A Globally Accurate Neural Network Potential Energy Surface and Quantum Dynamics Studies on Be+(2S) + H2/D2 → BeH+/BeD+ + H/D Reactions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Topographic Characteristics of PES
2.2. Quantum Dynamics
3. Theoretical Methods
3.1. Ab Initio Calculations
3.2. NN Fitting
3.3. TDWP Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ballance, C.J.; Harty, T.P.; Linke, N.M.; Sepiol, M.A.; Lucas, D.M. Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. Phys. Rev. Lett. 2016, 117, 060504. [Google Scholar] [CrossRef] [PubMed]
- McMahon, B.J.; Sawyer, B.C. Second-Scale 9Be+ Spin Coherence in a Compact Penning Trap. Phys. Rev. Appl. 2022, 17, 014005. [Google Scholar] [CrossRef]
- Deiss, M.; Willitsch, S.; Denschlag, J.H. Cold trapped molecular ions and hybrid platforms for ions and neutral particles. Nat. Phys. 2024, 20, 713–721. [Google Scholar] [CrossRef]
- Heazlewood, B.R.; Softley, T.P. Towards chemistry at absolute zero. Nat. Rev. Chem. 2021, 5, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Staanum, P.F.; Hojbjerre, K.; Skyt, P.S.; Hansen, A.K.; Drewsen, M. Rotational laser cooling of vibrationally and translationally cold molecular ions. Nat. Phys. 2010, 6, 271–274. [Google Scholar] [CrossRef]
- Willitsch, S.; Bell, M.T.; Gingell, A.D.; Procter, S.R.; Softley, T.P. Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules. Phys. Rev. Lett. 2008, 100, 043203. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.K.; Sorensen, M.A.; Staanum, P.F.; Drewsen, M. Single-Ion Recycling Reactions. Angew. Chem. Int. Ed. 2012, 51, 7960–7962. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.W.; Kurz, C.; Hume, D.B.; Plessow, P.N.; Leibrandt, D.R.; Leibfried, D. Preparation and coherent manipulation of pure quantum states of a single molecular ion. Nature 2017, 545, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Roth, B.; Blythe, P.; Wenz, H.; Daerr, H.; Schiller, S. Ion-neutral chemical reactions between ultracold localized ions and neutral molecules with single-particle resolution. Phys. Rev. A 2006, 73, 042712. [Google Scholar] [CrossRef]
- Toscano, J.; Lewandowski, H.J.; Heazlewood, B.R. Cold and controlled chemical reaction dynamics. Phys. Chem. Chem. Phys. 2020, 22, 9180–9194. [Google Scholar] [CrossRef] [PubMed]
- Agúndez, M.; Wakelam, V. Chemistry of Dark Clouds: Databases, Networks, and Models. Chem. Rev. 2013, 113, 8710–8737. [Google Scholar] [CrossRef] [PubMed]
- Singh, M. Thirty-one New Diatomic-Molecules in Cosmic Objects Spectra. Astrophys. Space Sci. 1988, 140, 421–427. [Google Scholar] [CrossRef]
- Chen, K.; Sullivan, S.T.; Hudson, E.R. Neutral Gas Sympathetic Cooling of an Ion in a Paul Trap. Phys. Rev. Lett. 2014, 112, 143009. [Google Scholar] [CrossRef] [PubMed]
- Schowalter, S.J.; Dunning, A.J.; Chen, K.; Puri, P.; Schneider, C.; Hudson, E.R. Blue-sky bifurcation of ion energies and the limits of neutral-gas sympathetic cooling of trapped ions. Nat. Commun. 2016, 7, 12448. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, B.C.; Bohnet, J.G.; Britton, J.W.; Bollinger, J.J. Reversing hydride-ion formation in quantum-information experiments with Be+. Phys. Rev. A 2015, 91, 011401. [Google Scholar] [CrossRef]
- Gaebler, J.P.; Tan, T.R.; Lin, Y.; Wan, Y.; Bowler, R.; Keith, A.C.; Glancy, S.; Coakley, K.; Knill, E.; Leibfried, D.; et al. High-Fidelity Universal Gate Set for 9Be+ Ion Qubits. Phys. Rev. Lett. 2016, 117, 060505. [Google Scholar] [CrossRef] [PubMed]
- Sauval, A.J.; Tatum, J.B. A Set of Partition-Functions and Equilibrium-Constants for 300 Diatomic-Molecules of Astrophysical Interest. Astrophys. J. Suppl. Ser. 1984, 56, 193–209. [Google Scholar] [CrossRef]
- Pospelov, M.; Pradler, J. Primordial Beryllium as a Big Bang Calorimeter. Phys. Rev. Lett. 2011, 106, 121305. [Google Scholar] [CrossRef] [PubMed]
- Poshusta, R.D.; Klint, D.W.; Liberles, A. Ab Initio Potential Surfaces of BeH2+. J. Chem. Phys. 1971, 55, 252–262. [Google Scholar] [CrossRef]
