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Abstract: Volatile oils or essential oils (EOs) were extracted from three V. sebifera samples (labeled as
A, B, and C) in September 2018 and February 2019; the extraction process involved hydrodistillation
of the leaves. The chemical compositions of the EOs were analyzed using gas chromatography-
mass spectrometry (GC/MS). The volatile components were identified by comparing their retention
indices and mass spectra with standard substances documented in the literature (ADAMS). The
antioxidant activity of the EOs was evaluated using 2, 2-diphenyl-1-picrylhydrazyl (DPPH), while
their toxicity was assessed using Artemia salina Leach. Molecular docking was utilized to examine
the interaction between the major constituents of V. sebifera EO and acetylcholinesterase (AChE), a
molecular target linked to toxicity in A. salina models. The EO obtained from specimen A, collected
in September 2018, was characterized by being primarily composed of (E,E)-α-farnesene (47.57%),
(E)-caryophyllene (12.26%), and α-pinene (6.93%). Conversely, the EO from specimen A, collected
in February 2019, was predominantly composed of (E,E)-α-farnesene (42.82%), (E)-caryophyllene
(16.02%), and bicyclogermacrene (8.85%), the EO from specimen B, collected in September 2018,
primarily contained (E,E)-α-farnesene (47.65%), (E)-caryophyllene (19.67%), and α-pinene (11.95%),
and the EO from the leaves collected in February 2019 was characterized by (E,E)-α-farnesene
(23.57%), (E)-caryophyllene (19.34%), and germacrene D (7.33%). The EO from the leaves collected in
September 2018 contained (E,E)-α-farnesene (26.65%), (E)-caryophyllene (15.7%), and germacrene
D (7.72%), while the EO from the leaves collected in February 2019 was primarily characterized by
(E,E)-α-farnesene (37.43%), (E)-caryophyllene (21.4%), and α-pinene (16.91%). Among these EOs,
sample B collected in February 2019 demonstrated the highest potential for inhibiting free radicals,
with an inhibition rate of 34.74%. Conversely, the EOs from specimen A exhibited the highest toxic
potentials, with an lethal concentration 50 (LC50) value of 57.62 ± 1.53 µg/mL, while specimen B
had an LC50 value of 74.72 ± 2.86 µg/mL. Molecular docking results suggested that hydrophobic
interactions significantly contributed to the binding of the major compounds in the EO from sample
B to the binding pocket of AChE.
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1. Introduction

Virola sebifera, a species from the Myristicaceae family, is a tree indigenous to the
tropical regions of South and Central America. Often referred to as “Ucuuba,” it has a
long-standing history of traditional medicinal use. The bark, leaves, and fruits of V. sebifera
are traditionally employed in folk medicine due to their acknowledged anti-inflammatory,
analgesic, and antispasmodic properties [1,2]. The plant boasts a diverse assortment
of compound classes, including alkaloids, flavonoids, terpenes, and lignans, which are
instrumental in producing its therapeutic effects [3,4]. In recent times, V. sebifera has gained
prominence as a key ingredient in the cosmetic industry, primarily due to its moisturizing
and nourishing attributes. Additionally, it is rich in essential oils (EOs), which are renowned
for their medicinal properties and can be extracted from its bark, leaves, and fruits [5,6].

The EO derived from V. sebifera is notably rich in monoterpenes and sesquiterpenes.
These compounds possess a range of beneficial properties, including anti-inflammatory,
antioxidant, analgesic, antifungal, and antibacterial activities [7,8]. The oil is commonly
obtained through steam distillation, as well as hydrodistillation from various parts of the
plant, such as the bark, leaves, and other relevant plant components [9,10]. EOs are concen-
trated extracts derived from plants and are widely used in aromatherapy, massages, and
other holistic therapies due to their natural properties. Each essential oil has a distinctive
chemical composition, which directly contributes to its unique therapeutic potential [11,12].
For instance, the Lavandula spp. essential oil is recognized for its antifungal, antibacterial,
smooth muscle relaxant, antidepressant, and sedative properties, and peppermint oil is
commonly utilized for relieving symptoms of nausea and vomiting [13]. Depending on
the specific oil and its intended usage, EOs can be consumed, breathed, or used topically.
However, it is crucial to note that not all EOs are acceptable for internal intake, and con-
sumption should only be carried out with the approval of a trained healthcare practitioner.
Topical application and inhalation are more common and considered safe for most EOs
when used appropriately [14]. Certain EOs are quite potent; thus, it is imperative to use
caution and moderation when utilizing them. Some individuals may be more sensitive to
certain EOs and experience skin irritation or allergic reactions. Before using the essential
oil more broadly, it is advisable to conduct a patch test on a small patch of skin, as well
as adhere to the recommended dilution guidelines; if any adverse reactions occur, it is
advisable to discontinue use and seek medical advice if needed [15].

It is crucial to conduct studies on the toxicity of EOs. The brine shrimp lethality assay
(BSLA) method is a widely used and cost-effective approach for evaluating the preliminary
toxicity of various substances, including EOs. This assay provides valuable information
regarding the potential toxicity of EOs and serves as a simple screening tool in early toxicity
assessments [16]. The BSLA utilizes A. salina larvae, commonly known as brine shrimp, as a
model organism. These larvae are known to be sensitive to a wide range of toxic substances,
making them a suitable model for initial toxicity screening. The assay involves exposing the
brine shrimp larvae to different concentrations of a substance, such as an essential oil, and
observing their mortality rate. The results obtained from the BSLA can provide valuable
insights into the potential toxicity of the tested substance [17]. The BSLA is conducted
as follows. Brine shrimp larvae are hatched and exposed to a solution containing the
substance under investigation. The larvae are then monitored for a designated period,
often 24 h, and the number of deceased larvae is recorded. The toxicity of the substance is
quantified as the lethal concentration 50 (LC50) value, which signifies the concentration at
which 50% of the larvae perish. EOs have been found to exhibit varying levels of toxicity in
the BSLA. The specific oil being tested, the concentration used, and the length of exposure
to the larvae are some of the variables that can affect an essential oil’s toxicity in the
BSLA. By assessing these factors, the BSLA offers valuable insights into the toxicity profiles
of EOs [18–20]. Notably, although BSLA is a useful tool for initial toxicity screening, it
should not be considered a substitute for comprehensive toxicity testing in animal models
and humans; while it offers preliminary data regarding a substance’s potential toxicity,
it is not always accurate in forecasting the toxicity levels and outcomes in more complex
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species. To fully assess the safety and toxicity of EOs, additional research with suitable
animal models and, eventually, clinical trials including humans are required. These studies
provide a more precise understanding of the safety profile and potential dangers related to
the use of EOs by considering variables including dosage, systemic effects, and potential
interactions [21,22].

