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Abstract: This review delves into recent advancements in the field of nitro(het)aromatic bioreductive
agents tailored for hypoxic environments. These compounds are designed to exploit the low-oxygen
conditions typically found in solid tumors, making them promising candidates for targeted cancer
therapies. Initially, this review focused on their role as gene-directed enzyme prodrugs, which
are inert until activated by specific enzymes within tumor cells. Upon activation, these prodrugs
undergo chemical transformations that convert them into potent cytotoxic agents, selectively targeting
cancerous tissue while sparing healthy cells. Additionally, this review discusses recent developments
in prodrug conjugates containing nitro(het)aromatic moieties, designed to activate under low-oxygen
conditions within tumors. This approach enhances their efficacy and specificity in cancer treatment.
Furthermore, this review covers innovative research on using nitro(het)aromatic compounds as
fluorescent probes for imaging hypoxic tumors. These probes enable non-invasive visualization of
low-oxygen regions within tumors, providing valuable insights for the diagnosis, treatment planning,
and monitoring of therapeutic responses. We hope this review will inspire researchers to design and
synthesize improved compounds for selective cancer treatment and early diagnostics.

Keywords: nitroaromatic compounds; hypoxia; tumor treatment; fluorescence imaging

1. Introduction

Hypoxia, a condition of low oxygen levels ranging from 0.02 to 2%, is a physiological
characteristic of most solid tumors. It occurs because the tumor’s rapid growth outstrips
the oxygen supply and is compounded by impaired blood flow due to the formation of
abnormal blood vessels supplying the tumor [1].

Severe hypoxia (<0.5% O2) suppresses energy-consuming processes in the cells such as
translation and disulfide bond formation, causing protein misfolding and activating the un-
folded protein response (UPR). The UPR inhibits global protein synthesis while selectively
translating mRNAs to maintain endoplasmic reticulum homeostasis and promote hypoxia
tolerance. Furthermore, under severe hypoxia, the ataxia–telangiectasia mutated (ATM)
gene activates and DNA repair pathways are downregulated, decreasing RAD51 expression
and impairing homologous recombination. Reoxygenation after extreme hypoxia causes
DNA damage and genomic instability, increasing mutation rates and metastatic potential.
Severe hypoxia also hinders the repair of G1-associated DNA double-strand breaks in
irradiated cells, increasing genomic instability [2].

Cell survival strategies under severe hypoxia include suppressing apoptosis, initiating
angiogenesis (the formation of new but often abnormal blood vessels) and erythropoiesis
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(the formation of red blood cells), and shifting cell metabolism from oxidative phosphory-
lation to glycolysis [3]. This leads to increased tumor proliferation and local invasiveness.
Additionally, in the absence of oxygen, tumor cells influence immune responses and initi-
ate rapid DNA damage repair mechanisms to maintain growth and survival, ultimately
becoming resistant to radiation and chemotherapy [4,5].

The unique microenvironment of hypoxic tumors represents an opportunity for tar-
geted therapy through the development of bioreductive drugs (BDs), named later hypoxia-
activated prodrugs (HAPs). They are prodrugs that undergo biotransformation to cytotoxic
compounds under conditions of low oxygen tension and in the presence of high levels of
specific reductases [6,7]. This strategy, which originated in the early 1970s [8], allows the
selective killing of cancer cells while exhibiting minimal or no toxicity to normal cells and
well-oxygenated cancer cells.

Currently, four distinct chemical entities are known to selectively target hypoxic
cells: nitro(hetero)cyclic compounds, aromatic N-oxides, aliphatic N-oxides, quinones,
and transition metal complexes [9]. Among them, nitroaryl- and nitroheteroaryl-based
compounds show immense potential. These compounds act as bioreductive components
within the chemical architecture of bioactive molecules and as triggers capable of inducing
the release of the chemotherapeutic agent within hypoxic tumor regions [10].

The structures of several bioreductive agents containing nitro groups, which have
been evaluated in clinical trials, are presented in Figure 1.
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Figure 1. Chemical structures of some hypoxia-activated nitro(het)aromatic prodrugs.

Despite the promising results from clinical trials of the HAPs, none have yet been com-
mercialized. The failure in clinical trials is partly due to the following reasons: insufficient
selectivity and efficacy for hypoxic tumor cells over normoxic healthy cells and poten-
tial toxicity; the highly heterogeneous hypoxic tumor environments; pharmacokinetics
and stability issues etc. [11]. For example, TH-302 (evofosfamide, (1-methyl-2-nitro-1H-
imidazol-5-yl)methyl N,N′-bis(2-bromoethyl)phosphorodiamidate), a widely studied HAP,
showed limited clinical benefits in a phase I trial for advanced solid tumors, due to its
insufficient selectivity for hypoxic regions and associated skin and mucosal toxicity [12].
Skin and mucosal toxicity, along with bone marrow suppression, were the most common
toxicities observed when evaluating the therapeutic potential of TH-302 combined with
gemcitabine for pancreatic cancer [13]. In the phase III multicenter clinical trial (TH CR-
406/SARC021), 640 patients with soft tissue sarcoma were enrolled to assess the efficacy of
combining TH-302 (300 mg/m²) with doxorubicin (75 mg/m²). The results showed that
this combination did not improve overall survival compared to doxorubicin alone [14].
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Similarly, the prodrug PR-104 (2-({2-[(2-bromoethyl)[2-(methanesulfonyloxy)-ethyl]amino]-
3,5-dinitrophenyl}formami-do)etho-xy]phosphonic acid), another HAP, showed inadequate
efficacy and raised safety concerns in phase II trials for relapsed or refractory acute myeloid
leukemia. The most frequent treatment-related grade 3/4 adverse events were myelosup-
pression (anemia 62%, neutropenia 50%, thrombocytopenia 46%), febrile neutropenia (40%),
infections (24%), and enterocolitis (14%) [15]. The combination of PR-104 with chemothera-
peutics such as gemcitabine or docetaxel in advanced solid tumors was discontinued due to
dose-limiting thrombocytopenia [16]. This necessitates the development of new nitroaryl-
and/or nitroheteroaryl-based HAPs with enhanced specificity for hypoxic cells, minimized
off-target effects. Additionally, improvements in the pharmacokinetic properties of HAPs
via chemical modifications or formulation strategies are required.

In this review, we explore recent advancements in the design and synthesis of ni-
tro(het)aromatic bioreductive agents, specifically focusing on their developments from
2018 to 2024. We first highlight their potential as gene-directed enzyme prodrugs that
undergo controlled conversion into cytotoxic agents within target cells. Additionally,
we examine the progress made in developing bioreductive-activated prodrug conjugates
(BAPCs), which contain nitro(het)aromatic moieties (triggers) that activate drug molecules
in the low-oxygen environment of tumors. The ability of nitro(het)aromatic compounds
to undergo bioreductive activation under hypoxic conditions makes them highly effective
for non-invasive tumor visualization and monitoring. We also discuss recent research
on nitroaromatic compounds as tools for the fluorescent imaging of hypoxic tumors. We
hope this review will aid researchers in designing new nitro(het)aromatic structures for
treating and/or fluorescently imaging hypoxic tumors, paving the way for improved cancer
diagnostics and treatment monitoring.

