Optimization of Extraction Conditions from Gac Fruit and Utilization of Peel-Derived Biochar for Crystal Violet Dye Removal
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Results
2.1.1. Effect of Extraction Temperature
2.1.2. Effect of S/L Ratio
2.1.3. Extraction Time Effect
2.1.4. Extraction Kinetics Data Calculation
2.2. Characterization of Biochars
2.2.1. EA Result
2.2.2. SEM/EDS Analysis Result
2.2.3. FTIR Analysis Results
2.2.4. BET Analysis Results
2.3. CV Adsorption Results
2.3.1. CV Dye Adsorption onto Different Biochars
2.3.2. Adsorption Kinetics Data of CV Dye Adsorption onto BCMC550
2.3.3. Adsorption Isotherm Data of CV Dye Adsorption onto BCMC550
3. Materials and Methods
3.1. Materials
3.2. Extraction Method
3.2.1. Pre-Treatment of Gac Fruit
3.2.2. Extraction of Active Components
3.2.3. DPPH Free Radical Scavenging Assay
3.2.4. ABTS Free Radical Scavenging Assay
3.2.5. Extraction Kinetics Models
3.3. Preparation of Adsorbent
3.4. Dye Adsorption Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vuong, L.T. Underutilized β-carotene-rich crops of Vietnam. Food Nutr. Bull. 2000, 21, 173–181. [Google Scholar] [CrossRef]
- Chuyen, H.V.; Nguyen, M.H.; Roach, P.D.; Golding, J.B.; Parks, S.E. Gac fruit (Momordica cochinchinensis Spreng.): A rich source of bioactive compounds and its potential health benefits. Int. J. Food Sci. Technol. 2015, 50, 567–577. [Google Scholar] [CrossRef]
- Wong, R.C.; Fong, W.; Ng, T. Multiple trypsin inhibitors from Momordica cochinchinensis seeds, the Chinese drug mubiezhi. Peptides 2004, 25, 163–169. [Google Scholar] [CrossRef]
- Chen, D.; Huang, C.; Chen, Z. A review for the pharmacological effect of lycopene in central nervous system disorders. Biomed. Pharmacother. 2019, 111, 791–801. [Google Scholar] [CrossRef]
- Aoki, H.; Kieu, N.T.M.; Kuze, N.; Tomisaka, K.; Chuyen, N.V. Carotenoid pigments in GAC fruit (Momordica cochinchinensis Spreng.). Bisoci. Biotechnol. Biochem. 2002, 66, 2479–2482. [Google Scholar] [CrossRef]
- Wong, Y.S.; Ariffin, F.D.; Ghazali, H.M. Effect of different drying techniques on the phytochemicals content and antioxidant activity of Gac fruit. J. Food Sci. Technol. 2019, 56, 2987–2994. [Google Scholar]
- Kubola, J.; Siriamornpun, S. Phytochemicals and antioxidant activity of different fruit fractions (peel, pulp, aril, and seed) of Thai Gac (Momordica cochinchinensis Spreng.). Food Chem. 2011, 127, 1138–1145. [Google Scholar] [CrossRef]
- Sroy, P.; Choe, S.; Heo, H.J.; Lee, J.H.; Jeong, S.M. Supercritical fluid extraction of carotenoids and tocopherols from Gac fruit. J. Supercrit. Fluids 2014, 93, 48–54. [Google Scholar]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.J.; Chao, H.P.; Nguyen, V.N. Insight into adsorption mechanism of cationic dye onto agricultural residues-derived hydrochar: Negligible role of π–π interaction. Environ. Sci. Pollut. Res. Int. 2017, 24, 23217–23230. [Google Scholar] [CrossRef]
- Adegoke, K.A.; Bello, O.S. Dye sequestration using agricultural wastes as adsorbents. Water Resour. Ind. 2015, 12, 8–24. [Google Scholar] [CrossRef]
- Aksu, Z. Application of biosorption for the removal of organic pollutants: A review. Process Biochem. 2005, 40, 997–1026. [Google Scholar] [CrossRef]