The molecular modeling of A. salina AChE employs computational techniques to
investigate its 3D structure and function at the molecular level [23]. AChE is a crucial
enzyme involved in the regulation of the neurotransmitter acetylcholine in the nervous
system of A. salina and other organisms [24,25]. The design of new medications or inhibitors
targeting AChE can benefit from this molecular modeling, which illuminates the enzyme’s
mechanism of action. These simulations offer insights into the protein structure’s dynamics
and stability, as well as the interactions between AChE and its ligands [26,27]. Molecu-
lar modeling of AChE has been instrumental in designing new drugs for the treatment
of Alzheimer’s disease, a condition characterized by a decrease in brain acetylcholine
levels [28]. Furthermore, molecular modeling has been utilized to examine the impact
of environmental toxins on AChE activity in A. salina, providing insights into these com-
pounds’ toxicity mechanisms [29]. In this context, this study aims to reveal new information
about the chemical composition of V. sebifera EOs and to assess its biological potential and
molecular interaction mechanism with AChE.

2. Results
2.1. Yield of 2 EOs

Table 1 lists the yield of EOs (mL/80 g) extracted from the leaves of three V. sebifera
specimens (A, B, and C), collected in September 2018 and February 2019, as well as their
respective moisture contents (%), illustrating the variations in the essential oil contents
across the specimens.

Table 1. Moisture Content and Yield of EOs.

Specimen A Specimen B Specimen C

September/2018 February/2019 September/2018 February/2019 September/2018 February/2019

Moisture (%) 9.44 10.72 10.5 11.39 8.95 10.70
Yield (%) 0.69 0.8 0.55 0.7 0.54 0.69

The highest oil production was recorded in February, with values of 0.8, 0.7, and
0.69 for specimens A, B, and C, respectively. Specimen A consistently demonstrated the
highest content during both collection periods. The yield obtained during our study
typically surpassed yields from the EOs of V. calophylla, V. multinervia, and V. pavonis, which
exhibited contents of 0.19%, 0.10%, and 0.12%, respectively [30].

2.2. Chemical Composition

Table 2 lists the 72 chemical constituents identified in the EOs derived from the leaves
of the three V. sebifera specimens. These specimens were collected in September 2018 during
the dry season, and in February 2019 during the rainy season.
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Table 2. Identified constituents in the EOs of three specimens of V. sebifera in September 2018 and
February 2019.

IRL IRC Constituents
Specimen A Specimen B Specimen C

September/2018 February/2019 September/2018 February/2019 September/2018 February/2019

924 924 α-Thujene 0.16 0.18 0.17 0.24
932 932 α-pinene 6.93 3.15 11.95 5.03 6.37 16.91
969 971 Sabinene 0.47 0.22 0.34 0.4 1.2
974 976 β-Pinene 0.7 1.14 0.52
981 984 6-Methyl-5-hepten-2-one 0.34 1.97
988 989 Myrcene 0.26 0.13 0.43

1002 1005 α-Phellandrene 0.11
1014 1016 α-Terpinene 0.1 0.07

1016 δ-2-Carene 0.1
1025 1028 Sylvestrene 0.6 0.59 0.28 0.4
1044 1045 (E)-β-Ocimene 0.03 0.07
1054 1057 γ-Terpinene 0.21 0.23 0.15
1086 1088 Terpinolene 0.07 0.06 0.04
1174 1177 Terpinen-4-ol 0.44 0.68 0.29 0.25 0.31 0.32
1186 1190 α-Terpineol 0.05 0.04
1284 1286 Bornyl acetate 0.04 0.04 0.04 0.04 0.05
1324 1326 Myrtenyl acetate 0.05 0.05 0.09 0.12
1335 1342 δ-Elemene 3.56 3.27 1.94 4.3 4.34 1.47
1345 1352 α-Cubebene 0.14 0.17 0.1 0.12
1374 1376 Isoledene 0.06 0.02
1374 1379 α-Copaene 0.47 0.53 0.09 0.41
1387 1389 ß-Bourbonene 0.13
1389 1396 ß-Elemene 1.97 2.23 1.74 1.75 1.79 2.15
1417 1430 (E)-caryophyllene 12.26 16.02 19.67 19.34 15.7 21.4
1430 1436 ß-Copaene 0.44 0.51 0.75
1434 1439 γ-elemene 2.7 2.92 6.81 7.01
1439 1445 Aromadendrene 0.64 0.84 0.67 0.63 0.7 0.61
1442 1448 6.9-Guaiadiene 0.8 0.35 0.48 0.25
1449 1451 Spirolepechinene 0.29
1458 1456 Alloaromadendrene 0.11 0.86
1452 1460 α-humulene 2.14 2.71 3.04 3.4 2.88 3.58
1460 1462 Dehydro aromadendrane 0.08 0.04
1464 1466 9-epi-(E)-caryophyllene 0.54 0.64 0.43 0.66 0.64 0.58
1478 1478 γ-Muurolene 0.75 0.05
1481 1479 γ-Himachalene 0.06 0.08
1484 1487 Germacrene D 3.14 2.81 7.33 7.72
1489 1491 β-selinene 0.42 0.45 0.41 0.46
1483 1492 α-Amorphene 0.16
1437 1494 α-Guaiene 0.38
1495 1497 γ-Amorphene 0.32 3.55 0.59
1500 1505 Bicyclogermacrene 5.69 8.85 5.6 7.29 5.63 5.5
1505 1522 (E.E)-α-Farnesene 47.57 42.82 47.65 23.57 26.65 37.43
1511 1528 δ-Amorphene 1.87 0.5
1522 1537 δ-Cadinene 1.08 1.2 0.29 1.68
1529 1541 (E)-γ-Bisabolene 0.37 0.32 0.12 0.25
1533 1543 trans-Cadina-1.4-diene 0.06 0.19
1537 1547 α-Cadinene 0.15
1548 1556 Elemol 0.16 0.13 0.47 0.67
1559 1566 Germacrene B 0.61 1.35 3.02 1.39
1577 1584 Spathulenol 0.38 0.93 0.22 1 0.73 0.85
1592 1591 Viridiflorol 1.48 1.79 1.04 2.31 2.28 1.7
1600 1608 Rosifoliol 0.24 0.24 0.18 0.25 0.25 0.23
1608 1613 Humulene epoxide II 0.05 0.06
1618 1621 1.10-di-epi-Cubenol 0.08
1632 1632 α-Acorenol 0.44
1627 1634 1-epi-Cubenol 0.13 0.43
1630 1638 γ-Eudesmol 0.28
1639 1642 Alloaromadendrene epoxide 0.2 0.04 0.22 0.17