2. Nitro(het)aromatic Bioreductive Agents for Use in Gene-Directed Enzyme
Prodrug Therapy

The mechanism by which nitro compounds localize within cells under hypoxic con-
ditions involves multiple stages (Figure 2). In the initial and most crucial step, cellular
nitroreductase enzymes reduce the nitro group of the prodrug molecule to a nitro anion
radical, a short-lived species, especially in an aqueous medium. Under normal oxygen
levels (normoxia), the NO2

.− radical is quickly oxidized back to the original NO2 group
(re-oxygenated), producing superoxide anions (O2

.−) in the process [17].
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In the absence of oxygen, the prodrug radical anion undergoes stepwise reduction to
nitroso, hydroxylamine, and amine (Figure 2). These reactive intermediates bind to cellular
macromolecules such as DNA, proteins, and glutathione, thereby persisting in oxygen-
deprived tissues and exhibiting mutagenic and carcinogenic effects [18]. The toxicity of
nitro compounds, both desired and undesired, is linked to each of these intermediates.
Hydroxylamine derivatives can cause methemoglobinemia, while nitro radical anions,
nitroso derivatives, and esterified hydroxylamines (e.g., sulfo derivatives) promote mu-
tagenic and carcinogenic effects. Additionally, superoxide anions, hydrogen peroxide,
and hydroxyl radicals generated during the reduction process can also have mutagenic
effects [18]. For example, the water-soluble phosphate prodrug PR-104 (Figure 1) is rapidly
hydrolyzed by phosphatases in vivo to the less soluble alcohol metabolite. The latter is
sufficiently lipophilic to penetrate through multiple layers of tumor cells and to reach the
hypoxic target cells. There, a nitro group in the para position to the mustard residue of
the prodrug undergoes reduction to hydroxylamine and an amine group, respectively.
These two cytotoxic metabolites act as DNA interstrand cross-linking agents, able to diffuse
locally and kill neighboring cells [19]. The bioreductive metabolic pathways of the other
nitro(het)aromatic prodrugs, shown in Figure 1, are detailed in [8].

One of the most significant applications of nitro(het)aromatic compounds, in com-
bination with enzymes from the nitroreductase group, is gene-directed enzyme prodrug
therapy (GDEPT), widely explored in chemotherapy [20–23]. This therapy is a variation
of direct enzyme prodrug therapy (DEPT). In DEPT, an exogenous converting enzyme is
delivered to the tumor cell, rendering the cell sensitive to the administered prodrug. The
advantage of using exogenous enzymes lies in their ability to activate substances that are
inert to human enzymes, thereby minimizing off-target effects. However, the challenge lies
in delivering these enzymes specifically to tumor cells.

There are two primary approaches to enzyme prodrug therapy. The first approach
involves directly delivering the enzyme linked to a tumor-targeting molecule, ensuring the
enzyme reaches the cancer cells. The second approach, GDEPT, involves a more indirect
strategy. GDEPT utilizes gene therapy techniques to introduce genes encoding the prodrug-
activating enzyme specifically into the tumor cells [20,23]. Once inside the tumor cells,
these genes are expressed, producing the enzyme that can then convert the administered
prodrug into its active, cytotoxic form within the tumor microenvironment. Different
nitroreductases derived from bacteria such as Escherichia coli, Pseudomonas pseudoalcaligenes,
and Staphylococcus saprophyticus have been utilized in these studies. The GDEPT approach
works through three key steps: 1. Genes encoding the nitroreductase enzyme are delivered
to the tumor cells (Figure 3A). This targeting can be achieved using vectors such as viruses,
plasmids, or nanoparticles engineered to selectively infect or enter tumor cells. 2. Once
inside the tumor cells, the genes are transcribed and translated to produce the nitroreductase
enzyme (Figure 3B). 3. The administered nitro(het)aromatic prodrug is then activated by
this enzyme within the tumor cells, converting it into a cytotoxic agent that induces cell
death (Figure 3C).

The specificity of GDEPT allows for high concentrations of the cytotoxic agent to
be generated directly within the tumor, minimizing the damage to surrounding healthy
tissues. Over the past twenty years, the GDEPT approach has seen significant progress, with
numerous enzyme/prodrug systems proving effective in preclinical and clinical studies.
Nonetheless, considerable efforts are still required to fully harness the potential of this
promising cancer treatment option [24].

Prof. Ay. M.’s research group has worked on discovering new and effective nitro-
reductase—prodrug combinations for use in cancer therapy. For this purpose, they charac-
terized a new nitroreductase, Ssap-NtrB (Staphylococcus saprophyticus supsp. saprophyticus),
in 2012 [25], synthesized various nitro functional group-containing prodrug candidates,
and investigated their enzymatic and cytotoxic effects on different cancer cells.
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Güngör T. et al. designed prodrugs 1–4 based on the model prodrug CB1954 and some
benzamides. Their concept involved replacing the -CONH2 group of CB1954 with the nitro
group containing -CONHAr groups (Figure 4) [26]. According to the HPLC results, all
prodrugs were activated by Ssap-NtrB. Prodrugs 1 and 2 produced one metabolite each,
while prodrugs 3 and 4 produced three metabolites each upon activation. Derivative 3
was significantly more active than CB1954 and SN23862, with 137- and 31-fold higher
activity for Ssap-NtrB, respectively. Among all the prodrug metabolites following Ssap-
NtrB reduction, N-(2,4-dinitrophenyl)-4-nitrobenzamide 3 was notably effective and toxic
to PC3 cells, comparable to CB1954. Kinetic parameters, molecular docking, and the HPLC
results also indicated that prodrug 3 interacts more favorably with Ssap-NtrB than prodrugs
1, 2, and 4, or the known cancer prodrugs CB1954 and SN23862. This makes prodrug 3 a
promising candidate for NTR-based cancer therapy.

The metabolites of prodrugs 6a and 6b exhibited IC50 values of 1.806 nM and 1.808 nM,
respectively [27]. The metabolite of prodrug 8a demonstrated an IC50 value of 1.793 nM,
comparable to CB1954. The common structural feature of the most active nitrobenzamide
compounds (6a, 6b, and 8a) includes a nitro group in p-position on the phenyl core relative
to the amide group and the presence of nitrogen-containing heterocyclic systems such as
piperidine (6a), morpholine (6b), or a saturated 1,4-cyclohexyl moiety (8a). The compounds
with two phenyl nuclei and one amide group exhibited the highest toxicity, followed by
bis-benzamides. The toxicity of the tested benzamides can be ranked in the following
order: 6 < 5 < 8 < 7. As a result of theoretical and biological studies, combinations of 6a, 6b,
and 8a with Ssap-NtrB can be suggested as potential prodrugs–enzyme combinations at
nitroreductase-based cancer therapy, compared with the CB1954–NfsB combination.

Further in this direction, Tokay et al. present the synthesis of N-(substituted)-2,4-
dinitroaniline derivatives, in particular symmetrical bis(2,4-dinitrophenyl)diamine deriva-
tives 9 and N-(5-morpholino-2,4-dinitro phenyl)alkanamides 10. These aromatic secondary
amines were derived from 2,4-dinitro-1-chlorobenzene and various aliphatic, alicyclic,
aromatic, or heterocyclic diamino derivatives utilizing Et3N or NaH as a base in DMF
solvent at room temperature or 60–70 ◦C via the SNAr reaction mechanism [28]. The design
of these compounds was based on model bioreductive dinitroaniline prodrugs such as
CB1954, SN23862, and PR-104A. The cytotoxic effects of prodrug candidates were assessed
using the MTT assay on human hepatoma cells (Hep3B), prostate cancer cells (PC-3), and
human umbilical vein endothelial cells (HUVEC) as healthy controls. The compounds with
minimal toxicity were further investigated to evaluate their potential as prodrug candidates.
Biochemical analyses were conducted to examine the reduction profiles and kinetics of
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prodrug–Ssap-NtrB combinations. Subsequently, selected prodrug–Ssap-NtrB combina-
tions were applied to prostate cancer cells to assess their toxicity. The combined results
from theoretical, in vitro cytotoxic, and biochemical studies indicate that prodrug/enzyme
combinations such as 9a—Ssap-NtrB, 9b—Ssap-NtrB, and 10—Ssap-NtrB hold promise as
potential candidates for nitroreductase (Ntr)-based prostate cancer therapy.
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Building on their previous works, Güngör and colleagues synthesized a series of N-
heterocyclic nitro prodrugs (11–13, Figure 5) containing pyrimidine, triazine, and piperazine
rings. Nitro-containing triazine derivatives 11 and 12 are synthesized from cyanuric
chloride and the amines via a nucleophilic substitution reaction. The process involves
refluxing cyanuric chloride and aromatic amines in acetic acid for varying reaction times
(15 min to 24 h), followed by purification through crystallization with isopropyl alcohol.
For the synthesis of urea derivatives of nitrophenyls and piperazine 13a–b, a Curtius
rearrangement is applied. This involves first reacting nitrobenzoyl chlorides with sodium
azide to obtain nitrobenzoyl azide derivatives. Subsequently, at the reflux temperature
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of toluene, nitrophenyl isocyanate forms as an unstable intermediate, which then reacts
with piperazine, yielding the desired products with high efficiency (78–96%). Prodrugs
13c–d, the carbamate derivatives of nitrophenyls and piperazine, were synthesized using
Rivett and Wilshire’s method. The synthesis begins with 1,4-bis(chlorocarbonyl)piperazine,
obtained from the reaction of piperazine with phosgene. This intermediate is then reacted
with nitrophenols (2-nitro, 3-nitro, and 4-nitro) in DMF at room temperature using NaH as
the base [29].

