DCE 400 8 99/1/0

a Reaction conditions: benzyl alcohol (1a, 1.0 mmol), solvent (2 mL), O2 (1 atm), 20 ◦C, 365–455 nm LEDs (25 w),
unless specially mentioned. b Yields were assayed by GC–MS. c 5% benzyl chloride was observed. d Catalyst
loadings: 10 mol%.

To obtain more clues on the underlying mechanism of this oxidation, mechanistic
studies were performed. When the reaction of 1a was performed under ambient light
exposure or in the absence of O2, no desired product was produced within 8 h, indicat-
ing the necessity of both O2 and UV light irradiation (Scheme 1A,B). Drawing from the
O2-absent experiment, we also ruled out the possible direct dehydrogenation event of
alcohol. To disclose the underlying reactive species in the oxidation process, an array of
chemical quenching experiments was then performed (Scheme 1C) [28–30]. When 2,2,6,6-
tetramethylpiperdine-N-oxyl (TEMPO, 3.0 equiv) was submitted into the reaction mixture,
the desired reaction was completely prevented according to GC–MS monitoring, indicating
a cascade radical mechanism. The addition of 2,2,6,6-tetramethyl-4-piperidine (TEMP, a
1O2 scavenger, 3.0 equiv) or isopropyl alcohol (IPA, a HO• scavenger, 3.0 equiv) exerted no
significant influence on the conversion rate of 1a, suggesting that 1O2 and HO• were not
the operative ROS involved in the rate-limiting step. When CuCl2 (30 mol%) was added
as a recognized electron scavenger, a 50% yield of 1b was still produced after irradiation
for 8 h, indicating that SET to O2 or 1O2 must not be integrated in the primary mechanism.
As 1,2- benzoquinone or 1,4-benzoquinone (BQ, a HOO•/•O2

− scavenger, 3.0 equiv) was
added thereto, the conversion of 1a was almost completely prevented, and 1,2-BQ showed
a slightly stronger inhibition than 1,4-BQ. This suggested that the ROS involved in the
turnover-limiting step of the reaction was more likely to be HOO• rather than •O2

− [31,32].
To clarify whether H2O2 played a role in this oxidation, a control experiment was carried
out by the addition of H2O2 into 1a solution, leading to no obvious formation of 1b and
1c after 8 h of UV light exposure in a N2 atmosphere. This disclosed that H2O2 could not
serve as an initiating agent (Scheme 1D). Followingly, the oxidation of 1b was examined
individually with O2 and H2O2 (2.0 equiv) (Scheme 1E). With 365 nm light irradiation, the
oxidation of 1b in the presence of O2 could be completed within 1 h to give 1c in a 100%
assay yield, while the presence of H2O2 only resulted in a trace yield of 1c within the same
reaction time. Of note, the high efficiency of O2 displayed here also indicated the probable
UVA sensitivity of benzaldehyde, since, in the absence of UV light, O2 actually failed to
result in the obvious formation of 1c within 1 h. These experiments also indicated that
H2O2 exerted little influence on the radical cascade.
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Then, to evidence the radical species involved in the reaction, in situ EPR spectroscopy
was performed using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as the radical probe. As
displayed in Figure 2A, six characteristic signal peaks of the α-hydroxybenzyl adduct
of DMPO (DMPO–C6H5CH•OH) were observed with diagnostic hydrogen and nitrogen
hyperfine splittings for the nitroxide nitrogen as αH 21.4 and αN 13.7, respectively, which
are in agreement with previous reports [33,34]. Furthermore, to obtain deeper insights
into the question of how C6H5CH•OH species are formed in the absence of classical
photosensitizers, UV–vis spectroscopy investigations were carried out individually with
benzyl alcohol (1a), benzaldehyde (1b), benzoic acid (1c), acetophenone, and a reaction
mixture that was pre-irradiated for 2 h. As shown in Figure 2B, both 1a and 1c displayed no
prominent absorption band near 365 nm, while benzaldehyde and acetophenone presented
a definite absorption band between 310 and 360 nm, in which the absorption at the 360 nm
band was assigned to the dipole forbidden n→π* electronic transition of the carbonyl
group [35]. As imaged, pre-irradiating the benzyl alcohol solution in an O2 atmosphere for
2 h allowed for the observation of a similar but a broadened absorption band that extended
to about 375 nm. These results indicated the autocatalytic character of this external-catalyst-
free oxidation driven by the response of carbonyl groups in aryl aldehydes and ketones
near the 360 nm band.
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To further understand the autocatalytic feature of the present reaction, we performed
a series of kinetics studies. Figure 2C demonstrates clearly a definite self-accelerating
character, though the induction period seemingly did not appear. Next, oxidation-stable
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acetophenone as an external catalyst was added with different loadings to the diluted
DCE solution of 1a for reaction rate measurements. The initial reaction rates (Rinit) were
calculated by GC data for the consumption of 1a within the first 15 min in 5 min increments.
As Figure 2D depicts, a linear and positive rate dependence on the concentrations of
acetophenone confirms the crucial catalytic role of aromatic aldehydes and ketones in this
autocatalytic process. This result also suggests that the rate-determining transition state
might integrate both the excited triplet aldehydes (or ketones) and alcohol substrates.