1645 Naphth-1-ol 0.12
1640 1647 epi-α-Muurolol 0.4 0.78 0.9
1645 1649 Cubenol 0.06 0.15
1644 1652 α-Muurolol 0.22
1652 1656 Himachalol 0.11 0.58 0.32
1651 1658 Pogostol 0.27

1659 Selin-11-en-4α-ol 0.17
1652 1660 α-Cadinol 0.48 1.06
1671 1680 Tetradecanol 0.06

1685 1691 Germacra-4(15).5.10(14)-
trien-1-α-ol 0.04

1700 1700 Eudesm-7(11)-en-4-ol 0.03 0.09
1740 1744 Mint sulfide 0.04
1755 1767 α-Sinensal 0.02
1942 2114 Phytol 0.05

Monoterpene hydrocarbons 9.64 3.37 14.72 4.58 8.5 18.75
Monoterpene oxygenated 0.49 0.68 0.29 0.25 0.35 0.32

Sesquiterpene hydrocarbons 84.63 89.04 81.79 84.97 79.81 74.01
Sesquiterpene oxygenated 3.41 3.98 1.65 5.71 7.28 3.28

Others 0.09 0.43 0.25 4.04 0.19 2.14
Total 98.26 97.5 98.7 95.96 96.13 98.5



Molecules 2024, 29, 3431 5 of 20

The hydrocarbon monoterpene class constitutes a moderate percentage of the EO
composition. A notable quantitative variation is observed in this compound class when
comparing the percentages of these substances among different specimens collected during
the same period. However, no significant variation is detected in other compound classes.
For the EOs procured in September 2018, the percentage difference in the hydrocarbon
monoterpene class is relatively minor; specimens A, B, and C demonstrate percentages
of 9.64%, 14.72%, and 8.5%, respectively. In contrast, the oils collected in February 2019
show a substantial difference in these compounds’ quantities; specimens A and B exhibit
percentages of 3.37% and 4.58%, respectively, while specimen C presents a significantly
higher percentage of 18.75%, marking a difference of 15.38% and 14.17% compared to speci-
mens A and B, respectively. Furthermore, there is a notable variation in the hydrocarbon
monoterpene compounds’ content among the different EOs.

In this study, the class of oxygenated monoterpenes is the least represented in the
four essential oil samples obtained from the evaluated specimens. The essential oil from
specimen A contained 0.49% and 0.68% of oxygenated monoterpenes in September 2018
and February 2019, respectively. Specimen B exhibited 0.29% of these compounds in
September 2018, and in February 2019, the oxygenated monoterpenes showed the lowest
value among all the essential oil samples, with a mere 0.25% of these substances detected.

Sesquiterpene hydrocarbons were the predominant class of compounds in all three
specimens evaluated across both collection periods. In September 2018, these compounds
constituted 84.63% of the EO in specimen A, increasing to 89.04% in February 2019, the
highest recorded percentage of sesquiterpene hydrocarbons across all samples. In specimen
B, the sesquiterpene hydrocarbons made up 81.79% and 84.97% of the EO in September 2018
and February 2019, respectively. Meanwhile, specimen C contained 79.81% sesquiterpene
hydrocarbons in September 2018, decreasing to 74.01% in February 2019.

Oxidized sesquiterpenes constituted 4.41% and 4.98% of the EO in specimen A in
the September 2018 and February 2019 collections, respectively. In contrast, specimen
B’s September 2018 collection exhibited the lowest concentration of this compound class
among the evaluated EOs, comprising only 1.65% of the total. However, by February
2019, the concentration had risen to 5.71%, attributable to the emergence of substances not
previously identified in the September 2018 essential oil. The September 2018 EO collection
from specimen C revealed the highest oxidized sesquiterpenes concentration; during this
period, these compounds accounted for 7.28% of the oil’s molecular composition, while in
February 2019, the same specimen contained 3.28% of these compounds.

Figures 1 and 2 present the variations of the major chemical constituents (≥5%)
identified in the leaves of the three specimens.
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The transition from the dry to the rainy season in the Amazon region generally
influences the proportion of major constituents in the specimens. It is crucial to highlight
that the Amazon’s climatic shifts are marked by unique weather patterns. The dry season,
characterized by the hottest months of the year, sees temperatures reaching approximately
38 ºC; conversely, the rainy season is marked by frequent precipitation, the possibility of
cloud cover, and persistently high temperatures [31–33].

During both collection periods, the sesquiterpene hydrocarbon (E,E)-α-farnesene
was the predominant component in the oil samples from all three specimens, with its
concentration ranging from a low of 23.57% to a high of 47.65%; both of these extremes were
observed in specimen B, during the Amazonian summer and winter periods, respectively.
Specimens A and B were particularly notable for their production of this compound during
the Amazonian summer, with it constituting 47.57% and 47.65% of their respective oil
compositions; however, it is important to note that specimen C also produced a significant
amount of this compound during the same period, with it making up 26.65% of the essential
oil.

The shift from summer to the rainy season in the Amazon region influenced the
production of α-pinene, particularly in specimen C. This seasonal change resulted in a
reduction in this compound in specimens A and B; conversely, specimen C demonstrated
an increase in α-pinene production, with percentages rising from 6.37% in September 2018
to 16.91% in February 2019.

In general, the percentage of (E)-caryophyllene in the oil of the three specimens
increased during the transition from the Amazonian summer to winter. Only a very small
decrease (0.33%) in the quantity of this compound was observed in specimen B.