Molecules 2024, 29, x FOR PEER REVIEW 7 of 32 
 

 

chloride and the amines via a nucleophilic substitution reaction. The process involves re-
fluxing cyanuric chloride and aromatic amines in acetic acid for varying reaction times (15 
min to 24 h), followed by purification through crystallization with isopropyl alcohol. For 
the synthesis of urea derivatives of nitrophenyls and piperazine 13a–b, a Curtius rear-
rangement is applied. This involves first reacting nitrobenzoyl chlorides with sodium az-
ide to obtain nitrobenzoyl azide derivatives. Subsequently, at the reflux temperature of 
toluene, nitrophenyl isocyanate forms as an unstable intermediate, which then reacts with 
piperazine, yielding the desired products with high efficiency (78–96%). Prodrugs 13c–d, 
the carbamate derivatives of nitrophenyls and piperazine, were synthesized using Rivett 
and Wilshire’s method. The synthesis begins with 1,4-bis(chlorocarbonyl)piperazine, ob-
tained from the reaction of piperazine with phosgene. This intermediate is then reacted 
with nitrophenols (2-nitro, 3-nitro, and 4-nitro) in DMF at room temperature using NaH 
as the base [29].  

 
Figure 5. Structures of prodrug candidates 11–19 and a half-maximal inhibitory concentration 
(IC50) of their metabolites. 
Figure 5. Structures of prodrug candidates 11–19 and a half-maximal inhibitory concentration (IC50)
of their metabolites.

The compounds displayed varying cytotoxic profiles. For example, the pyrimidine
derivative 11b and the triazine derivative 12a emerged as promising drug candidates for
prostate cancer with IC50 values of 54.75 µM and 48.9 µM, respectively. Compounds 12b,
13a–c were identified as prodrug candidates due to their non-toxic properties across three
different cell models. The prodrug capabilities of these selected compounds were assessed
using the SRB assay in combination with Ssap-NtrB. SRB screening results indicated that
the metabolites of all selected non-toxic compounds exhibited significant cytotoxicity, with



Molecules 2024, 29, 3475 8 of 32

IC50 values ranging from 1.71 to 4.72 nM, against prostate cancer cells. Among the tested
compounds, piperazine derivatives 13b and 13c showed particularly notable toxic effects,
with IC50 values of 1.75 nM and 1.71 nM, respectively, against PC3 cells, comparable to the
standard prodrug CB1954 (IC50 = 1.71 nM) [29].

Based on enzymatic studies, prodrugs 15 and 18 (Figure 5) demonstrated the highest
activity with Ssap-NtrB during short incubation periods, and their metabolite profiles were
examined in detail over time. Similarly, 15 and 18 showed efficient enzymatic reduction by
Ssap-NtrB. In contrast, 14 and 15 exhibited no interaction with nitroreductase within the
limited timeframe, and the interaction levels for 17 and 19 were found to be insufficient.
Furthermore, kinetic studies revealed that the catalytic efficiencies of the Ssap-NtrB/TNA1,
Ssap-NtrB—15, and Ssap-NtrB—morpholine analog 16 combinations were 61, 28, and
20 times higher, respectively, than that of E. coli NfsB-CB1954 [30].

Although brief, this review highlights recent advances in the synthesis and structural
modifications of nitroaromatic prodrugs, with potential applications in suicide gene therapy.
It is hoped that these insights will pave the way for the design and synthesis of novel
bioreductive agents for GDEPT.

3. Bioreductive-Activated Prodrugs Conjugates (BAPCs)

Another strategy for cancer therapy that targets hypoxia involves using hypoxia-
activated prodrugs (triggers), which preferentially release chemotherapeutic agents (ef-
fectors) within hypoxic tumor regions. Under oxygen-poor conditions, the functional
groups in these prodrugs (such as nitrophenyl, nitrobenzyl, or nitroheteroaryl triggers)
are selectively reduced by reductases to electron-donating groups such as amine (-NH2)
or hydroxylamine (-NHOH), resulting in a dramatic change in the electron density of the
aromatic moiety. The released electrons cause fragmentation of the linker and release the
cytotoxic agent into the tumor, while leaving non-hypoxic cells undamaged (Figure 6) [6].
This approach can enhance therapeutic effectiveness compared to conventional chemother-
apeutic treatments by concentrating the drugs within hypoxic tumor environments. At the
same time, it reduces the side effects and toxicity associated with the systemic distribution
of traditional drugs on normoxic cells [31].
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The trigger’s role can be fulfilled by any of the above-mentioned bioreductive units, such
as nitrophenyl, nitrobenzyl, nitro heteroaryl, azo compounds, quinones, or oxides [32–34].
The effector unit needs to have high cytotoxicity and effectiveness against multiple cancer
types [35]. Commonly used effectors include drugs such as Doxorubicin (DOX), Camptothecin,
and Paclitaxel (PTX) [36,37]. The linker, which connects the trigger to the chemotherapeutic
agent, ensures stability in the bloodstream, while allowing for efficient release in the tumor
environment. Preferred linkers are ether, ester, or carbamate subunits, due to their biocompat-
ibility, stability in the bloodstream, and sensitivity to specific enzymes or acidic conditions,
which are more prevalent in tumor tissues than in normal tissues [38].

By masking Fasudil’s active site with a bioreductive 4-nitrobenzyl group, Al-Kilal
et al. [39] synthesized the conjugate 20 (Figure 7). Under normoxic conditions, the conjugate
exhibited significantly reduced antineoplastic activity (IC50 = 6.8 µM) compared to the
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parent compound (IC50 = 0.48 µM). However, under severe hypoxia, the nitro group is
reduced to form an electron-donating substituent, which induces fragmentation and ejects
the hydroxyfasudil 21. This process significantly enhanced the antiproliferative effect on
disease-afflicted pulmonary arterial smooth muscle cells and pulmonary arterial endothelial
cells (IC50 = 0.40 µM).
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Nitrobenzyl trigger was used in the construction of hypoxia-activated prodrug YC-Dox
22 (Figure 8) [31]. This prodrug is capable of specifically releasing the chemotherapeutic
agent Dox and the HIF-1α (hypoxia-inducible factor-1α) inhibitor YC-1 hemisuccinate
(3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole) in response to hypoxia.
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It is well known that low oxygen levels in hypoxic tumor tissues lead to the accumula-
tion of HIF-1α. This protein plays a crucial role in the adaptive response of cancer cells to
hypoxia by regulating various cellular functions [40]. YC-1 is capable of blocking HIF-1α
expression and consequently inhibiting the activity of HIF-1 as a transcription factor in
hypoxic cancer cells, leading to the suppression of tumor growth. In addition, YC1 exhibits
antiproliferative effects [41,42]. The release of Dox and YC-1 from the prodrug YC-Dox
in response to hypoxia results in substantial synergistic potency against hypoxic cancer
cells and remarkable cytotoxic selectivity, being more than eight times greater compared to
normoxic healthy cells. In vivo experiments demonstrate that this prodrug can selectively
target hypoxic cancer cells while avoiding unintended effects on normal cells. This selective
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targeting results in enhanced therapeutic efficacy for tumor treatment and reduced adverse
effects on normal tissues.