- Raimondi, M.; Gerratt, J. Spin-Coupled VB Description of the Potential Energy Surfaces for the Reaction Be+ + H2 → BeH+ + H. J. Chem. Phys. 1983, 79, 4339–4345. [Google Scholar] [CrossRef]
- Artiukhin, D.G.; Klos, J.; Bieske, E.J.; Buchachenko, A.A. Interaction of the Beryllium Cation with Molecular Hydrogen and Deuterium. J. Phys. Chem. A 2014, 118, 6711–6720. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.J.; Yuan, J.C.; Wang, S.F.; Chen, M.D. Global diabatic potential energy surfaces for the BeH2+ system and dynamics studies on the Be+(2P) + H2(X1Σ+g) → BeH + (1Σ+) + H(2S) reaction. RSC Adv. 2018, 8, 22823–22834. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.J.; Mao, Y.; Chen, M.D. Quantum Dynamics Studies of the Significant Intramolecular Isotope Effects on the Nonadiabatic Be+(2P) + HD → BeH+/BeD+ + D/H Reaction. J. Phys. Chem. A 2021, 125, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Staanum, P.F.; Højbjerre, K.; Wester, R.; Drewsen, M. Probing isotope effects in chemical reactions using single ions. Phys. Rev. Lett. 2008, 100, 243003. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.F.; Chen, Q.; Varandas, A.J.C. Accurate diabatization based on combined-hyperbolic-inverse-power-representation: 1,2 2A′ states of BeH2+. J. Chem. Phys. 2024, 160, 154105. [Google Scholar] [CrossRef] [PubMed]
- Huber, K.P.; Herzberf, G. Constants of Diatomic Molecules; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Knowles, P.J.; Werner, H.J. An Efficient Method for the Evaluation of Coupling-Coefficients in Configuration-Interaction Calculations. Chem. Phys. Lett. 1988, 145, 514–522. [Google Scholar] [CrossRef]
- Werner, H.J.; Knowles, P.J. An Efficient Internally Contracted Multiconfiguration Reference Configuration-Interaction Method. J. Chem. Phys. 1988, 89, 5803–5814. [Google Scholar] [CrossRef]
- Kendall, R.A.; Dunning, T.H.; Harrison, R.J. Electron Affinities of the First-row Atoms Revisited. Systematic Basis Sets and Wave Functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef]
- Werner, H.J.; Knowles, P.J.; Knizia, G.; Manby, F.R.; Schutz, M. Molpro: A general-purpose quantum chemistry program package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 242–253. [Google Scholar] [CrossRef]
- Manzhos, S.; Carrington, T. Neural Network Potential Energy Surfaces for Small Molecules and Reactions. Chem. Rev. 2021, 121, 10187–10217. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.J.; Wang, S.F.; Yuan, J.C.; Chen, M.D. Neural network potential energy surface and dynamical isotope effects for the N+(3p) + H2 → NH+ + H reaction. Phys. Chem. Chem. Phys. 2019, 21, 22203–22214. [Google Scholar] [CrossRef] [PubMed]
- Martin-Barrios, R.; Navas-Conyedo, E.; Zhang, X.Y.; Chen, Y.W.; Gulin-González, J. An overview about neural networks potentials in molecular dynamics simulation. Int. J. Quantum Chem. 2024, 124, e27389. [Google Scholar] [CrossRef]
- Yang, Z.J.; Chen, H.H.; Chen, M.D. Representing globally accurate reactive potential energy surfaces with complex topography by combining Gaussian process regression and neural networks. Phys. Chem. Chem. Phys. 2022, 24, 12827–12836. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.N.; Zhang, D.H. Accurate fundamental invariant-neural network representation of ab initio potential energy surfaces. Natl. Sci. Rev. 2023, 10, nwad321. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yang, M.J.; Song, H.W.; Li, Y.L. Reaction dynamics for the Cl(2P) + XCl → XCl + Cl(2P) (X = H, D, Mu) reaction on a high-fidelity ground state potential energy surface. J. Chem. Phys. 2023, 158, 234301. [Google Scholar] [CrossRef] [PubMed]
- Tao, C.; Yang, J.W.; Hong, Q.Z.; Sun, Q.H.; Li, J. Global and Full-Dimensional Potential Energy Surfaces of the N2+O2 Reaction for Hyperthermal Collisions. J. Phys. Chem. A 2023, 127, 4027–4042. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.J.; Zhu, X.L.; Yarkony, D.R.; Guo, H. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. IV. Coupled diabatic potential energy matrices. J. Chem. Phys. 2018, 149, 144107. [Google Scholar] [CrossRef] [PubMed]