Based on the above analysis, a plausible mechanism for this catalyst-free oxidation
was proposed (Scheme 2). At the induction stage, traces of aldehyde (III) contained in
alcohol (I) were excited by UVA light through an electron transition n→π* to III*. An
HAT from I to III* led to the formation of α-hydroxy radical II, which was captured by
O2 to form the species IV. IV underwent β-elimination to allow for the release of the
aldehyde III and HOO• (Scheme 2a). Following this auto-acceleration stage, the aggressive
HAT species HOO• enabled a more efficient formation of II from I as the rate-limiting
step, driven by the thermodynamically favored formation of H2O2 (bond dissociation
energies of H-O bonds in H2O2 is about 87 Kcal/mol) [36,37]. Importantly, a dominant
cascade from I→II→IV→III (Cascade A, Scheme 2b) eased the desired cycling of HOO•

and propagation of II, which could boost the oxidation reaction. The light-driven oxidation
of III by O2 (or HOO•, rather than H2O2) then readily produced the ultimate aromatic
acid (VI). In addition to Cascade A, two alternative paths from II to III were also assumed
as related studies [25,26] (Scheme 2c), including Cascade B (II→V→III, marked with red
arrows) and Cascade C (II→IV→V→III, marked with green arrows). Since Cascade B is a
radical–radical termination, we confirmed that it should not be involved as the dominant
cascade. In terms of Cascade C, it fails to explain the cruciality of HOO• for the overall
chain transfer that was confirmed by the above-described BQ-quenching results. To further
evaluate the rationality of the proposed mechanism, density functional theory calculations
(DFT) were performed with the Gaussian16 software package at the b3lyp/6-311++G*
level of theory [38]. As shown in Figure 3a, III* that is formed from III by UVA induction
(+74.3 Kcal/mol) abstracted a hydrogen atom from I to generate two molecules of II
(+37.1 Kcal/mol). As shown in Figure 3b, HOO• was cycled via Cascade A (I→II→IV→III,
−56.1 Kcal/mol), wherein each step was thermodynamically favored. In this cascade,
HAT from I by HOO• was the rate-determining step. In comparison, Cascade B shown
in Figure 3c was less favored, since it must start from high-potential intermediate II. This
cascade should base on the initiating process of III* + I→II as the rate-determining step,
which requires overcoming a relatively higher energy barrier of +37.1 Kcal/mol. Hereto, the
critical operative ROS and its evolution, the turnover rate-limiting step, and the dominant
radical cascade were clarified.
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3. Experimental Section
3.1. General Information