The EO of specimen B collected in September 2018 did not exhibit the presence of γ-
elemene. Similarly, this compound was absent in the EO of specimen C collected in February
2019, during the Amazonian winter. However, specimen A consistently produced a similar
percentage of this compound across both evaluated periods. These findings suggest that
the regional rainfall index may influence the production of γ-elemene. Although other
factors could potentially exist, our analysis primarily highlights this climatic influence due
to the varying collection times of the plant material throughout the year. A comparable
trend was observed for germacrene D, which was absent in the EOs from both specimen B
in September 2018 and specimen C in February 2019.

In the transition periods from summer to winter, specifically in September 2018 and
February 2019, the production of bicyclogermacrene saw an increase corresponding to the
times when the plant material was harvested.

The EOs examined in our study exhibited a chemical profile distinct from those of
V. calophylla, V. multinervia, and V. pavonis. The essential oil of V. calophylla is primarily
composed of β-caryophyllene (54.8%), bicyclogermacrene (10.0%), and α-humulene (8.6%);
the essential oil of V. multinervia was characterized by a predominance of β-caryophyllene
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(55.7%), caryophyllene oxide (9.8%), and α-humulene (5.0%); and the essential oil of
V. pavonis was characterized by the major compounds β-selinene (60.5%), β-caryophyllene
(12.7%), and β-Elemene (4.1%) [30].

Farnesene derivatives, including the primary component of the current sample, are
documented in the literature to possess biological properties, such as modulatory effects on
human neutrophil inflammation and potential antifungal activity against fungi prevalent in
apple trees [34,35]. (E)-caryophyllene demonstrates potential properties such as anticancer,
analgesic, repellent, and anti-inflammatory, among others [36,37]. α-pinene is known for its
antimicrobial, cytotoxic, and antitumor activities [38–40]. Bicyclogermacrene is associated
with larvicidal activity and antiviral activity against SARS-CoV-2 [41]. Germacrene D is
recognized for its anti-inflammatory, cytotoxic, analgesic, and anticancer properties [42,43].
γ-elemene is noted for its larvicidal, antibacterial, and antitumor activities [44–46].

Da Silva et al. [47] noted an increase in the secondary metabolism of aromatic plants,
specifically in the production of the sesquiterpenes germacrene D, bicyclogermacrene, and
elemene derivatives, during rainy periods. They note that this concentration increase
may be a strategic response to attract a new guild of pollinators, such as bees and flies,
which are more prevalent during these periods. Similarly, Cascaes et al. [48] suggested that
the Amazon region’s rainy season, characterized by higher relative humidity and lower
solar radiation, results in elevated levels of (E)-caryophyllene, germacrene D, elemene
derivatives, and bicyclogermacrene.

2.3. Antioxidant Capacity Equivalent to Trolox of V. sibifera Essential Oil

The Trolox equivalent antioxidant capacity (TEAC) by 2, 2-diphenyl-1-picrylhydrazyl
(DPPH) scavenging of the EO from specimen A collected in September 2018 and February
2019 was found to be 0.81 ± 0.05 (81.0% inhibition) and 0.73 ± 0.07 Mm (73.0% inhibition),
respectively; in the same period, specimen B exhibited values of 0.77 ± 0.04 (77.0% inhibi-
tion) and 0.83 ± 0.06 (83.0% inhibition) mM. As for the EO samples from specimen C, the
values were 0.71 ± 0.08 (71.0% inhibition) and 0.79 ± 0.09 (79.0% inhibition) mM for the
September 2018 and February 2019 collections, respectively (Figure 3).
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Figure 3. % Inhibition of Antioxidant capacity equivalent to Trolox by scavenging ABTS•+ and
DPPH• from V. sebifera. Values are expressed as mean and standard deviation (n = 3) of Trolox
equivalent antioxidant capacity by scavenging ABTS•+ and DPPH•.

In the ABTS•+ assay, the TEAC values for specimen A were recorded as 0.179 ± 0.005
(9.2% inhibition) and 0.065 ± 0.007 (3.6% inhibition) mM for the collections in Septem-
ber 2018 and February 2019, respectively. For specimen B, the recorded values were
0.082 ± 0.013 (4.16% inhibition) mM for September 2018 and 0.128 ± 0.007 (6.75% in-
hibition) mM for February 2019. Meanwhile, the TEAC values for specimen C were
0.093 ± 0.006 (4.95% inhibition) and 0.107 ± 0.004 (5.55% inhibition) mM for September
2018 and February 2019. The results demonstrated that the % inhibition of the DPPH
radical was higher in relation to the ABTS radical assay, indicating that the DPPH radical
quantification assay is more effective for evaluating the antioxidant activity of the oil. The
difference in antioxidant activities between the techniques used is due to the ability of the
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DPPH technique to be more sensitive and specific in the abstraction of hydrogen atoms
from phenolic groups in phenols or amino groups from aromatic amines, compared to
TEAC. In other words, the difference in antioxidant quantification is related to the tech-
niques and not to the solubility of the samples in water, with the DPPH technique being
more efficient for detecting antioxidant compounds in this plant.

The literature offers scant TEAC results for the essential oil (EO) derived from V. sebifera
specimens are scarce in the literature. However, Zhi et al. [49] and Zhao et al. [50] suggest
that the major components of V. sebifera, such as (E,E)-α-farnesene and other farnesene
derivatives, could potentially enhance its antioxidant capacity. Stanojevic et al. [51] reported
that the EO of Matricaria chamomilla flowers primarily consists of farnesene derivatives
(39.10%); they further noted that this EO demonstrates superior antioxidant properties
following a 90-min incubation period, with an EC50 value of 2.07 mg/mL.

(E)-caryophyllene, a significant component in the EO of V. sebifera, is known for its
ability to combat oxidative stress and mitochondrial dysfunction in the nervous system [52].
Dahham et al. [53] reported that this sesquiterpene demonstrates a TEAC by scavenging
DPPH• equivalent to 1.25 ± 0.06 µM. In the FRAP assay, the antioxidant capacity was
reported to be 3.23 ± 0.07 µM. These results, as per the authors, were marginally lower
than those of ascorbic acid, which exhibited a TEAC of 1.50 ± 0.03 µM and 3.80 ± 0.04 µM
for the DPPH• and FRAP assays, respectively.