- Li, C.F.; Hou, S.T.; Xie, C.J. Constructing Diabatic Potential Energy Matrices with Neural Networks Based on Adiabatic Energies and Physical Considerations: Toward Quantum Dynamic Accuracy. J. Chem. Theory Comput. 2023, 19, 3063–3079. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Krems, R.V. Efficient non-parametric fitting of potential energy surfaces for polyatomic molecules with Gaussian processes. J. Phys. B At. Mol. Opt. 2016, 49, 224001. [Google Scholar] [CrossRef]
- Christianen, A.; Karman, T.; Vargas-Hernandez, R.A.; Groenenboom, G.C.; Krems, R.V. Six-dimensional potential energy surface for NaK-NaK collisions: Gaussian process representation with correct asymptotic form. J. Chem. Phys. 2019, 150, 064106. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Yu, Q.; Van Hoozen, B.L.; Bowman, J.M.; Vargas-Hernandez, R.A. Assessing Gaussian Process Regression and Permutationally Invariant Polynomial Approaches To Represent High-Dimensional Potential Energy Surfaces. J. Chem. Theory Comput. 2018, 14, 3381–3396. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guo, H. A Gaussian Process Based Δ-Machine Learning Approach to Reactive Potential Energy Surfaces. J. Phys. Chem. A 2023, 127, 8765–8772. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.J.; Chen, H.H.; Buren, B.; Chen, M.D. Globally Accurate Gaussian Process Potential Energy Surface and Quantum Dynamics Studies on the Li(2S) + Na2 → LiNa + Na Reaction at Low Collision Energies. Molecules 2023, 28, 2938. [Google Scholar] [CrossRef]
- Liu, X.Y.; Wang, W.Q.; Pérez-Ríos, J. Molecular dynamics-driven global potential energy surfaces: Application to the AlF dimer. J. Chem. Phys. 2023, 159, 144103. [Google Scholar] [CrossRef] [PubMed]
- Deringer, V.L.; Bartok, A.P.; Bernstein, N.; Wilkins, D.M.; Ceriotti, M.; Csanyi, G. Gaussian Process Regression for Materials and Molecules. Chem. Rev. 2021, 121, 10073–10141. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Arandhara, M.; Houston, P.L.; Qu, C.; Conte, R.; Bowman, J.M.; Ramesh, S.G. Assessing Permutationally Invariant Polynomial and Symmetric Gradient Domain Machine Learning Potential Energy Surfaces for H3O2−. J. Phys. Chem. A 2024, 128, 3212–3219. [Google Scholar] [CrossRef] [PubMed]
- Braams, B.J.; Bowman, J.M. Permutationally invariant potential energy surfaces in high dimensionality. Int. Rev. Phys. Chem. 2009, 28, 577–606. [Google Scholar] [CrossRef]
- Jiang, B.; Guo, H. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. J. Chem. Phys. 2013, 139, 054112. [Google Scholar] [CrossRef]
- Hagan, M.T.; Menhaj, M.B. Training Feedforward Networks with the Marquardt Algorithm. IEEE Trans. Neural Netw. 1994, 5, 989–993. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.L.; Suleimanov, Y.V.; Guo, H. Ring-Polymer Molecular Dynamics Rate Coefficient Calculations for Insertion Reactions: X + H2 → HX + H (X = N, O). J. Phys. Chem. Lett. 2014, 5, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, B.; Xie, D.Q.; Guo, H. Advances and New Challenges to Bimolecular Reaction Dynamics Theory. J. Phys. Chem. Lett. 2020, 11, 8844–8860. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Chen, H.H.; Yang, Z.J.; Buren, B.; Chen, M.D. Quantum State-Resolved Nonadiabatic Dynamics of the H + NaF → Na + HF Reaction. Chin. Phys. Lett. 2024, 41, 038201. [Google Scholar] [CrossRef]