The starting materials and reagents were commercially purchased and used without
further purification, unless specifically mentioned. Gas chromatography–mass spectrom-
etry (GC–MS) was carried out on Thermo Fisher Trace 1300 gas chromatograph systems
(Thermo Fisher, Norristown, PA, USA) using a TRACE TR-5MS GC chromatographic
column. NMR spectra were recorded on a Bruker WM 400 spectrometer (Billerica, MA,
USA) (400 MHz for 1H, 100 MHz for 13C, and 376 MHz for 19F) at 298 K, unless other-
wise indicated. Chemical shifts δ are given in ppm, using residual solvent as an internal
standard. Coupling constants J are reported in Hz. High-resolution mass spectra were
obtained on Acquity UPLC/XEVO G2-XS QTOF (Waters, MA, USA), equipped with a
linear ion trap and orbitrap analyzers (Thermo Scientific, Waltham, MA, USA). The EPR
measurements were performed on a Bruker Model A200 spectrometer (Bruker Instrument,
Karlsruhe, Germany) equipped with a Bruker ER4112SHQ X-band resonator. UVvvis
spectra were recorded on a TU-1900 UV–vis spectrophotometer (Shimadzu, Kyoto, Japan).
The progress of the reactions was monitored by thin-layer chromatography using TLC
plates and visualized by shortwave ultraviolet light. Flash chromatography was performed
with Qingdao Dingkang flash silica gel (Qingdao Dingkang Silicone Co., Ltd, Qingdao,
China) (200–300 mesh). Melting points were measured on a WRS-1C Melt-Temp apparatus
(Wuhan Bonnin Technology Ltd., Wuhan, China) and were uncorrected. The photocatalytic
reactions were performed using 10 mL or 30 mL quartz tubes placed in the parallel light re-
action instrument, and the model was Titan PR-6 (Figure S1). The reaction temperature was
measured using a thermometer when the reactions were complete, and reproducible results
(20–25 ◦C) indicated that the reactions were performed consistently within this range.

3.2. General Procedure for the Oxidation

Alcohol substrate (1 mmol) and DCE (2 mL) were added in a 10 mL quartz tube, which
was then vacuumed and purged with nitrogen via a nitrogen balloon three times. Then,
the tube was placed into the reactor and the reaction mixture was stirred vigorously under
UV irradiation (365 nm, 25 W) for a given time. The reaction was monitored with TLC. At
the end of the reaction, the mixture was concentrated under vacuum to remove the solvent.
The residue was purified over a column of silica gel to afford the corresponding carbonyls.

Compounds 1–38c were synthesized according to this procedure.

3.3. Characterization Data of Products 1–38c

Benzoic acid (1c) [39]: white solid (113 mg, 93% yield); mp 124–125 ◦C; 1H NMR
(400 MHz, CDCl3) δ 12.41 (s, 1H), 8.14 (dt, J = 8.4, 1.5 Hz, 2H), 7.65–7.58 (m, 1H), 7.51–7.45
(m, 2H); 13C NMR (400 MHz, CDCl3) δ 172.74, 133.93, 130.33, 129.45, 128.59.

4-Methylbenzoic acid (2c) [39]: white solid (122 mg, 90% yield); mp 181–183 ◦C; 1H
NMR (400 MHz, DMSO-d6) δ 12.81 (s, 1H), 7.85 (d, J = 8.1 Hz, 2H), 7.26 (d, J = 8.1 Hz, 2H),
2.33 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 167.81, 143.42, 129.78, 129.50, 128.48, 21.50.

3-Methylbenzoic acid (3c) [39]: white solid (118 mg, 87% yield), mp 112–13 ◦C; 1H NMR
(400 MHz, DMSO-d6) δ 12.33 (s, 1H), 7.85–7.68 (m, 2H), 7.42–7.31 (m, 2H), 2.33 (s, 3H);
13C NMR (101 MHz, DMSO-d6) δ 167.91, 138.28, 133.83, 131.18, 130.18, 128.81, 126.90, 21.19.

Biphenyl-4-carboxylic acid (4c) [39]: white solid (186 mg, 94% yield); mp 221–224 ◦C; 1H
NMR (400 MHz, DMSO-d6) δ 12.98 (s, 1H), 8.03 (d, J = 8.4 Hz, 2H), 7.81 (d, J = 8.4 Hz, 2H),
7.74 (d, J = 7.2 Hz, 2H), 7.51 (t, J = 7.5 Hz, 2H), 7.43 (t, J = 7.3 Hz, 1H); 13C NMR (101 MHz,
DMSO-d6) δ 167.59, 144.75, 139.48, 130.42, 130.12, 129.54, 128.74, 127.42, 127.27.