Casiglia et al. [54] reported that the EO derived from the aerial parts of Kundmannia sicula
primarily contains germacrene D (81.20%). The authors noted that this oil demonstrates
significant scavenging activity against the ABTS•+ radical, with IC50 values of 14.5 µg/mL.
Similarly, Franco et al. [41] reported that the EO extracted from the leaves of a Myrcia tomentosa
specimen in the Amazon exhibited a comparable chemical composition to the specimens
analyzed, with γ-elemene (12.52%), germacrene D (11.45%), and (E)-caryophyllene (10.22%)
as the predominant components. They emphasized that this EO inhibits 53.60 ± 0.15% of
ABTS•+ radicals and 213.00 ± 0.91% of DPPH• radicals.

Giorgi et al. [55] demonstrated that the hexane, ethanolic, and ethanolic-aqueous
extracts from Bixa orellana seeds contain high concentrations of germacrene D, γ-elemene,
and (E)-caryophyllene. These extracts, according to the authors, are excellent sources of
antioxidant compounds with potential for DPPH• radical inhibition. Using in vitro analysis,
Shahriari et al. [56] reported that α-pinene exhibits the most effective inhibition of the AChE
enzyme, with an IC50 value of 0.8640 µL/mL; this was in contrast to trans-anethole and
thymol, which had IC50 values equivalent to 0.4900 and 0.1370 µL/mL, respectively.

Jeribi et al. [57] identified elevated concentrations of bicyclogermacrene in the EO
derived from the leaves, fruits, and seeds of Schinus terebinthifolius. These levels varied
between 23.56% and 35.58%. The authors noted that the EO extracted from the fruits,
despite having a lower bicyclogermacrene content, exhibited a higher total phenolic content,
leading to increased antioxidant activity.

Generally, sesquiterpenes exhibit a lower antioxidant capacity than monoterpenes and
phenylpropanoids [58]. Furthermore, organic compounds with conjugated carbon double
bonds and/or hydroxyl groups tend to donate hydrogen to free radicals; this action stabilizes
the radicals and mitigates the effects of lipid oxidation, a process responsible for the aggra-
vation of diseases associated with oxidative stress, such as Alzheimer’s disease, Parkinson’s
disease, and sclerosis, among others. Notable oxygenated compounds and/or those with
a double bond that exhibit potential free radical inhibition activity include linalool, thymol,
terpinen-4-ol, eucalyptol, limonene, terpilene, and pinene derivatives [59–66].

2.4. Toxicity Bioassay in Artemia salina

The calculation of the larval mortality rate was performed 24 h post-test. LC50 values
were ascertained by transforming the larval mortality percentage into probits. The EOs
tested demonstrated mortality rates between 51.17% and 70.92%, contingent on the con-
centration range. Table 3 displays the estimated mean LC50 values, accompanied by their
respective coefficients of determination.
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Table 3. LC50 values of the three specimens of V. sebifera collected in September in a toxicity test
against Artemia salina.

Especies Concentrations
(µg·mL−1)

Mortality
(%) R2 CL50 (µg·mL−1)

V. sebifera
(Specimen A)

200 76.67

0.6037 70.92 ± 2.22

150 46.67

100 46.67

50 40.00

25 36.67

V. sebifera
(Specimen B)

200 93.32

0.8619 72.17 ± 5.43

150 63.33

100 60.00

50 40.00

25 16.67

V. sebifera
(Specimen C)

200 93.33

0.73 51.17 ± 3.95

150 76,67

100 63.33

50 46.67

25 36.67

The microcrustacean A. salina is utilized in bioassays to screen for potentially toxic
substances. There are instances where toxicity towards A. salina aligns with toxicity towards
mammalian cells. As per the classification proposed by Ramos et al., essential oil is deemed
toxic if it displays an LC50 below 80 µg/mL [67], moderately toxic if it ranges within
80–250 µg/mL, and non-toxic or slightly toxic if it exceeds 250 µg/mL.

The bioassay results reveal a high toxicity level in the EOs derived from both spec-
imen A and specimen B of V. sebifera towards A. salina, with an LC50 equivalent to
70.92 ± 2.22 and 72.17 ± 5.43 µg/mL, respectively. Conversely, the essential oil from
specimen C demonstrated a lower toxicity level towards the microcrustaceans, with an
LC50 of 51.17 ± 3.95 µg/mL.

No literature reports exist on the preliminary toxicity of the essential oil from V. sebifera
and other species of the same genus towards A. salina. However, Anunciação et al. [68]
proposed that the EOs from the bark and leaves of V. surinamensis can be used as potential
phytopharmaceuticals in treating uterine colon cancer due to their toxicological effects on
this cancer type’s tumor cell lines. The authors further indicated that the essential oil from
the leaves primarily consists of sesquiterpene hydrocarbons such as α-farnesene (14.50%),
β-elemene (9.61%), and bicyclogermacrene (8.10%); conversely, the essential oil from the
branches predominantly contains aristolene (28.40%), α-gurjenene (15.00%), and valencene
(14.10%).

The toxicity of major components, particularly (E,E)-α-farnesene, has been minimally
reported. Satyal et al. [69] and Machado et al. [70] noted potential toxic effects. They found
that EOs from the aerial parts of Matricaria chamomilla and the leaves of Lantana camara,
which contain farnesene and (E)-caryophyllene derivatives as primary components, display
significant toxicity against A. salina, with LC50 values of 31.70 and 10.00 µg/mL, respectively.
Additionally, Machado et al. [70] demonstrated the toxic effects of farnesene derivatives
against Leishmania species.

Machado et al. [70] have reported that (E)-caryophyllene, a sesquiterpene, does not
exhibit any toxic effects against A. salina over a 24-h exposure period; Francomano et al. [71]
stated that this compound only demonstrates toxicity in humans when administered in
high concentrations. Mitić et al. [19] found that the EOs derived from the branches of three
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Abies genus species primarily contain α-pinene and its isomer β-cinene as major volatile
components. The authors have also noted that all EOs display high toxicity against A. salina,
with an LC50 value of less than 80 µg/mL.

Paudel et al. [72] identified the primary components of J. regia and J. nigra EOs as
farnesene derivatives, (E)-caryophyllene, and germacrene D. These EOs demonstrated
toxicity against A. salina, with LC50 values under 80 µg/mL. Similarly, Judžentienė and
Jurga Būdienė [73] found that the essential oil of Artemisia vulgaris primarily consists of
germacrene D (10.60–30.50%); they reported that Artemisia EOs display significant toxicity
in the bioassay with A. salina, with LC50 values between 10.25 and 19.11 µg/mL, revealing
that EOs with substantial amounts of germacrene D are notably more toxic.