Ce, Y et al. reported the synthesis of the hypoxia-activated prodrug, N-(2-chloroethyl)-
N-2-(2-(4-nitrobenzylcarbamate)-O6-benzyl-9-guanine)ethyl-N-nitrosourea (NBGNU), 23
(Figure 9) [43]. The molecule integrates the chloroethylnitrosourea (CENU) pharma-
cophore to induce DNA interstrand cross-links and an O6-benzylguanine analog moiety
(angiotensinogen (AGT) inhibitor) masked by a 4-nitrobenzylcarbamate group to induce
hypoxia-activated inhibition of O6-alkylguanine-DNA alkyltransferase. Its anticancer effec-
tiveness was assessed through in vitro experiments. The prodrug demonstrated promising
antitumor efficacy and hypoxic selectivity due to the incorporation of an AGT inhibitor
and hypoxia-activated pharmacophores into the side chain of the CENU moiety. The
activity of 23 against AGT-expressing human glioma SF763 cells under hypoxic conditions
(IC50 = 126 µM) was significantly higher than under normoxic conditions (IC50 = 580 µM).
This indicates that NBGNU selectively undergoes reduction under hypoxic conditions,
leading to the unmasking of the 2-amino group of guanine, the release of O6-BG analogs,
and the effective inhibition of AGT. However, to further enhance its hypoxic selectivity and
chemotherapeutic efficacy, improvements are needed to reduce normoxia activation and
increase water solubility.
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The 2-nitrobenzyl- and 4-nitrobenzyl-SN-38 analogs 24a,b (Figure 10), as discussed by
Liang et al. [44], embody a key feature of hypoxia-activated prodrugs: they are significantly
less potent than their active metabolite. Initial cell viability assays showed that these
analogs were considerably less cytotoxic than SN-38 against human leukemia K562 cells,
with 2-nitrobenzyl-SN-38 24a and 4-nitrobenzyl-SN-38 24b displaying 8-fold and 19-fold
lower cytotoxicity, respectively. Furthermore, in a topoisomerase I assay, the 4-nitrobenzyl
analog at the C-10 position of SN-38 inhibited the enzyme’s ability to relax supercoiled
pBR322 DNA at concentrations similar to the clinically approved SN-38. Although the
reduction potentials of these compounds were lower than those of other known HAPs
and partially reversible, they demonstrated potential as hypoxia-targeted therapeutics.
The study concluded that the next generation of SN-38-HAPs should incorporate bulkier
nitroaromatic groups to further reduce cytotoxicity and use triggers with higher reduction
potentials to align with the range of cellular reductases (−450 to −300 mV).

The 2-nitroimidazole fragment is a widely used trigger in the fragmentation concept,
due to its good hydrophilicity and its relatively high one-electron reduction potential, well
within the range of various reductase enzymes, and high selectivity for hypoxic conditions.
Furthermore, there is a significant body of clinical and preclinical data supporting the effi-
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cacy and safety of 2-nitroimidazole-based prodrugs. This accumulated evidence provides a
strong foundation for their continued use and further development.

Molecules 2024, 29, x FOR PEER REVIEW 11 of 32 
 

 

significantly less potent than their active metabolite. Initial cell viability assays showed 
that these analogs were considerably less cytotoxic than SN-38 against human leukemia 
K562 cells, with 2-nitrobenzyl-SN-38 24a and 4-nitrobenzyl-SN-38 24b displaying 8-fold 
and 19-fold lower cytotoxicity, respectively. Furthermore, in a topoisomerase I assay, the 
4-nitrobenzyl analog at the C-10 position of SN-38 inhibited the enzyme’s ability to relax 
supercoiled pBR322 DNA at concentrations similar to the clinically approved SN-38. Alt-
hough the reduction potentials of these compounds were lower than those of other known 
HAPs and partially reversible, they demonstrated potential as hypoxia-targeted therapeu-
tics. The study concluded that the next generation of SN-38-HAPs should incorporate 
bulkier nitroaromatic groups to further reduce cytotoxicity and use triggers with higher 
reduction potentials to align with the range of cellular reductases (−450 to −300 mV). 

The 2-nitroimidazole fragment is a widely used trigger in the fragmentation concept, 
due to its good hydrophilicity and its relatively high one-electron reduction potential, well 
within the range of various reductase enzymes, and high selectivity for hypoxic condi-
tions. Furthermore, there is a significant body of clinical and preclinical data supporting 
the efficacy and safety of 2-nitroimidazole-based prodrugs. This accumulated evidence 
provides a strong foundation for their continued use and further development. 

 
Figure 10. Chemical structure of bioreductive-activated prodrugs conjugates 24a,b and 25a,b. 

Choi and co-workers [45] conjugate the camptothecin derivate SN-38 with 1-methyl-
2-nitro-1H-imidazole-5-yl fragment using two different linkers—an ether linkage 25a and 
carbamate functionality 25b (Figure 10). The ether analog 25a had moderate hypoxia se-
lectivity and more toxicity compared with TH-302. The different linkers in the structures 
of the two derivatives likely account for the significant differences in their hypoxia selec-
tivity and toxicity. Compound 25a demonstrated ten times higher toxicity against the hu-
man lung cancer cell line H460 and the human colon cancer cell line HT29 compared to 
the control hypoxia-activated nitroimidazole prodrug TH-302. Furthermore, 25a exhibited 
lower toxicity than SN-38 under normoxic conditions. However, both the hypoxic selec-
tivity and toxicity of 25a were lower compared to those of compound 25b. Despite this, 
the ether-linked compound 3a is considered a promising hypoxia-selective antitumor 
agent. 

Bielec, B. and colleagues [46] developed the first crizotinib prodrugs 26a,b (Figure 11) 
aimed at reducing severe adverse effects and enhancing anticancer activity. The design of 
these prodrugs involves a hypoxia-activatable, self-immolative 2- nitroimidazole trigger 
moiety at a key tyrosine kinase binding site of crizotinib, which significantly reduces its 
affinity for the catalytic pockets of the target kinases c-MET and ALK. Two different pro-
drug derivatives were synthesized: one with the trigger moiety coupled via 

Figure 10. Chemical structure of bioreductive-activated prodrugs conjugates 24a,b and 25a,b.

Choi and co-workers [45] conjugate the camptothecin derivate SN-38 with 1-methyl-2-
nitro-1H-imidazole-5-yl fragment using two different linkers—an ether linkage 25a and
carbamate functionality 25b (Figure 10). The ether analog 25a had moderate hypoxia selec-
tivity and more toxicity compared with TH-302. The different linkers in the structures of
the two derivatives likely account for the significant differences in their hypoxia selectivity
and toxicity. Compound 25a demonstrated ten times higher toxicity against the human
lung cancer cell line H460 and the human colon cancer cell line HT29 compared to the
control hypoxia-activated nitroimidazole prodrug TH-302. Furthermore, 25a exhibited
lower toxicity than SN-38 under normoxic conditions. However, both the hypoxic selectiv-
ity and toxicity of 25a were lower compared to those of compound 25b. Despite this, the
ether-linked compound 3a is considered a promising hypoxia-selective antitumor agent.

Bielec, B. and colleagues [46] developed the first crizotinib prodrugs 26a,b (Figure 11)
aimed at reducing severe adverse effects and enhancing anticancer activity. The design of
these prodrugs involves a hypoxia-activatable, self-immolative 2- nitroimidazole trigger
moiety at a key tyrosine kinase binding site of crizotinib, which significantly reduces its
affinity for the catalytic pockets of the target kinases c-MET and ALK. Two different prodrug
derivatives were synthesized: one with the trigger moiety coupled via carbamoylation (26a)
and the other via alkylation (26b) of the 2-aminopyridine moiety of crizotinib. Prodrug
26a demonstrated high stability in serum, a crucial requirement for successful prodrug
development, and effectively inhibited c-MET phosphorylation and cell proliferation in
tumor tissues in vivo following intravenous application. Overall, the data suggest that
prodrug 26a is a promising candidate for further (pre)clinical development as a novel
tyrosine kinase inhibitor with improved tumor-specific properties.