- Buren, B.; Chen, M.D. Stereodynamics-Controlled Product Branching in the Nonadiabatic H + NaD → Na(3s, 3p) + HD Reaction at Low Temperatures. J. Phys. Chem. A 2022, 126, 2453–2462. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.A.; Lue, Y.L.; Zhang, C.Y.; Li, Y.Q. Accurate ab initio based global adiabatic potential energy surfaces for the 13A′′, 13A′ and 21A′ states of SiH2. Phys. Chem. Chem. Phys. 2022, 25, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Lü, Y.L.; Zhang, C.Y.; Wang, H.N.; Guo, Q.; Li, Y.Q. An accurate many-body expansion potential energy surface for AlH2 (22A′) and quantum dynamics in Al(3P) + H2 (v0 = 0–3, j0 = 0, 2, 4, 6) collisions. Phys. Chem. Chem. Phys. 2022, 24, 16637–16646. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.T.; Yang, Z.J. State-to-State Quantum Dynamics Study of Intramolecular Isotope Effects on Be(1S) + HD (v0 = 2, j0 = 0) → BeH/BeD + H/D Reaction. Molecules 2024, 29, 1263. [Google Scholar] [CrossRef] [PubMed]
- Sathyamurthy, N.; Mahapatra, S. Time-dependent quantum mechanical wave packet dynamics. Phys. Chem. Chem. Phys. 2021, 23, 7586–7614. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.G.; Lee, S.Y.; Guo, H.; Zhang, D.H. Comparison of second-order split operator and Chebyshev propagator in wave packet based state-to-state reactive scattering calculations. J. Chem. Phys. 2009, 130, 174102. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.G.; Guo, H.; Zhang, D.H. Extraction of state-to-state reactive scattering attributes from wave packet in reactant Jacobi coordinates. J. Chem. Phys. 2010, 132, 084112. [Google Scholar] [CrossRef] [PubMed]
- Buren, B.; Chen, M.D.; Sun, Z.G.; Guo, H. Quantum Wave Packet Treatment of Cold Nonadiabatic Reactive Scattering at the State-To-State Level. J. Phys. Chem. A 2021, 125, 10111–10120. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.G.; Lin, X.; Lee, S.Y.; Zhang, D.H. A Reactant-Coordinate-Based Time-Dependent Wave Packet Method for Triatomic State-to-State Reaction Dynamics: Application to the H + O2 Reaction. J. Phys. Chem. A 2009, 113, 4145–4154. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Carrasco, S.; Roncero, O. Coordinate transformation methods to calculate state-to-state reaction probabilities with wave packet treatments. J. Chem. Phys. 2006, 125, 054102. [Google Scholar] [CrossRef] [PubMed]
- Feit, M.D.; Fleck, J.A.; Steiger, A. Solution of the Schrödinger Equation by a Spectral Method. J. Comput. Phys. 1982, 47, 412–433. [Google Scholar] [CrossRef]
NN PES | Experimental Results | ||
---|---|---|---|
H2(X1Σg+) | re (a0) | 1.402 | 1.401 |
De (eV) | 4.741 | 4.747 | |
ωe (cm−1) | 4391.2 | 4401.2 | |
ωexe (cm−1) | 121.93 | 121.33 | |
BeH+(X1Σ+) | Re (Bohr) | 2.487 | 2.480 |
De (eV) | 3.157 | 3.280 | |
ωe (cm−1) | 2222.7 | 2221.7 | |
ωexe (cm−1) | 39.75 | 39.79 |
Be+(2S) + H2 | Be+(2S) + D2 | |
---|---|---|
Grid ranges and sizes | R ∈ [0.1, 30.0], = 349, = 139 | R ∈ [0.1, 30.0], = 499, = 199 |
r ∈ [0.4, 25.0], = 249, = 9 | r ∈ [0.4, 25.0], = 249, = 11 | |
= 149, = 29 | = 139, = 29 | |
Initial wave packet | Rc = 15.0 ΔR = 0.28. k0 = (2E0μR)1/2 with E0 = 2.6 eV | Rc = 15.0 ΔR = 0.28 E0 = 2.6 eV |
Propagation time | 15,000, Δt = 10 | 15,000, Δt = 10 |
Highest J value | 80 | 99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Cao, F.; Cheng, H.; Liu, S.; Sun, J. A Globally Accurate Neural Network Potential Energy Surface and Quantum Dynamics Studies on Be+(2S) + H2/D2 → BeH+/BeD+ + H/D Reactions. Molecules 2024, 29, 3436. https://doi.org/10.3390/molecules29143436
Yang Z, Cao F, Cheng H, Liu S, Sun J. A Globally Accurate Neural Network Potential Energy Surface and Quantum Dynamics Studies on Be+(2S) + H2/D2 → BeH+/BeD+ + H/D Reactions. Molecules. 2024; 29(14):3436. https://doi.org/10.3390/molecules29143436
Chicago/Turabian StyleYang, Zijiang, Furong Cao, Huiying Cheng, Siwen Liu, and Jingchang Sun. 2024. "A Globally Accurate Neural Network Potential Energy Surface and Quantum Dynamics Studies on Be+(2S) + H2/D2 → BeH+/BeD+ + H/D Reactions" Molecules 29, no. 14: 3436. https://doi.org/10.3390/molecules29143436
APA StyleYang, Z., Cao, F., Cheng, H., Liu, S., & Sun, J. (2024). A Globally Accurate Neural Network Potential Energy Surface and Quantum Dynamics Studies on Be+(2S) + H2/D2 → BeH+/BeD+ + H/D Reactions. Molecules, 29(14), 3436. https://doi.org/10.3390/molecules29143436