4-tert-Butylbenzoic acid (5c) [40]: white solid (160 mg, 90% yield), mp 164–165 ◦C (lit [40]
164.5–165.5 ◦C); 1H NMR (400 MHz, DMSO-d6) δ 12.75 (s, 1H), 7.91 (d, J = 8.5 Hz, 2H), 7.40
(d, J = 8.5 Hz, 2H), 1.20 (s, 9H); 13C NMR (101 MHz, DMSO-d6) δ 167.75, 156.03, 129.69,
128.59, 125.54, 34.97, 31.15.
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4-Methoxybenzoic acid (6c) [41]: white solid (134 mg, 88% yield); mp 185–186 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 12.67 (s, 1H), 7.91 (d, J = 8.0 Hz, 2H), 7.09–6.92 (m, 2H),
3.82 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 167.49, 163.28, 131.80, 123.40, 114.23, 55.84.

4-phenoxybenzoic acid (7c) [42]: white solid (182 mg, 85% yield); mp 159–161 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 8.05–7.89 (m, 2H), 7.43 (tt, J = 7.6, 2.2 Hz, 2H), 7.26–7.17
(m, 1H), 7.16–7.05 (m, 2H), 7.05–6.97 (m, 2H); 13C NMR (101 MHz, DMSO-d6) δ 167.25,
161.43, 155.56, 132.12, 130.72, 125.06, 120.36, 117.60.

4-Acetyloxybenzoic acid (8c) [42]: white solid (180 mg, 84% yield); mp 189–192 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 12.53 (s, 1H), 8.09–7.96 (m, 2H), 7.27 (s, 2H), 2.29 (s, 3H);
13C NMR (101 MHz, DMSO-d6) δ 169.28, 167.13, 154.38, 131.32, 128.86, 122.45, 21.24.

4-Acetamido benzoic acid (9c) [43]: white solid (170 mg, 93% yield); mp 260–262 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 12.67 (s, 1H), 10.18 (s, 1H), 7.93 (d, J = 8.7 Hz, 2H), 7.72 (d,
J = 8.7 Hz, 2H), 2.09 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 169.35, 167.50, 143.73, 130.83,
125.39, 118.73, 24.49.

4-Fluorobenzoic acid (10c) [41]: white solid (132 mg, 94% yield); mp 180–182 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 13.02 (s, 1H), 8.00 (dd, J = 8.3, 5.8 Hz, 2H), 7.28 (t,
J = 8.8 Hz, 2H); 13C NMR (101 MHz, DMSO-d6) δ 166.83, 165.35 (d, J = 250.6 Hz), 132.51,
127.78, 115.96 (d, J = 22.0 Hz); 19F NMR (376 MHz, DMSO-d6) δ -106.92.

4-Chlorobenzoic acid (11c) [42]: white solid (150 mg, 95% yield); mp 241–243 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 13.15 (s, 1H), 7.94 (s, 2H), 7.53 (s, 2H); 13C NMR (101 MHz,
DMSO-d6) δ 166.92, 138.26, 131.55, 130.07, 129.10.

4-Bromobenzoic acid (12c) [39]: white solid (174 mg, 88% yield); mp 252–254 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 13.19 (s, 1H), 7.87 (s, 2H), 7.69 (s, 2H); 13C NMR (101 MHz,
DMSO-d6) δ 167.07, 132.11, 131.72, 130.44, 127.33.

2,4-Dichlorobenzoic acid (13c) [39]: white solid (164 mg, 86% yield); mp 161–162 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 13.38 (s, 1H), 7.80 (d, J = 8.4 Hz, 1H), 7.58 (d, J = 2.0 Hz,
1H), 7.43 (dd, J = 8.4, 2.0 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 166.18, 137.03, 133.69,
132.86, 130.59, 130.32, 127.74.

3,4-Dichlorobenzoic acid (14c) [39]: white solid (172 mg, 90% yield); mp 209–210 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 13.30 (s, 1H), 8.07 (d, J = 1.9 Hz, 1H), 7.89 (dd, J = 8.4,
1.9 Hz, 1H), 7.78 (s, 1H); 13C NMR (101 MHz, DMSO-d6) δ 165.87, 136.24, 131.97, 131.82,
131.46, 131.40, 129.74.