In another study, a hypoxia-activated camptothecin derivative embodies a multifunc-
tional bioreductive linker based on 1-methyl-2-nitroimidazole. The incorporation of a PEG
chain in the linker increased the water solubility of the SN-38- prodrug 27 and ensured
stability under physiological conditions [47]. When conjugated with SN-38, this linker
demonstrated the capability to efficiently release the drug through a two-step process:
reductive activation of the 2-nitroimidazole, followed by spontaneous degradation of the
linker via 1,6-elimination and cyclization-elimination, ultimately resulting in drug molecule
release (Figure 12).
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Encouraged by the great properties of the multifunctional linger-containing 1-methyl-
2-nitroimidazole trigger unit [47], Chang et al. reported the synthesis and biological evalua-
tion of the hypoxia-activated albumin-binding prodrug Mal-azo-Exatecan 28 (Figure 13) [48].
The 5-position branched linker of 1-methyl-2-nitro-5-hydroxymethylimidazole served as
a hypoxic cleavage trigger, linking the camptothecin analog Exatecan via a carbamate
bond. After intravenous administration, the side-chain maleimide rapidly binds to human
serum albumin (HSA). The HSA-azo-Exatecan carrier system accumulates in tumor tissue
through the enhanced permeability and retention effect, as well as the interaction with the
albumin receptor gp60. In the hypoxic tumor environment, Exatecan is released, triggered
by nitroreductase. The nitroimidazole trigger has high plasma stability and does not cause
the chemotherapeutic agent release from HSA-azo-Exatecan during circulation in vivo,
avoiding systemic side drug effects.
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files, rendering them less attractive for the development of HAPs.  

Winn et al. reported the synthesis of the scombretastatin A-1 (CA1) and com-
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Zhang and co-workers [49] reported the synthesis of hypoxia-activated paclitaxel
(PTX) prodrugs IMI-PXT 29 based on hypoxia-sensitive 2-nitroimidazole moiety. The 2-
nitroimidazole unit at the N-1 position is connected to 2′-OH of PTX via an ester bond with
pivalic acid for easier drug release. The GLU-PTX 30 and AZO-PTX 31 prodrugs (Figure 14)
contain glucose and acetazolamide as targeting ligands.

In contrast to the 2-nitroimidazole unit, 2-nitrothiophene and 2-nitrofuran triggers in
hypoxia-activated prodrugs exhibit less favorable stability, reactivity, and toxicity profiles,
rendering them less attractive for the development of HAPs.

Winn et al. reported the synthesis of the scombretastatin A-1 (CA1) and combretas-
tatin A-4 (CA4) prodrug conjugates 32a,b (Figure 15) [50]. The most active compounds
in the series were the gem-dimethyl prodrugs of CA1 (32a) and CA4 (32b), exhibiting
hypoxia cytotoxicity ratios of 12.5 and 41.5, respectively. This high selectivity is attributed
to the gem-dimethyl CA4-BAPC’s enhanced resistance to cleavage in oxygenated envi-
ronments, allowing the parent anticancer agent (CA4) to be released selectively under
hypoxic conditions.
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4. Nitroaromatic Compounds as Fluorescent Probes for Hypoxia Detection
and Imagining

Conventional methods for the in vivo imaging and detection of solid tumors are
typically applied only in advanced stages of cancer. Hypoxia imaging, however, offers
a promising alternative for earlier cancer diagnosis, enabling tumor visualization with
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a diameter as small as 350 µm [51]. The major techniques for hypoxia measurements in
tumors include immunohistochemical staining, oxygen electrodes, DNA strand breaks,
polarographic needle electrodes, magnetic resonance imaging, positron emission tomogra-
phy, single-photon emission computed tomography (SPECT), and fluorescence imaging. In
recent decades, fluorescence imaging has emerged as one of the most advanced methods
for quantifying hypoxia. It offers several advantages, such as non-invasiveness, higher sen-
sitivity, real-time monitoring in living systems, absence of ionizing radiation, low toxicity,
simple operation, and low cost [51–55].

Due to the relatively easy synthesis, well-predictable and highly selective fluorescent
sensing output, the nitro aromatic molecules have become the most attractive approach in
the design of fluorescent probes for hypoxia conditions [56–59]. Even commercially avail-
able options for in vivo studies of hypoxia, such as pimonidazole (alpha-((2-Nitroimidazol-
1-yl)methyl)-1-piperidineethanol), are based on nitro-containing compounds [60].

To date, the nitro aromatic compounds were used as a platform for fluorescent recogni-
tion of hypoxia according to two major mechanisms, and both were based on the bioreduc-
tion of the nitro aromatic system. The first one referred to the selective labeling of hypoxic
cells due to the reduction of a nitroaromatic moiety in the fluorophore architecture to amine.
The main concept here lies in the fact that the nitro group is well known as a fluorescence
quencher in aromatic systems, but after the bioreduction of this nitro group in hypoxic
conditions, the aromatic systems become fluorescent. The second mechanism was based on
the reduction of a fluorescent probe containing 4-nitrobenzyl formiatic, 4-nitrobenzylic, or
similar heterocyclic fragments in hypoxic cells, which resulted in a scavenge reaction and
alterations in former fluorescence wavelength or intensity (Figure 16).
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The development of fluorescent probes for hypoxia imaging began in the 1980s and
1990s, focusing on the bioreduction of nitroaromatic compounds to amines. Olive and
Durand were among the first to reveal the significant potential of nitroaromatic rings
for hypoxia imaging [61,62]. In their reports, they demonstrated that relatively nontoxic



Molecules 2024, 29, 3475 16 of 32

nitrofurans 33–36 (Figure 17) exhibit a highly responsive fluorescent output to intracellular
oxygen concentration under hypoxic conditions.
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Later, Hodgkiss et al. obtained a family of hypoxia-activated fluorescent naphthal-
imides (37–42) containing 2-nitroimidazole side chains (Figure 18). These molecules were
nonfluorescent due to the photoinduced electron transfer (from the fluorophore-excited
state to the nitroaromatic moiety), which was prevented after enzymatic bioreduction [55].
Furthermore, it is well known that the bioreduction of nitroimidazoles leads to intracellular
bioreductive metabolites that react with biomolecules, thus providing a binding mechanism
for the fluorescent probes to hypoxic cells. Since this report, the 2-nitroimidazole side chains
have become a major tracer for hypoxic cells and remain popular to date.
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Due to the relatively easy synthesis and well-predicted off-on fluorescent response to
intracellular oxygen concentration, numerous nitroaromatic structures have been developed
for hypoxia imaging based on the two principles mentioned above: the bioreduction of a
nitro group directly attached to the fluorophoric system, or the use of 2-nitroimidazole side
chains. For example, Qian et al. extended the concept of Hodgkiss et al. by preparing similar
naphthalimides (43–46, Figure 19) but with two 2-nitroimidazole fragments instead of one,
thus reporting the first hypoxic probes containing two heterocyclic-binding side chains [63].
The main motive for the synthesis of compounds 44 and 46 was the study of the side chain
effect in C4-position of the naphthalimide ring, which plays a more important role than the
fluorophoric architecture itself during interaction with DNA and probe interference. The
authors discovered that in V79 cells, probe 46 exhibited a higher fluorescence enhancement
(FE = 20 times) compared to 44 (FE = 15 times). This difference in signal responses between
the two probes was attributed to the shorter side-chain length of 44 compared to 46,
which reduces the possibility of fluorescent quenching due to intramolecular photoinduced
electron transfer from the reduction products of the nitroimidazole moiety to the excited
naphthalimide fluorophore.
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Furthermore, with probes 50–53, Qian et al. demonstrated that the NO2 group in flu-
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Figure 19. Chemical structures of hypoxia-activated 1,8-naphthalimide probes 43–46 and V79 cells
incubated with 46 under normoxic and hypoxic conditions. Adapted with permission from [63].
Copyright (2006) Elsevier.

Qian et al. were motivated by the ease of synthesis and low cost to develop a series of
hypoxic probes (47–53) containing a nitro group directly incorporated into the fluorophoric
scaffold (Figure 20) [64,65]. Compounds 47–49 demonstrated promising fluorescent re-
sponses in hypoxic V79 cells, with the hypoxic-oxic fluorescence differential reaching 6,
9, and 11 times after incubation with 47, 48, and 49, respectively. However, the observed
increase in fluorescence enhancement correlated with the probes’ increased water solubility.
This indicates that water solubility was a general issue with these probes, as deposition
outside the cells hindered future quantitative analysis.
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Figure 20. Chemical structures of hypoxia-activated 1,8-naphthalimide probes 47–53 and V79 cells
incubated with 51 (left) and 52 (right) under normoxic and hypoxic conditions. Adapted with
permission from [65]. Copyright (2008) Springer Nature.