- Mittal, A.; Mittal, J.; Malviya, A.; Kaur, D.; Gupta, V.K. Adsorption of hazardous dye crystal violet from wastewater by waste materials. J. Colloid Interface Sci. 2010, 343, 463–473. [Google Scholar] [CrossRef]
- Qu, W.; Pan, Z.; Ma, H. Extraction modeling and activities of antioxidants from pomegranate marc. J. Food Eng. 2010, 99, 16–23. [Google Scholar] [CrossRef]
- Radha krishnan, K.; Sivarajan, M.; Babuskin, S.; Archana, G.; Axhagu Saravana Babu, P.; Sukumar, M. Kinetic modeling of spice extraction from S. aromaticum and C. cassia. J. Food Eng. 2013, 117, 326–332. [Google Scholar] [CrossRef]
- Ponomaryov, V.D. Medicinal Herbs Extraction; Medicina: Moscow, Russia, 1976. [Google Scholar]
- Peleg, M. An empirical model for the description of moisture sorption curves. J. Food Sci. 1988, 53, 1216–1219. [Google Scholar] [CrossRef]
- Cacace, J.E.; Mazza, G. Optimization of extraction of anthocyanins from black currants with aqueous ethanol. J. Food Sci. 2003, 68, 240–248. [Google Scholar] [CrossRef]
- Topallar, H.; Gecgel, U. Kinetics and thermodynamics of oil extraction from sunflower seeds in the presence of aqueous acidic hexane solutions. Turk. J. Chem. 2000, 24, 247–253. [Google Scholar]
- Saxena, D.K.; Sharma, S.K.; Sambi, S.S. Kinetics and thermodynamics of cottonseed oil extraction. Grasas Aceites 2011, 62, 198–205. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Brandelli, A.; Marczak, L.D.F.; Tessaro, I.C. Kinetic modeling of total polyphenol extraction from grape marc and characterization of the extracts. Sep. Purif. Technol. 2012, 100, 82–87. [Google Scholar] [CrossRef]
- Lan, C.H.; Hanh, P.T.; Francisco, J.O.P.; Yves, W. Stability of carotenoid extracts of gac (Momordica cochinchinensis) towards cooxidation-Protective effect of lycopene on β-carotene. Food Res. Int. 2011, 44, 2252–2257. [Google Scholar]
- Pradal, D.; Vauchel, P.; Decossin, S.; Dhulster, P.; Dimitrov, K. Kinetics of ultrasound-assisted extraction of antioxidant polyphenols from food by-products: Extraction and energy consumption optimization. Ultrason. Sonochem. 2016, 32, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, L.; Bailina, Y.; Ge, Z.; Ding, T.; Ye, X.; Liu, D. Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel. J. Food Eng. 2014, 126, 72–81. [Google Scholar] [CrossRef]
- Shaaban, A.; Se, S.M.; Dimin, M.F.; Juoi, J.M.; Husin, M.H.M.; Mitan, N.M.M. Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. J. Anal. Appl. Pyrolysis 2014, 107, 31–39. [Google Scholar] [CrossRef]
- Das, T.; Debnath, A.; Manna, M.S. Adsorption of malachite green by Aegle marmelos-derived activated biochar: Novelty assessment through phytotoxicity tests and economic analysis. J. Indian Chem. Soc. 2024, 101, 101219. [Google Scholar] [CrossRef]
- Raji, Y.; Nadi, A.; Mechnou, I.; Saadouni, M.; Cherkaoui, O.; Zyade, S. High adsorption capacities of crystal violet dye by low-cost activated carbon prepared from Moroccan Moringa oleifera wastes: Characterization, adsorption and mechanism study. Diam. Relat. Mater. 2023, 135, 109834. [Google Scholar] [CrossRef]