2-Chloro-4-fluorobenzoic acid (15c) [42]: white solid (162 mg, 90% yield); mp 180–181 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 13.48 (s, 1H), 7.91 (dd, J = 8.7, 6.3 Hz, 1H), 7.56 (dd, J = 8.9,
2.6 Hz, 1H), 7.33 (td, J = 8.6, 2.5 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 166.17, 163.60
(d, J = 252.8 Hz), 134.17 (d, J = 11.1 Hz), 133.74 (d, J = 9.8 Hz), 128.07 (d, J = 3.5 Hz), 118.54
(d, J = 25.2 Hz), 114.98 (d, J = 21.3 Hz); 19F NMR (376 MHz, DMSO-d6) δ -106.75.

4-Cyanobenzoic acid (16c) [42]: white solid (121 mg, 82% yield); mp 221–222 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 13.41 (s, 1H), 8.01 (d, J = 8.3 Hz, 2H), 7.85 (d, J = 8.3 Hz,
2H); 13C NMR (101 MHz, DMSO-d6) δ 166.42, 135.19, 132.85, 130.26, 118.52, 115.49.

4-Acetylbenzoic acid (17c) [42]: white solid (142 mg, 94% yield); mp 207–209 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 13.34 (s, 1H), 8.05 (s, 4H), 2.63 (s, 3H); 13C NMR (101 MHz,
DMSO-d6) δ 198.17, 167.10, 140.28, 129.91, 128.77, 27.46.

4-(Trifluoromethyl) benzoic acid (18c) [41]: white solid (171 mg, 90% yield); mp 218–219 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 13.34 (s, 1H), 8.12 (d, J = 8.1 Hz, 2H), 7.82 (d, J = 8.2 Hz,
2H); 13C NMR (101 MHz, DMSO-d6) δ 166.64, 135.01, 132.78 (q, J = 32.0 Hz), 130.49, 125.90,
124.21 (d, J = 272.7 Hz); 19F NMR (376 MHz, DMSO-d6) δ -61.82.

4-(Trifluoromethoxy) benzoic acid (19c) [44]: white solid (190 mg, 92% yield); mp 152–153 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 13.24 (s, 1H), 8.11–7.98 (m, 2H), 7.39 (d, J = 8.1 Hz, 2H);
13C NMR (101 MHz, DMSO-d6) δ 166.62, 151.90, 132.02, 130.23, 120.87, 120.82 (m); 19F NMR
(376 MHz, DMSO-d6) δ -57.32.

4-Nitrobenzoic acid (20c) [44]: white solid (62 mg, 37% yield); mp 241–242 ◦C; 1H NMR
(400 MHz, DMSO-d6) δ 12.42 (s, 1H), ), 8.30–8.23 (m, 2H), 8.15–8.08 (m, 2H); 13C NMR
(101 MHz, DMSO-d6) δ 166.21, 150.36, 136.75, 131.07, 124.05.
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Terephthalic acid (21c) [39]: white solid (151 mg, 91% yield); mp 318–321 ◦C; 1H NMR
(400 MHz, DMSO-d6) δ 13.31 (s, 2H), 8.04 (s, 4H); 13C NMR (101 MHz, DMSO-d6) δ 167.13,
134.88, 129.90.

2-Thiophenic acid (22c) [41]: white solid (119 mg, 93% yield); mp 126–127 ◦C; 1H NMR
(400 MHz, DMSO-d6) δ 13.02 (s, 1H), 7.79 (dd, J = 5.0, 1.3 Hz, 1H), 7.73 (dd, J = 3.7, 1.3 Hz,
1H), 7.13 (dd, J = 5.0, 3.7 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 163.43, 135.16, 133.62,
133.46, 128.56.

4-Bromo-2-thiophenecarboxylic acid (23c) [45]: white solid (190 mg, 92% yield); mp
122–124 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 12.49 (s, 1H), 7.91 (s, 1H), 7.62 (s, 1H);
13C NMR (101 MHz, DMSO-d6) δ 162.60, 138.30, 134.29, 130.44, 109.71.