Furthermore, with probes 50–53, Qian et al. demonstrated that the NO2 group in
fluorogenic compounds could function not only as a fluorescent quencher but also as an
electron acceptor that enhances fluorescence emission. Probes 52 and 53 exhibited the usual
off-on fluorescent switching upon transitioning from oxic to hypoxic conditions, showing
a 12-fold fluorescence enhancement. However, the analogous probes 50 and 51, which
contained the nitro group only in the electron-accepting part of the fluorophoric system,
displayed the opposite fluorescent response—a 14-fold fluorescence quenching under
hypoxic conditions compared to oxic conditions. This was attributed to the internal charge
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transfer (ICT) nature of the fluorophore, where fluorescence appears due to the charge
transfer from electron-donating amines to the nitro-containing electron-accepting part of
the molecule. The bioreduction of this nitro group to an electron-rich amine destabilized
the ICT state, which is crucial for strong fluorescence. Additionally, the authors found that
under hypoxic conditions in V79 cells, the nitro group in the naphthalene ring was reduced
preferentially over the one in the benzene ring. This selective reduction was essential for
maintaining the observed fluorescent on-state of probe 52 in hypoxia.

The concept of incorporating a nitro group directly into the fluorophoric system, which
activates fluorescence emission due to the favored intramolecular charge transfer after
bioreduction, remains relevant for designing hypoxic probes. Recently, Fan et al. reported a
non-fluorescent benzothiazole probe, 54 (Figure 21) [66]. Upon reaction with nitroreductase
(NTR), the nitro group in probe 54 underwent enzyme-catalyzed reduction to an amine,
resulting in a strong fluorescent emission. This process demonstrated high sensitivity, with
a detection limit of 48 ng/mL and a linear range of 0.5–8.0 µM for NTR. Additionally, 54
was successfully used for imaging hypoxia levels in living HeLa cells, rat tumor tissues,
and zebrafish. These results, combined with the probe’s low toxicity, indicate significant
potential for detecting hypoxia in solid tumors.
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Figure 21. Chemical structures of hypoxia-activated probe 54 and HeLa cells incubated with 54 under
normoxic and hypoxic conditions. Reproduced with permission from [66]. Copyright (2020) The
Royal Society of Chemistry.

Janczy-Cempa et al. employed a similar strategy in the design of two nitro-
pyrazinotriazapentalene derivatives, 56 and 57 (Figure 22), initially exhibiting weak flu-
orescence [67]. Upon reduction of their nitro groups by NTR, a significant fluorescence
enhancement with a 15-fold increase in intensity was observed. The reduction process with
NTR was selective, with linear ranges of 0–4 µg/mL and limits of detection of 18.6 ng/mL
for 56 and 33.2 ng/mL for 57, respectively. Both probes were non-toxic and successfully
employed for imaging hypoxia in the A2058 cell line.
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The current focus on developing highly emissive fluorescent probes in the near-
infrared (NIR) region is driven by NIR’s superior penetration ability in living systems,
effectively minimizing interfering bio-autofluorescence. This motivation led Fan et al. to
synthesize a BODIPY-based fluorescent probe, 58, for hypoxia imaging (Figure 23) [68].
Initially non-emissive, compound 58 contained a fluorescent-quenching nitro group that
could be selectively reduced by NTR to its amine form. Upon reduction, the resulting
amino derivative exhibited bright fluorescence in the NIR spectrum at 713 nm. Unlike
its precursor, the fluorescence of the amino derivative of 58 showed a linear increase,
correlated with the NTR concentration in the range of 0.1−1.0 µg/mL. A significant 55-fold
maximum fluorescence enhancement was achieved, with a calculated limit of detection
(LOD) of 7.08 ng/mL. Building upon probe 58, nanoparticles were developed and used as
fluorescent probes for hypoxia imaging both in vitro (H9c2 cells) and in vivo (ischemic mice
model). These nano-probes demonstrated negligible toxic effects, making them suitable for
in vivo applications.

Molecules 2024, 29, x FOR PEER REVIEW 19 of 32 
 

 

 
Figure 22. Chemical structures of hypoxia-activated 1,8-naphthalimide probes 56 and 57, and HeLa 
cells incubated with 56 under normoxic and hypoxic conditions. Adapted with permission from 
[67]. Copyright (2021) Elsevier. 

The current focus on developing highly emissive fluorescent probes in the near-in-
frared (NIR) region is driven by NIR’s superior penetration ability in living systems, ef-
fectively minimizing interfering bio-autofluorescence. This motivation led Fan et al. to 
synthesize a BODIPY-based fluorescent probe, 58, for hypoxia imaging (Figure 23) [68]. 
Initially non-emissive, compound 58 contained a fluorescent-quenching nitro group that 
could be selectively reduced by NTR to its amine form. Upon reduction, the resulting 
amino derivative exhibited bright fluorescence in the NIR spectrum at 713 nm. Unlike its 
precursor, the fluorescence of the amino derivative of 58 showed a linear increase, corre-
lated with the NTR concentration in the range of 0.1−1.0 µg/mL. A significant 55-fold max-
imum fluorescence enhancement was achieved, with a calculated limit of detection (LOD) 
of 7.08 ng/mL. Building upon probe 58, nanoparticles were developed and used as fluo-
rescent probes for hypoxia imaging both in vitro (H9c2 cells) and in vivo (ischemic mice 
model). These nano-probes demonstrated negligible toxic effects, making them suitable 
for in vivo applications. 

 
Figure 23. Chemical structures of hypoxia-activated probe 58 and H9c2 cells incubated with 58 un-
der normoxic and hypoxic conditions. Adapted with permission from [68]. Copyright (2019) Amer-
ican Chemical Society. 

Probe 59 (Figure 24) represents another notable example of a NIR fluorescent probe 
designed for hypoxia imaging, featuring a directly attached nitro group as a recognition 
unit for NTR [69]. Upon selective reduction by NTR, probe 59 exhibited remarkable fluo-
rescence, peaking at 740 nm. This resulted in a 32-fold enhancement in fluorescence inten-
sity and an exceptionally low detection limit of 1.09 ng/mL. Probe 59 was effectively uti-
lized for visualizing hypoxic cancer cells (HeLa, HepG2) and hypoxic tumors in a tumor-
bearing mouse model. Furthermore, MTT analysis indicated negligible cytotoxicity, un-
derscoring its potential as a highly valuable tool for both in vitro and in vivo monitoring 
of hypoxia status. 

Figure 23. Chemical structures of hypoxia-activated probe 58 and H9c2 cells incubated with 58 under
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Probe 59 (Figure 24) represents another notable example of a NIR fluorescent probe
designed for hypoxia imaging, featuring a directly attached nitro group as a recognition
unit for NTR [69]. Upon selective reduction by NTR, probe 59 exhibited remarkable
fluorescence, peaking at 740 nm. This resulted in a 32-fold enhancement in fluorescence
intensity and an exceptionally low detection limit of 1.09 ng/mL. Probe 59 was effectively
utilized for visualizing hypoxic cancer cells (HeLa, HepG2) and hypoxic tumors in a
tumor-bearing mouse model. Furthermore, MTT analysis indicated negligible cytotoxicity,
underscoring its potential as a highly valuable tool for both in vitro and in vivo monitoring
of hypoxia status.
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The integration of nitroimidazole side chains into NIR fluorophores represents another
effective approach for designing turn-on NIR fluorescent hypoxia probes. A notable
example includes probes 60–62 (Figure 25), where the fluorophore system is linked to
two fluorescence-quenching nitroimidazole chains [70]. These probes are designed to
preferentially accumulate under hypoxic conditions and exhibit strong fluorescence in the
range of 700–900 nm, following the bioreduction of both nitroimidazole fragments. Probes
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60–62 have been successfully applied for imaging hypoxic tumors both in vivo and in vitro,
highlighting their potential utility in hypoxia research and cancer diagnostics.
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The second main approach for designing hypoxic fluorescent probes involves fluoro-
genic systems that incorporate 4-nitrobenzyl formate, 4-nitrobenzylic, or similar heterocyclic
fragments into hypoxic cells, typically binding to amino or hydroxy groups. This approach
offers greater flexibility in designing signaling activation compared to the simple reduction
of aromatic nitro groups to amines discussed earlier. These probes undergo a scavenging
reaction during bioreduction, allowing for a variety of photophysical signaling mechanisms
such as ICT, PET (photoinduced electron transfer), and ESIPT (excited-state intramolecular
proton transfer). Compound 63 (Figure 26) serves as a classic example of a probe containing
4-nitrobenzyl formate, designed for detecting NTR [71]. It features a rhodolite fluorophore
system known for its high quantum yield and stability across a wide pH range. In 63, the
presence of nitrobenzyl formate quenches the rhodol fluorescence, but this quenching is easily
reversed in the presence of NTR. Upon reduction, a strong fluorescence emission is observed,
facilitating the selective determination of NTR. The fluorescence intensity at 550 nm increases
approximately 4.3-fold upon activation, with a reported detection limit of 51.5 ng/mL for
NTR. In studies involving Hi-5 cells, compound 63 exhibited non-toxic effects and good cell
permeability. It was successfully utilized for imaging hypoxic conditions both in vitro, using
Hi-5 cells as a model, and in vivo, in C. elegans.