Benelli et al. [44] reported that γ-elemene and (E,E)-α-farnesene demonstrate signifi-
cant larvicidal toxicity against the fourth instar larvae of Spodoptera litura, with LC50 values
of 10.64 and 16.77 µg mL−1, respectively. Govindarajan et al. [45] found that bicloger-
macrene is toxic to mosquitoes of the Anopheles subpictus, Anopheles albopictus, and Culex
tritaeniorhynchus species.

The analyzed EO activity against A. salina can be attributed to the presence of major
components, as well as the synergistic or antagonistic effects produced by all sample
components [36,74]. Generally, sesquiterpenes display greater toxicity than monoterpenes
and phenylpropanoids [75]. These effects may contribute to the toxic effects on A. salina
demonstrated by the essential oil from the three V. sebifera specimens.

The enzyme AChE is recognized as a target enzyme in aquatic organisms, including A.
salina. Natural products are extensively researched for their potential as AChE inhibitors,
given their potential utility in treating various neurological disorders [76–78]. Arslan
et al. [79] state that farnesene derivatives show considerable anti-AChE activity when com-
bined with β-amyloids, peptides used in the treatment of Alzheimer’s disease, exhibiting
inhibitory activity equivalent to 474.80 µm L−1 after 24 h of exposure and 413.80 µm L−1

after 48 h. The authors further proposed that the sesquiterpene and its derivatives may
serve as potentially safe, anti-necrotic, and neuroprotective agents against Alzheimer’s
disease.

The literature reports that (E)-caryophyllene exhibits anti-AChE activity [80,81]. This
sesquiterpene also synergistically interacts with phytocannabinoids, significantly enhanc-
ing its efficacy against AChE [82]. Formagio et al. [56] state that the essential oil of Psy-
chotria poeppigiana contains germacrene D (29.38%) and bicyclogermacrene (25.21%) as
major components; they claimed that this natural substance exhibits anti-AChE activity
and anti-hyperalgesic properties, and thus can be used to treat pain and inflammation.

The monoterpenoid α-pinene demonstrates activity against the AChE enzyme found
in bovine erythrocytes [83]. Calva et al. [84] reported that the essential oil derived from the
aerial parts of Myrteola phylicoides contains α-pinene (30.94%), (E)-caryophyllene (21.93%),
and β-pinene (14.45%) as its primary constituents and inhibits AChE at a concentration of
60.80 µg mL−1; they also emphasized that the main component of the essential oil does not
contribute significantly to its anti-AChE activities and that further research is required to
assess the interaction between the components present in this essential oil and AChE.

The sesquiterpene γ-elemene, a major component of the essential oil derived from
various Piper species in the Brazilian Amazon, was reported by Da Silva [85]. The author
noted that several Piper EOs display anti-AChE activity due to the presence of γ-elemene
and other elemene-derived components, which inhibit proliferation, stimulate apoptosis,
and induce cell cycle arrest in malignant cells. γ-elemene is among the antineoplastic
sesquiterpenes found in numerous medicinal plants [86]. Hussein et al. [87] reported that
the compound was docked with AChE with a binding affinity equivalent to −8.8 kcal mol−1

and subsequently exhibited hydrophobic interactions with acidic amino acid residues in the
catalytic triad (His439, Trp83, Phe329, and Tyr333) and PAS (Asp71, Trp83, Ser80, Tyr120,
Phe329, and Tyr333).
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2.5. Molecular Docking

Various molecular modeling techniques are utilized to decipher the molecular in-
teractions that facilitate the formation of complexes between natural compounds and
biomolecules [88,89]. We used molecular docking to evaluate the interaction between
the primary compounds of V. sebifera essential oil and the binding pocket of AChE. The
MolDock Scores for the complexes formed by AChE with the ligands (E,E)-α-farnesene,
(E)-caryophyllene, α-pinene, and bicyclogermacrene were −115.36, −103.68, −94.35, and
−96.08, respectively (Figure 4).
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The results indicate a spontaneous formation of the ligand-AChE complex. Follow-
ing the complex formation, we assessed the molecular binding mode and the chemical
interactions that sustain the compounds’ interaction with the enzyme’s active site (Figure 5).

Molecules 2024, 29, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 4. MolDock Score values of the evaluated complexes. 

The results indicate a spontaneous formation of the ligand-AChE complex. Following 
the complex formation, we assessed the molecular binding mode and the chemical inter-
actions that sustain the compounds’ interaction with the enzyme’s active site (Figure 5). 

 
Figure 5. Interaction conformations obtained by molecular docking for the compounds (A) (E,E)-α-
farnesene, (B) (E)-caryophyllene, (C) α-pinene, and (D) bicyclogermacrene. 

The primary factor directing ligand interaction within the protein binding cavity is 
hydrophobic interactions. (E,E)-α-farnesene establishes pi-alkyl interactions with TYR374, 
TYR71, TYR370, LEU479, TRP472, and TRP83, whereas van der Waals interactions are es-
tablished with ASN84, GLU80, and GLY79. (E)-caryophyllene create multiple pi-alkyl hy-
drophobic interactions with LEU479, TYR374, TYR370, TRP83, TYR71, and TRP472, along 
with three van der Waals interactions with GLY79, GLU80, and ASN84. α-pinene 

Figure 5. Interaction conformations obtained by molecular docking for the compounds (A) (E,E)-α-
farnesene, (B) (E)-caryophyllene, (C) α-pinene, and (D) bicyclogermacrene.
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The primary factor directing ligand interaction within the protein binding cavity is
hydrophobic interactions. (E,E)-α-farnesene establishes pi-alkyl interactions with TYR374,
TYR71, TYR370, LEU479, TRP472, and TRP83, whereas van der Waals interactions are
established with ASN84, GLU80, and GLY79. (E)-caryophyllene create multiple pi-alkyl
hydrophobic interactions with LEU479, TYR374, TYR370, TRP83, TYR71, and TRP472,
along with three van der Waals interactions with GLY79, GLU80, and ASN84. α-pinene
demonstrates a pi-sigma interaction with TYR71 and pi-alkyl interactions with TRP472,
TRP83, TYR374, and TYR370, as well as van der Waals interactions with GLU80, ASN84,
and GLY79. Bicyclogermacrene establishes van der Waals interactions with GLY79, GLU80,
ASN84, LEU479, and PHE371, and pi-alkyl hydrophobic interactions with TRP472, TYR374,
TYR370, TYR71, and TRP83 within the enzyme’s binding pocket.