1-Methyl-1H-pyrazole-5-carboxylic acid (24c) [46]: white solid (97 mg, 77% yield); mp
222–225 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 12.25 (s, 1H), 7.49 (s, 1H), 6.81 (s, 1H), 4.07 (s,
3H); 13C NMR (101 MHz, DMSO-d6) δ 161.16, 137.89, 133.39, 111.44, 39.58.

Nicotinic Acid (25c) [47]: white solid (109 mg, 89% yield); mp 236–238 ◦C; 1H NMR
(400 MHz, DMSO-d6) δ 9.07 (s, 1H), 8.76 (d, J = 4.7 Hz, 1H), 8.25 (d, J = 7.9 Hz, 1H), 7.50
(dd, J = 7.7, 5.0 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 166.71, 153.56, 150.62, 137.41,
127.02, 124.16.

4-Pyridinecarboxylic acid (26c) [48]: white solid (91 mg, 74% yield); mp 314–315 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 13.20 (s, 1H), 8.78 (d, J = 4.8 Hz, 2H), 7.82 (d, J = 4.8 Hz,
2H); 13C NMR (101 MHz, DMSO-d6) δ 166.65, 151.07, 138.52, 123.21.

Quinoline-3-carboxylic acid (27c) [49]: white solid (137 mg, 79% yield); mp 277–279 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 13.25 (s, 1H), 9.32 (s, 1H), 8.98 (s, 1H), 8.19 (d, J = 8.2 Hz,
1H), 8.10 (d, J = 8.5 Hz, 1H), 7.91 (t, J = 7.7 Hz, 1H), 7.71 (t, J = 7.5 Hz, 1H); 13C NMR
(101 MHz, DMSO-d6) δ 166.78, 150.28, 149.54, 138.94, 132.38, 130.01, 129.22, 127.92, 127.04,
124.07.

2-Phenylquinoline-4-carboxylic acid (28c) [50]: white solid (167 mg, 67% yield); mp
214–215 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 13.78 (s, 1H), 8.71 (d, J = 8.5 Hz, 1H), 8.48 (s,
1H), 8.28 (d, J = 7.4 Hz, 2H), 8.16 (d, J = 8.4 Hz, 1H), 7.82 (t, J = 7.6 Hz, 1H), 7.68 (t, J = 7.7 Hz,
1H), 7.53 (dt, J = 12.0, 6.9 Hz, 3H); 13C NMR (101 MHz, DMSO-d6) δ 168.12, 156.22, 148.88,
138.37, 137.96, 130.56, 130.36, 130.24, 129.38, 128.15, 127.65, 125.90, 123.98, 119.68.

Acetophenone (29c) [39]: colorless oil (109 mg, 89% yield); 1H NMR (400 MHz, CDCl3)
δ 7.93 (d, J = 7.5 Hz, 2H), 7.52 (t, J = 7.3 Hz, 1H), 7.42 (t, J = 7.6 Hz, 2H), 2.56 (s, 3H);
13C NMR (101 MHz, CDCl3) δ 198.05, 137.06, 133.08, 128.55, 128.27, 26.57.

4′-Methylacetophenone (30c) [39]: colorless oil (122 mg, 91% yield); 1H NMR (400 MHz,
DMSO-d6) δ 7.85 (d, J = 7.7 Hz, 2H), 7.31 (d, J = 7.8 Hz, 2H), 2.54 (s, 3H), 2.36 (s, 3H);
13C NMR (101 MHz, DMSO-d6) δ 197.78, 143.90, 134.84, 129.61, 128.70, 26.96, 21.54.

4′-Methoxyacetophenone (31c) [40]: colorless oil (116 mg, 77% yield); 1H NMR (400 MHz,
DMSO-d6) δ 7.92 (d, J = 8.9 Hz, 2H), 7.00 (d, J = 8.9 Hz, 2H), 3.82 (s, 3H), 2.50 (s, 3H);
13C NMR (101 MHz, DMSO-d6) δ 196.57, 163.52, 130.85, 130.33, 114.16, 55.82, 26.66.