Probe 65, as reported by Wei et al. (Figure 27), is based on a naphthalimide fluorogenic
architecture and serves as another example of the efficient use of the 4-nitrobenzyl formiatic-
recognizing unit in the detection of hypoxia [72]. The fluorescence intensity of 65 was
increased with the increased concentration of NTR, with a linear range of 0.1–0.3 µg/mL.
From the observed standard plot, a detection limit of 0.1 µM was calculated. Furthermore,
this probe showed remarkably low cytotoxicity, as even at high concentrations of 65, the
percentage of cell viability remained above 95%. The confocal fluorescence imaging of U87
cells revealed the great potential of the probe to monitor the hypoxic status of tumor cells.

The tumor cells were characterized not only by a hypoxic environment but also by
increased acidity. That is why the simultaneous detection of acidity and NTR could reduce
the possibility of false positive results during intracellular tumor imagining. From this
point of view, compound 67 (Figure 28) represents a noteworthy probe for accurate tumor
imaging due to its capability to detect both acidity and NTR [73]. In probe 67 a 4-nitrobenzyl
formiatic fragment was introduced in a classic PET (photoinduced electron transfer) 4-
amino-1,8-naphthalimde pH sensor based on a “fluorophore-spacer-receptor” model where
the 4-amino-1,8-naphthalimide serves as the fluorophore, and morpholine acts as the
pH receptor. After excitation, electron transfer from the electron-rich morpholine amine
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to the fluorophore occurs in this molecule, which quenches the fluorescence emission.
Upon protonation in acid media, the morpholine formed an electron-poor quaternary
ammonium salt, the PET process became impossible, and blue fluorescence was registered.
However, the observed fluorescence was weak due to the presence of hypoxia-recognition
4-nitrobenzyl formiatic unit, which quenches emission too. In neutral hypoxic media, the
4-nitrobenzyl formiat in 67 was reduced selectively to form a green-emitting compound.
As a result of the reduction-scavenging reaction, the strong electron-accepting carbonyl
coupled to the 4-amino nitrogen in 1,8-naphthalimide was cut off. This led to an increase in
the electron-donating ability of the 4-amino substituent attached to the 1,8-naphthalimide,
thus increasing the fluorophore ICT efficiency and causing the fluorescence emission to
red-shift from the blue to the green region. The observed green emission was weak too due
to the PET quenching effect in neutral media mentioned above. When the probe is in an
acid and hypoxia environment, both quenching processes are blocked, and bright green
fluorescence appears. Furthermore, based on both fluorescence outputs (blue at 460 nm
and green at 524 nm), a ratiometric analysis was conducted. In ratiometric methods for
analyte determination, the quantification is based on the ratio of fluorescent intensities at
two different wavelengths. This approach is desirable in bioimaging because it allows for
self-calibration and built-in correction for environmental effects and biomolecules. The pH
5 ratiometric analysis for the detection of NTR showed linearity in the range of 0–20 µM
and a limit of detection of 0.92 µg/mL. The probe was applied for the fluorescence imaging
of acidity and hypoxia in A549 cells.

Zheng et al. elegantly demonstrated the use of 4-nitrobenzyl formiate as an NTR
recognition unit combined with NIR imaging for in vivo hypoxia detection, as shown in
their cyanine probe 68 (Figure 29) [74]. The fluorescent analysis of 68 revealed a linear
enhancement at 785 nm in the presence of 0–0.5 µg/mL NTR, with a low detection limit
(LOD) of 0.0242 µg/mL. The efficient NTR detection capability of 68 was successfully
applied for the fluorescence imaging of hypoxic A549, PC-12, and HUVEC cell lines.
Furthermore, in vivo hypoxia imaging using probe 68 was evaluated in tumor-bearing
mice, as well as in models of cerebral ischemia and deep vein thrombosis. The results
underscored the high potential of probe 68 for rapid and precise in vivo monitoring of NTR
activity across diverse clinical models.
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Figure 28. Fluorescence sensing mechanism of probe 67 for detection of acidity and hypoxia, and
A549 cells incubated with 67 under normoxic and hypoxic conditions, at different pHs. Adapted with
permission from [73]. Copyright (2018) The Royal Society of Chemistry.

Using 4-nitrobenzyl instead of the 4-nitrobenzyl formiate fragment as a recognition
unit offers another approach in designing selective probes for detecting NTR and imaging
hypoxic cells. Probe 69 (Figure 30) exemplifies this strategy, where the reduction by
nitroreductase leads to the formation of a green-emitting fluorescent compound through
the scavenging of the 4-nitrobenzylic unit and intramolecular cyclization [75]. Due to the
specific interaction of the 4-nitrobenzylic moiety with NTR, compound 69 exhibits increased
fluorescence intensity at 530 nm, with a linear response in the concentration range of NTR
from 0 to 10 µg/mL and a detection limit of 11 ng/mL. The probe has been successfully
used to visualize hypoxic conditions in living HepG2 cells, demonstrating low toxicity and
the ability to detect NTR in tumor tissues up to a depth of 100 µm.
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Figures 31 and 32 illustrate two fluorescent probes (71 and 72) as typical examples
for in vivo NIR imagining of hypoxic conditions using the NTR-selective 4-nitrobenzyl
recognition unit [76,77]. Compound 71 represents a high-efficiency NIR fluorescence
probe for the detection of hypoxia via responding to NTR. It showed gradually increased
fluorescence at 710 nm in the presence of NTR. The observed LOD was 13.441 ng/mL
within the linear range of 0.1–0.9 µg/mL. The in vitro confocal-mediated competitive
binding inhibition and flow cytometry indicated a good specificity and sensitivity of 71
toward hypoxic cell detection. The probe showed low toxicity and, more importantly,
the in vivo results showed a rapid response in tumor recognition and monitoring of liver
cancer, enteritis, and liver ischemia.

Probe 72 is a BODIPY-based fluorogenic compound with quenched emissive properties
due to the presence of a 4-nitrobenzyl fragment. The selective reduction of 72 in the presence
of NTR results in the formation of a fluorescent compound following the 4-nitrobenzyl
scavenging reaction. A 20-fold increase in fluorescent emission was observed after the
addition of 1 µg/mL NTR. The detection limit of 72, calculated according to regression
analysis, was found to be 1.52 ng/mL NTR. The probe was nontoxic, with ≥90% cell
viability after incubation with 0–50 µM for 24 h. The in vivo NIR optical imaging of
CT26 solid tumor-bearing mice suggests that 72 could serve as a tumor-targeting, hypoxia-
activatable probe for direct cancer monitoring both in vitro and in vivo.