2.6. Multivariate Analysis

Principal component analysis (PCA) (Figure 1) and hierarchical cluster analysis (HCA)
were utilized to examine the correlation between the chemical compounds identified in
various fractions of EOs extracted from V. sebifera during different seasons of the year,
specifically the dry and rainy periods; these correlations are depicted in Figures 6 and 7,
respectively. Figure 5 illustrates the main analyzed components, PC1 and PC2; PC1 accounts
for 40.3% of the variables, while PC2 accounts for 24.9%, together accounting for a total of
65.2% of the variance in the analyzed data.
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Figure 6. PCA analysis of compounds identified in EOs from V. sebifera.
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Figure 7. Similarity relationship of the compounds identified in EOs from V. sebifera.
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The HCA analysis assesses the similarity among the identified compounds. Two dis-
tinct groups are formed, with two samples, A-Sep and A-Feb, lacking sufficient similarity
to form a group. The EOs isolated from Virola leaves collected in the months of B-Feb and
C-Sep form a group with a similarity level of 31.09%, whereas samples B-Sep and B-Feb
exhibit the highest similarity level of 38.54%. Upon examining Figure 7, we can observe the
substances with the highest weights, i.e., those that contribute to the formation of groups.
A-Sep is characterized by the presence of β-selinene, β-elemene, (E)-δ-bisabolene, (E,E)-
α-farnesene, and isoleden. By contrast, sample A-Feb is characterized by the presence of
6,9-guaiadiene, aromadrene, α-cubene, δ-cadinene, α-copaene, himacholol, γ-muurolene,
and bicyclogermacrene. The group comprising samples B-Feb and C-Sep is character-
ized by the compounds (E)-caryophyllene, α-pinene, 6-methyl-5-hepten-2-one, sabinene,
β-pinene, and sylvan; conversely, the group consisting of samples B-Sep and B-Feb is
characterized by δ-amorphene, γ-amorphene, alloaromadrene, epi-α-muurolol, germa-
crene B, elemol, viridiflorol, germacrene D, spathulenol, δ-elemene, γ-elemene, α-cadinol,
9-epi-(E)-caryophyllene, and β-copaene.

3. Materials and Methods
3.1. Botanical Material

The botanical material was collected from three specimens of V. sebifora grown in the
research campus of the Emilio Goeldi Museum (MPEG) in Belém, Pará. Each specimen
was given an identification: samples A, B, and C. The collected plant specimens were
preserved and added to the collection of the João Murça Pires Herbarium (MG) at the
Emílio Goeldi Museum. They were specifically included in the Aromatic Plants of the
Amazon collection in Belém, Pará. The specimens were assigned the following registra-
tion numbers: MG236908 (V. sebifora, specimen A), MG210943 (V. sebifora, specimen B),
MG1621198 (V. sebifora, specimen C).

3.2. Preparation and Characterization of Botanical Material

The leaf samples from the specimens were dried in an air-circulating oven at a tem-
perature of 35 ◦C for 5 days. Subsequently, they were ground using a knife mill (Tecnal,
model TE-631/3, Piracicaba, Brazil), homogenized, weighed, and subjected to the extraction
process. The moisture content was analyzed using an infrared moisture analyzer (ID50;
GEHAKA, Duquesa de Góias, Real Parque, São Paulo—Brazil).

3.3. Extraction of EOs

The samples were hydro-distilled for 3 h in modified Clevenger-type glass systems
with a cooling mechanism to keep the condensation water at about 12 ◦C. Following the
extraction, the oils were centrifuged for 5 min at 3000 rpm, dehydrated with anhydrous
sodium sulfate, and then centrifuged once more under the same circumstances. The oil
yield was calculated as mL/100 g. The oils were kept in flame-sealed amber glass ampoules
and kept at 5 ◦C in a refrigerator.

3.4. Calculation of Yield (%) of Extracted Oil

The yield (%) of the extracted essential oil was obtained from the dried and moisture-
free crude material (DMC).

The gross oil yield was calculated by relating the volume of the obtained oil to the
mass of the plant material used.

Gross oil yield =
volume o f obtained oil (mL)
mass o f plant material (g)

× 100 (1)
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The calculation of the yield of oil on a moisture-free basis (MFY) was executed- by
relating the mass of oil to the moisture content as follows:

oilBLU =
volume o f oil obtained(mL)

m(g)−
(

m(g)×U
100

) × 100 (2)

3.5. Chemical Composition Analysis

The chemical compositions of the EOs of V. sebifora (specimen A, B and C), were
analyzed using a Shimadzu QP-2010 plus (Kyoto, Japan) a gas chromatography system
equipped with an Rtx-5MS capillary column (30 m × 0.25 mm; 0.25 µm film thickness)
(Restek Corporation, Bellefonte, PA, USA) coupled to a mass spectrometer (GC/MS) (Shi-
madzu, Kyoto, Japan). The programmed temperature was maintained at 60–240 ◦C at a
rate of 3 ◦C/min, with an injector temperature of 250 ◦C, helium as the carrier gas (linear
velocity of 32 cm/s, measured at 100 ◦C), and a splitless injection (1 µL of a 2:1000 hexane
solution), using the same operating conditions as described in the literature [90]. The
components were quantified using gas chromatography (GC) on a Shimadzu QP-2010
system (Kyoto, Japan) equipped with a flame ionization detector (FID) (Kyoto, Japan),
under the same operating conditions as before, except for the carrier hydrogen gas. The
retention index for all volatile constituents was calculated using a homologous series of
n-alkanes (C8–C40) Sigma-Aldrich (San Luis, MO, USA), according to Van den Dool and
Kratz [91]. The components were identified by comparison (i) with that of the experimental
mass spectra with those compiled in libraries (reference) and (ii) with their retention indices
to those found in the literature [92,93].