4′-Chloroacetophenone (32c) [51]: colorless oil (147 mg, 95% yield).; 1H NMR (400 MHz,
DMSO-d6) δ 7.93–7.83 (m, 2H), 7.52–7.36 (m, 2H), 2.53 (s, 3H); 13C NMR (101 MHz, DMSO-
d6) δ 196.82, 138.63, 135.72, 130.25, 128.98, 26.80

4′-Trifluoromethylacetophenone (33c) [52]: colorless liquid (171 mg, 91% yield); 1H NMR
(400 MHz, CDCl3) δ 8.04 (d, J = 8.2 Hz, 2H), 7.70 (d, J = 8.2 Hz, 2H), 2.63 (s, 3H); 13C NMR
(101 MHz, Chloroform-d) δ 196.90, 139.63, 134.29 (q, J = 32.7 Hz), 128.57, 125.59, 123.58 (d,
J = 272.6 Hz), 26.64; 19F NMR (376 MHz, CDCl3) δ -63.23.

3,4-Dihydronaphthalen-1(2H)-one (34c) [53]: colorless liquid (124 mg, 85% yield);
1H NMR (400 MHz, DMSO-d6) δ 7.89 (d, J = 7.8 Hz, 1H), 7.50 (t, J = 7.4 Hz, 1H), 7.36–7.24
(m, 2H), 2.89 (t, J = 5.9 Hz, 2H), 2.56 (t, J = 6.4 Hz, 2H), 1.99 (p, J = 5.9 Hz, 2H); 13C NMR
(101 MHz, DMSO-d6) δ 197.73, 145.01, 133.74, 132.59, 129.36, 126.87, 126.70, 39.05, 29.37,
23.34.

Benzophenone (35c) [52]: colorless solid (160 mg, 88% yield), mp 47–49 ◦C; 1H NMR
(400 MHz, DMSO-d6) δ 7.73 (d, J = 7.8 Hz, 4H), 7.67 (t, J = 7.4 Hz, 2H), 7.55 (t, J = 7.5 Hz,
4H); 13C NMR (101 MHz, DMSO-d6) δ 196.23, 137.46, 133.10, 130.06, 128.98.
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Cyclohexyl(phenyl)methanone (36c) [52]: white solid (164 mg, 87% yield); mp 55–56 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 7.95 (d, J = 7.8 Hz, 2H), 7.62 (t, J = 7.3 Hz, 1H), 7.52 (t,
J = 7.5 Hz, 2H), 3.38 (d, J = 11.0 Hz, 2H), 1.72 (td, J = 26.8, 24.5, 12.7 Hz, 5H), 1.36 (dp,
J = 23.6, 11.7, 10.9 Hz, 4H), 1.17 (q, J = 12.1 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ
203.50, 136.24, 133.34, 129.18, 128.51, 44.86, 29.51, 26.06, 25.58.

2-Acetylthiophene (37c) [54]: light brown liquid (107 mg, 85% yield); 1H NMR (400 MHz,
CDCl3) δ 7.51 (d, J = 3.7 Hz, 1H), 7.45 (d, J = 5.0 Hz, 1H), 6.94–6.90 (m, 1H), 2.34 (s, 3H);
13C NMR (101 MHz, CDCl3) δ 190.57, 144.35, 133.82, 132.69, 128.19, 26.66.

Phenyl(thiophen-2-yl)methanone (38c) [55]: colorless solid (162 mg, 86% yield); mp
55–57 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.89-7.83 (m, 2H), 7.70 (d, J = 4.9 Hz, 1H), 7.65–7.61
(m, 1H), 7.58 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.5 Hz, 2H), 7.18–7.11 (m, 1H); 13C NMR
(101 MHz, CDCl3) δ 188.20, 143.60, 138.11, 134.95, 134.32, 132.33, 129.17, 128.46, 128.08.

4. Conclusions

In summary, an external-catalyst-free UVA-light-driven aerobic oxidation method was
established in the presence of DCE solvent. It enables the high-yielding synthesis of various
(hetero)aromatic acids and ketones. Comprehensive mechanistic investigations clarified
the autocatalytic character of the oxidation, driven by the UVA-sensitivity of carbonyl
groups in aromatic aldehydes and ketones. HOO• proved to be the operative ROS as the
real chain carrier involved in the primary radical cascade, and, thereby, the ambiguities and
irrationality in previous reports have been revised. The present work serves as a cautionary
note on strict mechanistic identification for UVA-driven redox reactions that involve the
generation of aromatic aldehydes and ketones.
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