In recent times, there has been significant attention given to two-photon fluorescent
probes due to their advantages over traditional one-photon probes, including deeper tissue
imaging depth, higher spatial resolution, and longer observation times. This motivated Zhai
et al. and Wang et al. to synthesize two-photon probes 73 (Figure 33) and 75 (Figure 34),
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which incorporate the 4-nitrobenzylic receptor fragment for selective recognition of ni-
troreductase (NTR) [78,79]. Compound 73 exhibited a remarkable 130-fold fluorescence
enhancement at 563 nm within 10 min of reduction by NTR, with a detection limit of 23.67
ng/mL. It was successfully employed for imaging NTR activity in living HeLa cells, tissues,
and zebrafish under hypoxic conditions. Notably, in a rat liver tumor model, probe 73
produced bright fluorescence even at a tissue depth of 200 µm, highlighting its effectiveness
in deep-tissue imaging scenarios.
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Chemical Society.

Similarly to 73, probe 75 exhibits significant fluorescence enhancement upon selective
reduction by NTR, albeit at a wavelength centered around 580 nm. The quantum yield of
fluorescence post-reduction was notably increased to 0.045, compared to only 0.001 in its
initial state. There exists a strong linear correlation between the fluorescence enhancement
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and NTR concentrations within the range of 0–20 µg/mL, with a calculated limit of detec-
tion of 26 ng/mL. Probe 75 has been effectively utilized for hypoxia imaging in A549 cell
lines and A549 xenograft mice models, demonstrating its practical application in biological
settings. Furthermore, MTT assays have revealed low toxicity associated with probe 75,
supporting its potential for safe use in biological and medical research contexts.
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Some nitro heterocycle side chains, similar to the 4-nitrobenzylic and 4-nitrobenzyl
formiatic units discussed earlier, interact with NTR through scavenger reduction, making
them promising recognition components in the design of fluorescent probes for detecting
and imaging NTR. For example, phenoxazinone 77, depicted in Figure 35, contains a 5-
nitrofuranyl moiety that undergoes scavenger reduction, resulting in the formation of a
highly fluorescent compound after the furane group is removed [80]. This reduction process
is selective to NTR and enables its fluorescent detection. Probe 77 exhibits a remarkable
100-fold fluorescence enhancement and demonstrates a limit of detection of 0.27 ng/mL.
Its potential for tumor diagnosis via hypoxia imaging was demonstrated by monitoring the
hypoxic status in HeLa and A549 cells. Furthermore, standard MTT assays revealed that
cell viability remained unaffected even at high concentrations (up to 5 µM) of 77, indicating
its low toxicity profile.

Probe 78, as reported by Feng et al. (Figure 36), is another interesting example in
which a 4-nitroimidazole recognition unit could be selectively removed after reduction
with nitroreductase [81]. Probe 78 itself is nonfluorescent due to the photoinduced electron
transfer to the nitroimidazole. However, after reduction by NTR, it was converted to
4-hydroxy-3-hydroxyflavone, which exhibits bright fluorescence at 560 nm due to ESIPT
(intramolecular proton transfer). The ESIPT process showed an unusually high Stokes
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shift, which is a serious advantage in fluorescence sensing measurements, especially in
living systems, because it could reduce the influence of unwanted self-reabsorption and
the inner-filter effect. Due to the higher sensitivity and selective turn-on fluorescence
response, probe 78 showed high potential for the detection of NTR, with good linearity
in the concentration range of NTR 1–4 µg/mL and a limit of detection of 63 ng/mL. In
addition, this probe displayed low cytotoxicity, good biocompatibility, and was successfully
applied for imaging the hypoxic status of HeLa cells.
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In the last decade, the design and synthesis of selectively activated fluorescent probes in
the second near-infrared window (NIR-II) has focused in general on the in vivo imagining
of various biological or pathological processes, since NIR-II fluorescence imaging has an
improved penetration depth and reduced autofluorescence. This motivated Meng et. al. to
fabricate molecular probe 79 (Figure 37), which exhibits weak fluorescence at the NIR-II region
due to the presence of a nitroimidazole fluorescent quencher [82]. The selective reduction
of the nitro group to an amine in the presence of NTR resulted in a 107-fold fluorescent
enhancement at 1046 nm. The NIR-II fluorescence signal of 78 in the tumor tissue was clearly
visible at 10 h post-injection and reached its maximum at about 14 h. Notably, the in vivo
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NIR-II fluorescence imaging of tumor hypoxia with 78 showed an unusual lack of observable
background signal. The probe itself was safe, and it was found that it could be eliminated
by renal excretion pathways from the animal body. All observed results revealed the great
importance of probe 79 as a promising contrast and theranostic agent for hypoxia-related
diseases, such as cancer, inflammation, stroke, and cardiac ischemia.
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Karan et. al. reported another NIR II fluorescent probe (80) using 4-nitrobenzyl frag-
ment as the NTR recognition element [83]. This probe was characterized by selective and
a 4-fold more intensive ratiometric (1000 nm/940 nm) fluorescent output after activation
by scavenging reduction of the 4-nitrobenzyl moiety. The ratiometric fluorescent response
takes 45 min to reach its maximal value. It shows an excellent linear relationship against
the concentrations of NTR from 0 to 10 µg/mL. The in vivo study indicated that probe
80 could be used for the visualization of tumor tissues due to the selective activation by
NTR. Female BALB/c mice bearing two subcutaneous 4T1 breast tumors were chosen as a
model. This probe offers a valuable in vivo biosensing amalgamation of NIR-II fluorescent
response and self-calibrated ratiometric analysis (see Figure 38).
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5. Conclusions

The heterogeneity of tumor hypoxia, pharmacokinetics, and the potential toxicity
of conventional drugs remain significant challenges for HAPs. Continued research into
nitro(het)aromatic compounds and their structural modifications is essential for developing
more selective and effective cancer therapies. This review underscores the potential of
hypoxia-activated nitro(het)aromatic prodrugs in targeted cancer therapy, particularly
through mechanisms such as gene-directed enzyme prodrug therapy and the formulation
of bioreductive-activated prodrug conjugates featuring nitrophenyl, nitrobenzyl, and nitro-
heteroaryl triggers. While promising, some BAPCs require further refinement to reduce
activation in normoxic conditions and improve water solubility. To address these chal-
lenges, the design of next-generation hypoxia-activated pro-drugs focuses on incorporating
bulkier nitroaromatic groups and triggers with higher reduction potentials, which better
match the cellular reductase range. This approach aims to improve specificity and minimize
the off-target effects, thereby maximizing drug delivery and activation specifically within
hypoxic tumor regions. Overall, BAPCs represent a significant advancement in targeted
cancer therapy, offering a method to specifically deliver and activate drugs in hypoxic
tumor regions, thereby enhancing efficacy and minimizing systemic toxicity. Stability
and bioavailability issues arise from poor compound stability in biological environments
and limited bioavailability. To address these, chemical modifications to enhance stability
and formulation strategies, including encapsulation in liposomes or other nanocarriers,
are recommended.

Over the past four decades, nitroaromatic compounds have played a crucial role in
the design and synthesis of fluorescent probes for the selective detection of NTR and for
imaging the hypoxic status of tumor cells and tissues. The major appeal of nitroaromatic
derivatives lies in their simple synthesis and predictable off-on fluorescent response after
selective bioreduction by NTR. Many of the developed probes exhibit low toxicity, high
sensitivity, and linearity in detection ranges, making them suitable for in vivo applications
in the hypoxia imaging of tumors. Despite significant progress, enhancing water solu-
bility remains a critical hurdle due to the inherently hydrophobic nature of most organic
architectures, limiting their practical application.

Future research directions include developing multianalyte probes capable of detect-
ing acidity and NTR simultaneously, thereby reducing false positives in clinical settings.
Moreover, exploring two-photon fluorescent technologies for deeper tissue imaging and im-
proved diagnostic accuracy holds promise. These advancements highlight the potential of
nitro(het)aromatic compounds in revolutionizing cancer diagnostics and therapy, offering
reliable, non-invasive solutions for early cancer detection and treatment monitoring.

We hope this review will assist researchers in creating novel nitro(het)aromatic com-
pounds for treating with improve selectivity and stability, and/or for fluorescently imaging
hypoxic tumors to bolster cancer diagnostics and improve the monitoring of
treatment efficacy.
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