- Lamberti, E.; Viscusi, G.; Kiani, A.; Boumezough, Y.; Acocella, M.R.; Gorrasi, G. Efficiency of dye adsorption of modified biochar: A comparison between chemical modification and ball milling assisted treatment. Biomass Bioenerg. 2024, 185, 107247. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquérol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Lagergren, S. Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsademiens. Handlingar 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Uber die adsorption in lasungen. Z. Phys. Chem. 1906, 57A, 385–470. [Google Scholar]
- Kosale, D.; Singh, V.K.; Thakur, C. Comparative adsorption of cationic and anionic dye by using non-activated Black Plum seed biochar for aquatic phase: Isotherm, kinetic and thermodynamic studies. Ind. Crop. Prod. 2024, 215, 118609. [Google Scholar] [CrossRef]
- Sun, P.; Hui, C.; Khan, R.A.; Du, J.; Zhang, Q.; Zhao, Y.H. Efficient removal of crystal violet using Fe3O4-coated biochar: The role of the Fe3O4 nanoparticles and modeling study their adsorption behavior. Sci. Rep. 2015, 5, 12638. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Gu, Y.; Liu, S.; Zeng, G.; Cai, X.; Hu, X.; Wang, H.; Liu, S.; Jiang, L. Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass (Boehmeria nivea (L.) Gaud.): Characterization and application for crystal violet removal. J. Environ. Manag. 2016, 184, 85–93. [Google Scholar] [CrossRef]
- Wathukarage, A.; Herath, I.; Iqbal, M.C.M.; Vithanage, M. Mechanistic understanding of crystal violet dye sorption by woody biochar: Implications for wastewater treatment. Environ. Geochem. Health 2019, 41, 1647–1661. [Google Scholar] [CrossRef]
- Chahinez, H.O.; Abdelkader, O.; Leila, Y.; Tran, H.N. One-stage preparation of palm petiole-derived biochar: Characterization and application for adsorption of crystal violet dye in water. Environ. Technol. Innov. 2020, 19, 100872. [Google Scholar] [CrossRef]
- Du, C.; Song, Y.; Shi, S.; Jiang, B.; Yang, J.; Xiao, S. Preparation and characterization of a novel Fe3O4-graphene-biochar composite for crystal violet adsorption. Sci. Total Environ. 2020, 711, 134662. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Tu, G.; Ying, G.; Fang, Z.; Tsang, E.P. Magnetic biochar derived from rice straw and stainless steel pickling waste liquor for highly efficient adsorption of crystal violet. Bioresour. Technol. 2021, 341, 125743. [Google Scholar] [CrossRef] [PubMed]
- Parks, S.E.; Murray, C.T.; Gale, D.L.; Al-Khawaldeh, B.; Spohr, L.J. Propagation and production of Gac (Momordica cochinchinensis Spreng.), a greenhouse case study. Exp. Agric. 2013, 49, 234–243. [Google Scholar] [CrossRef]
- Nhung, D.T.T.; Bung, P.N.; Ha, N.T.; Phong, T.K. Changes in lycopene and beta carotene contents in aril and oil of gac fruit during storage. Food Chem. 2010, 121, 326–331. [Google Scholar] [CrossRef]
- Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of Xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 1992, 40, 945–948. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Jaganyi, D.; Wheeler, P.J. Rooibos tea: Equilibrium and extraction kinetics of aspalathin. Food Chem. 2003, 83, 121–126. [Google Scholar] [CrossRef]
- Sohni, S.; Gul, K.; Shah, J.A.; Iqbal, A.; Sayed, M.; Khan, S.B. Immobilization performance of graphene oxide-based engineered biochar derived from peanut shell towards cationic and anionic dyes. Ind. Crop. Prod. 2023, 206, 117656. [Google Scholar] [CrossRef]