3.6. Trolox Equivalent Antioxidant Capacity (TEAC)

The 2,2’-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+) and 2,2-diphenyl-
1-picrylhydrazyl (DPPH•) radicals scavenging assays were used for the assessment of the
antioxidant capacity of EO, determined according to their equivalence to the potent antiox-
idant, Trolox (6-hydroxy-2,5,7,8-tetramethylchromono-2-carboxylic acid; Sigma-Aldrich;
23881-3; São Paulo, Brazil), and a water-soluble synthetic vitamin E analog.

3.6.1. ABTS•+ Assay

The ABTS•+ radical scavenging assay was determined according to the methodology
adapted from Miller et al., [94] and modified by Re et al., [95]. ABTS•+ (Sigma-Aldrich;
A1888; São Paulo, Brazil) was prepared using 7 mM ABTS and 140 mM of potassium per-
sulfate (K2O8S2; Sigma Aldrich; 216224; São Paulo, Brazil) incubated at room temperature
without light for 16 h. Then, the solution was diluted with phosphate-buffered saline until
it reached an absorbance of 0.700 ± 0.02 at 734 nm.

To measure the antioxidant capacity, 2.97 mL of the ABTS•+ solution was transferred
to the cuvette, and the absorbance at 734 nm was determined using a Biospectro SP 22
spectrophotometer (São Paulo, Brazil). Then, 0.03 mL of the sample was added to the
cuvette containing the ABTS•+ radical, and after 5 min, the second reading was performed.
The Trolox was used as a standard solution for the calibration curve (y = 0.455x + 0.0002),
where y represents the value of absorbance and x is the value of concentration, expressed
as mM; R2 = 0.998).

3.6.2. DPPH• Radical Scavenging Assay

The test was carried out according to the method proposed by [96]. To measure the
antioxidant capacity, initially, the absorbance of DPPH• solution (Sigma-Aldrich; D9132;
São Paulo, Brazil) 0.1 mM diluted in ethanol was determined. Subsequently, 0.6 mL of
DPPH• solution, 0.35 mL of distilled water, and 0.05 mL of the sample were mixed and
placed in a water bath at 30 ◦C for 30 min. Thereafter, the absorbance was determined
using a spectrophotometer Bioespectro SP 22 (São Paulo, Brazil) at 517 nm. The synthetic
antioxidant Trolox was used as a standard solution for the calibration curve (y = 0.2261x
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− 0.0094), where y represents the value of absorbance and x is the value of concentration,
expressed as mM; R2 = 0.9831).

3.7. Preliminary Toxicity Bioassay with Artemia salina Leach

For the toxicity tests, the sample with the highest mass yield was selected. The pre-
liminary toxicity bioassay test of V. sebifora (specimen A, B and C) essential oil in A. salina
Leach was performed as described in the literature [29,97]. The essential oil was prepared at
concentrations of 100, 50, 20, 10, 5, and 1 µg mL−1 were used, from fresh and dry samples
obtained in the seasonal study in the months of July, September, November, January, March,
and May. A total of ten A. salina larvae were added to each test flask with the aid of automatic
micropipettes. Brine water (artificial) and DMSO were used as solvents with a 95:5 ratio. In
the control group and the positive group with lapachol, the same solvent was used for the
samples and larvae under the same conditions as the bioassay. After 24 h of contact between
the larvae and the sample solution, the dead larvae were counted (in each concentration), and
the mortality rate and the IC50 value were calculated using the Probitos statistical method. All
the experiments were performed in triplicate (n = 3).

3.8. In Silico Evaluation of MAJOR EO Components

We utilized molecular docking to assess how the major compounds of V. sebifera EO
(specimen A—collected in September) interact with the binding pocket of AChE. This
molecular target was selected due to its association with toxicity mechanisms in A. salina.
The major compounds of this EO were used as models for interaction, as they exhibited
higher toxicity in A. salina models. The three-dimensional structure of the AChE protein
was obtained from the Protein Data Bank with the ID 1QON [98]. The substances used
in our studies were retrieved from PubChem, and the molecular structures of these com-
pounds were optimized using the B3LYP/6-31G method [99,100] with Gaussian 09 [101].
To evaluate the molecular binding mode, we employed Molegro Virtual Docker 5.5 soft-
ware [102]. The MolDock Score (GRID) scoring function was utilized with a grid resolution
of 0.30 Å and a radius of 5 Å encompassing the entire binding cavity. The MolDock SE
algorithm was employed for docking with 10 runs, a maximum of 1500 interactions, and
a maximum population size of 50. The molecular docking simulation used a maximum
evaluation of 300 steps with a neighbor distance factor of 1 and an energy threshold of 100.

3.9. Statistical Analysis

The multivariate analysis was conducted following the methodology described by [41]
using Minitab 17® software (free version, Minitab Inc., State College, PA, USA). The vari-
ables considered were the chemical constituents of the floral aroma. To ensure equal
weighting, the raw data were first standardized. PCA was performed using the corre-
lation matrix configuration provided by the software. For the Hierarchical Clustering
Analysis (HCA) of the samples, the Euclidean distance measurement option and the com-
plete connection method were employed. The multivariate analysis focused on chemical
constituents that accounted for ≥0.5% of the total composition. Furthermore, a Pearson
correlation study was conducted to analyze the relationship between classes of compounds
and climatic data, aiming to assess their influence on the chemical composition.

4. Conclusions

The maximum yields of essential oil from V. sebifera leaves are achieved during the
Amazonian winter (February) across all three specimens studied. The chemical profile of the
essential oil from the leaves is predominantly characterized by sesquiterpene hydrocarbons,
specifically (E,E)-α-farnesene. The chemical variation, both quantitative and qualitative,
among the oils of V. sebifera specimens is found to be influenced by seasonality (Amazonian
summer and winter), as well as the age of the specimens studied. In the experiment
involving A. salina larvae, samples A and B, which had a high concentration of (E,E)-
α-farnesene, exhibited high toxicity, while sample C demonstrated moderate toxicity.
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The greatest inhibition values in the DPPH tests were noted in samples from specimen
B collected during the Amazonian winter, which had a lower concentration of (E,E)-α-
farnesene. These findings enhance our understanding of the chemical composition of
Virola species. As demonstrated, significant molecules have been identified in the EOs of
V. sebifera, suggesting that this species can serve as a natural source of chemically active
substances for a broad spectrum of industrial applications.
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