- Ma, C.M.; Hong, G.B.; Wang, Y.K. Performance evaluation and optimization of dyes removal using rice bran-based magnetic composite adsorbent. Materials 2020, 13, 2764. [Google Scholar] [CrossRef]
Models | Parameters | Yield | AA Equivalent |
---|---|---|---|
First-order kinetic model | k1 (min−1) | 0.019 | 0.038 |
a | 1.144 | 0.120 | |
R2 | 0.406 | 0.813 | |
Second-order kinetic model | k2 (g·g−1min−1) | 2.610 | 0.004 |
Ce | 0.568 | 37.736 | |
R2 | 0.994 | 0.981 |
Biochars | N (%) | C (%) | H (%) | S (%) | C/N | C/H |
---|---|---|---|---|---|---|
BCMC250 | 1.95 | 52.09 | 4.769 | 1.510 | 26.73 | 10.92 |
BCMC350 | 1.86 | 57.82 | 2.898 | 1.324 | 31.05 | 19.95 |
BCMC450 | 1.66 | 59.10 | 2.030 | 0.637 | 35.63 | 29.12 |
BCMC550 | 1.81 | 62.98 | 1.391 | 0.432 | 34.77 | 45.28 |
Biochars | Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Pore Size (nm) |
---|---|---|---|
BCMC250 | 295.79 | 0.13 | 2.05 |
BCMC350 | 312.89 | 0.18 | 2.03 |
BCMC450 | 528.16 | 0.27 | 2.07 |
BCMC550 | 696.91 | 0.31 | 2.03 |
Model | Parameters | |
---|---|---|
Pseudo-first-order | k1 (min−1) | 0.0149 |
qe (mg·g−1) | 294.51 | |
R2 | 0.974 | |
Pseudo-second-order | k2 (g·mg−1·min−1) | 0.0001 |
qe (mg·g−1) | 476.19 | |
R2 | 0.998 |
Temperature (°C) | 30 | 40 | 50 | 60 |
---|---|---|---|---|
Langmuir | ||||
qm (mg·g−1) | 625.0 | 714.3 | 714.3 | 909.1 |
KL (L·g−1) | 0.123 | 0.187 | 0.636 | 0.239 |
RL | 0.039 | 0.026 | 0.008 | 0.021 |
R2 | 0.997 | 0.994 | 0.997 | 0.998 |
Freundlich | ||||
KF (mg·g−1)(L·mg−1)1/zn | 276.4 | 376.8 | 384.2 | 724.4 |
n | 15.55 | 7.800 | 7.525 | 6.821 |
R2 | 0.942 | 0.921 | 0.919 | 0.986 |
Adsorbent | qmax (mg·g−1) | Reference |
---|---|---|
Activated carbon MOCA-H3PO4 | 469.55 | [27] |
Black Plum seed biochar (BPSB) | 42.39 | [34] |
Fe3O4-coated biochar | 349.4 | [35] |
Biochar (CB-LDH) | 374.686 | [36] |
Woody tree biochar | 125.5 | [37] |
Biochar derived from palm stalk | 209 | [38] |
Fe3O4-graphene-rice straw-derived biochar | 436.68 | [39] |
Magnetic biochar derived from rice straw | 111.48 | [40] |
BCMC550 | 909.1 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, N.-T.; Chen, P.-R.; Ye, R.-H.; Chuang, K.-J.; Chang, C.-T.; Hong, G.-B. Optimization of Extraction Conditions from Gac Fruit and Utilization of Peel-Derived Biochar for Crystal Violet Dye Removal. Molecules 2024, 29, 3435. https://doi.org/10.3390/molecules29143435
Nguyen N-T, Chen P-R, Ye R-H, Chuang K-J, Chang C-T, Hong G-B. Optimization of Extraction Conditions from Gac Fruit and Utilization of Peel-Derived Biochar for Crystal Violet Dye Removal. Molecules. 2024; 29(14):3435. https://doi.org/10.3390/molecules29143435
Chicago/Turabian StyleNguyen, Nhat-Thien, Pin-Ru Chen, Ru-Hau Ye, Kai-Jen Chuang, Chang-Tang Chang, and Gui-Bing Hong. 2024. "Optimization of Extraction Conditions from Gac Fruit and Utilization of Peel-Derived Biochar for Crystal Violet Dye Removal" Molecules 29, no. 14: 3435. https://doi.org/10.3390/molecules29143435
APA StyleNguyen, N. -T., Chen, P. -R., Ye, R. -H., Chuang, K. -J., Chang, C. -T., & Hong, G. -B. (2024). Optimization of Extraction Conditions from Gac Fruit and Utilization of Peel-Derived Biochar for Crystal Violet Dye Removal. Molecules, 29(14), 3435. https://doi.org/10.3390/molecules29143435